
 ns-3 tutorial March 2008 1

ns-3 tutorial

Presenter: Tom Henderson
University of Washington

Simutools Conference
March, 2008

 ns-3 tutorial March 2008 2

Acknowledgments

• Thanks to Mathieu Lacage and Craig
Dowell for assembling the tutorial source
code and materials

• Thanks to ns-3 development team!

• Tom Henderson is supported by NSF
CNS-0551686 (University of Washington)

 ns-3 tutorial March 2008 3

Goals of this tutorial

• Learn about the ns-3 project and its goals
• Understand the software architecture,

conventions, and basic usage of ns-3
• Read and modify an example ns-3 script
• Learn how you might extend ns-3 to

conduct your own research
• Provide feedback to the ns-3 development

team

 ns-3 tutorial March 2008 4

Assumptions

• Some familiarity with C++ programming
language

• Some familiarity with Unix Network
Programming (e.g., sockets)

• Some familiarity with discrete-event
simulators

 ns-3 tutorial March 2008 5

Outline

• Introduction to ns-3
• Reading ns-3 code
• Tweaking ns-3 code
• Extending ns-3 code

 ns-3 tutorial March 2008 6

What is ns (or ns-2)?

• ns is a discrete-event network simulator for
Internet systems
– protocol design, multiple levels of abstraction
– written in multiple languages (C++/OTcl)

• ns has a companion network animator
called nam
– hence, has been called the nsnam project

ns-3 is a research-oriented, discrete event simulator

 ns-3 tutorial March 2008 7

ns-3 features

• open source licensing (GNU GPLv2) and
development model

• Python scripts or C++ programs
• alignment with real systems (sockets, device

driver interfaces)
• alignment with input/output standards (pcap

traces, ns-2 mobility scripts)
• testbed integration is a priority
• modular, documented core

 ns-3 tutorial March 2008 8

ns-3 models

Project focus has been on the software core, to date

 ns-3 tutorial March 2008 9

ns-3 people

• NSF PIs:
– Tom Henderson, Sumit Roy (University of

Washington), George Riley (Georgia Tech.),
Sally Floyd (ICIR)

• Associated Team: INRIA Sophia Antipolis,
Planete group
– Walid Dabbous, Mathieu Lacage (software

lead)
• Developers: Raj Bhattacharjea, Gustavo

Carneiro, Craig Dowell, Joseph Kopena,
Emmanuelle Laprise

`

 ns-3 tutorial March 2008 10

ns-3 relationship to ns-2

ns-3 is not an extension of ns-2
• does not have an OTcl API

– C++ wrapped by Python
• synthesis of yans, ns-2, GTNetS simulators, and

new software
– example ns-2 models so far: random

variables, error models, OLSR
• guts of simulator are completely replaced
• new visualizers are in works

 ns-3 tutorial March 2008 11

ns-3 status (March 2008)

ns-3 is in a pre-alpha state
• monthly development releases
• APIs being finalized
• emphasis has been on setting the architecture
• new users should expect rough edges
• many opportunities to work on the core models

 ns-3 tutorial March 2008 12

ns-3 status (March 2008)

What others are already using ns-3 for:
• wifi-based simulations of OLSR and other

MANET routing
• MANET routing (SMF and unicast protocols)
• OntoNet: Scalable Knowledge Based

Networking" by Joe Kopena and Boon Thau Loo
(UPenn)

 ns-3 tutorial March 2008 13

ns-3 roadmap (2008)

near term (through June)
• finalize and release simulation core

(April/May)
–core APIs

• ns-3.1 complete release (June timeframe)
–add Internet and Device models
–add validation framework
–some higher-level topology/scenario

APIs

 ns-3 tutorial March 2008 14

ns-3 roadmap (2008)

 planned for later this year
• emulation modes
• statistics
• support for real code
• additional ns-2 porting/integration
• distributed simulation
• visualization

 ns-3 tutorial March 2008 15

Resources

Web site:
http://www.nsnam.org

Mailing list:
http://mailman.isi.edu/mailman/listinfo/ns-developers

Tutorial:
http://www.nsnam.org/docs/tutorial/tutorial.html

Code server:
http://code.nsnam.org

Wiki:
http://www.nsnam.org/wiki/index.php/Main_Page

http://www.nsnam.org/
http://www.nsnam.org/
http://mailman.isi.edu/mailman/listinfo/ns-developers
http://www.nsnam.org/docs/tutorial/tutorial.html
http://www.nsnam.org/docs/tutorial/tutorial.html
http://code.nsnam.org/
http://code.nsnam.org/
http://www.nsnam.org/wiki/index.php/Main_Page
http://www.nsnam.org/wiki/index.php/Main_Page

 ns-3 tutorial March 2008 16

Links to materials

• Today's code
– http://www.nsnam.org/tutorials/simutools08/ns-3-tutorial.tar.gz

3-tutorial.tar.gz

• Tutorial slides:
– PPT:

http://www.nsnam.org/tutorials/simutools08/ns-3-tutorial.ppt
3-tutorial.ppt

– PDF:
http://www.nsnam.org/tutorials/simutools08/ns
-3-tutorial.pdf

http://www.nsnam.org/tutorials/simutools08/ns-3-tutorial.tar.gz
http://www.nsnam.org/tutorials/simutools08/ns-3-tutorial.ppt

 ns-3 tutorial March 2008 17

Questions so far?

 ns-3 tutorial March 2008 18

Outline

• Introduction to ns-3
• Reading ns-3 code
• Tweaking ns-3 code
• Extending ns-3 code

 ns-3 tutorial March 2008 19

Reading ns-3 code

• Browsing the source code
• Conceptual overview
• Script walkthrough

 ns-3 tutorial March 2008 20

Basics

• ns-3 is written in C++
• Bindings in Python
• ns-3 uses the waf build system
• i.e., instead of ./configure;make, type ./waf
• simulation programs are C++ executables

(python scripts)

 ns-3 tutorial March 2008 21

Browse the source

tomh@A3803721 ~/home/ns-3-dev
$ ls
AUTHORS README VERSION examples samples tutorial waf wscript
LICENSE RELEASE_NOTES doc ns3 src utils waf.bat

Pause presentation to browse source code

http://www.nsnam.org/tutorials/simutools08/ns-3-tutorial.tar.gz

 ns-3 tutorial March 2008 22

Doxygen documentation

• Most of the ns-3 API is documented with
Doxygen
– http://www.stack.nl/~dimitri/doxygen/

Pause presentation to browse Doxygen

http://www.nsnam.org/doxygen/index.html

 ns-3 tutorial March 2008 23

the waf build system

• Waf is a Python-based framework for
configuring, compiling and installing
applications.
– It is a replacement for other tools such as

Autotools, Scons, CMake or Ant
– http://code.google.com/p/waf/

Pause presentation to build with waf

 ns-3 tutorial March 2008 24

waf key concepts

• For those familiar with autotools:
• configure -> ./waf -d [optimized|debug] configure

• make -> ./waf

• make test -> ./waf check (run unit tests)

• Can run programs through a special waf
shell; e.g.
– ./waf --run simple-point-to-point

– (this gets the library paths right for you)

 ns-3 tutorial March 2008 25

Application

The basic model

Application

Protocol
stack

Node

NetDevice
NetDevice

Application
Application

Protocol
stack

Node

NetDevice
NetDevice

Sockets-like
 API

Channel

Channel

Packet(s)

 ns-3 tutorial March 2008 26

Fundamentals

Key objects in the simulator are Nodes,
Packets, and Channels

Nodes contain Applications, “stacks”, and
NetDevices

 ns-3 tutorial March 2008 27

Node basics

A Node is a husk of a computer to which
applications, stacks, and NICs are added

Application
Application

Application

“DTN”

 ns-3 tutorial March 2008 28

NetDevices and Channels

NetDevices are strongly bound to Channels
of a matching type

Nodes are architected for multiple interfaces

WifiNetDevice

WifiChannel

 ns-3 tutorial March 2008 29

Node basics

Two key abstractions are maintained:

1) applications use an (asynchronous, for
now) sockets API

2) the boundary between IP and layer 2
mimics the boundary at the device-
independent sublayer in Linux
i.e., Linux Packet Sockets

 ns-3 tutorial March 2008 30

ns-3 Packets

• each network packet contains a byte buffer,
a list of tags, and metadata
– buffer: bit-by-bit (serialized) representation of

headers and trailers
– tags: set of arbitrary, user-provided data

structures (e.g., per-packet cross-layer
messages, or flow identifiers)

– metadata: describes types of headers and
and trailers that have been serialized

• optional-- disabled by default

 ns-3 tutorial March 2008 31

ns-3 Packets

• to add a new header, subclass from
Header, and write your Serialize() and
Deserialize() methods
– how bits get written to/from the Buffer

• Similar for Packet Tags

• Packet Buffer implements a (transparent)
copy-on-write implementation

 ns-3 tutorial March 2008 32

example: UDP header

class UdpHeader : public Header

{

public:

 void SetDestination (uint16_t port);

 ...

 void Serialize (Buffer::Iterator start) const;

 uint32_t Deserialize (Buffer::Iterator start);

private:

 uint16_t m_sourcePort;

 uint16_t m_destinationPort;

 uint16_t m_payloadSize;

 uint16_t m_initialChecksum;

}

 ns-3 tutorial March 2008 33

example: UDP header

void

UdpHeader::Serialize (Buffer::Iterator start) const

{

 Buffer::Iterator i = start;

 i.WriteHtonU16 (m_sourcePort);

 i.WriteHtonU16 (m_destinationPort);

 i.WriteHtonU16 (m_payloadSize + GetSerializedSize ());

 i.WriteU16 (0);

 if (m_calcChecksum)

 {

 uint16_t checksum = Ipv4ChecksumCalculate (...);

 i.WriteU16 (checksum);

 }

}

 ns-3 tutorial March 2008 34

Simulation basics

• Simulation time moves discretely from
event to event

• C++ functions schedule events to occur at
specific simulation times

• A simulation scheduler orders the event
execution

• Simulation::Run() gets it all started
• Simulation stops at specific time or when

events end

 ns-3 tutorial March 2008 35

Sample script walkthrough

WiFi
(Infra-
structure
)

CSMA (LAN)

Applications: UDP flow,
Routing: OLSR on backbone

WiFi (AdHoc network)
Backbone

Hierarchical
mobility
1) AdHoc
movement in
backbone
2) Local
movement
relative to Access
Point

WiFi
(Infra-
structure
)

 ns-3 tutorial March 2008 36

Sample script walkthrough

Walk through mixed-wireless.cc

 ns-3 tutorial March 2008 37

(aside) similar looking code in Python

import sys
import ns3 as ns

def main():
Set up some default values for the simulation. Use the Bind()
technique to tell the system what subclass of Queue to use,
and what the queue limit is
The below Bind command tells the queue factory which class to
instantiate, when the queue factory is invoked in the topology code

ns.DefaultValue.Bind("Queue", "DropTailQueue")
ns.DefaultValue.Bind("OnOffApplicationPacketSize", "210")
ns.DefaultValue.Bind("OnOffApplicationDataRate", "448kb/s")

ns.CommandLine.Parse(sys.argv)

Here, we will explicitly create four nodes. In more sophisticated
topologies, we could configure a node factory.

n0 = ns.InternetNode()
n1 = ns.InternetNode()
n2 = ns.InternetNode()
n3 = ns.InternetNode()
...

 ns-3 tutorial March 2008 38

examples/ directory

• examples/ contains other scripts with similar themes
$ ls
csma-broadcast.cc simple-point-to-point.cc
csma-multicast.cc tcp-large-transfer-errors.cc
csma-one-subnet.cc tcp-large-transfer.cc
csma-packet-socket.cc tcp-nonlistening-server.cc
mixed-global-routing.cc tcp-small-transfer-oneloss.cc
simple-alternate-routing.cc tcp-small-transfer.cc
simple-error-model.cc udp-echo.cc
simple-global-routing.cc waf
simple-point-to-point-olsr.cc wscript

 ns-3 tutorial March 2008 39

Outline

• Introduction to ns-3
• Reading ns-3 code
• Tweaking ns-3 code
• Extending ns-3 code

 ns-3 tutorial March 2008 40

ns-3 logging

• ns-3 has a built-in logging facility to stderr
• Features:

– can be driven from shell environment
variables

– Multiple log levels like syslog
– Function and call argument tracing

• Intended for debugging, but can be
abused to provide tracing
– we do not guarantee that format is unchanging

 ns-3 tutorial March 2008 41

ns-3 logging example

• NS_LOG_UNCOND();
• NS_LOG environment variable
• per-source-file logging
• log levels
• example scripts

 ns-3 tutorial March 2008 42

attributes and tracing

• Next, we would like to talk about attributes
(default values, settable and gettable
values) and tracing

• To understand this, we'll introduce the ns-
3 Object system

 ns-3 tutorial March 2008 43

Object metadata system

• ns-3 is, at heart, a C++ object system
• ns-3 objects that inherit from base class

ns3::Object get several additional features
– dynamic run-time object aggregation
– an attribute system
– smart-pointer memory management

Disclaimer: This is not all main-line ns-3 code-- parts are in
a proposal in the mathieu/ns-3-param repository

 ns-3 tutorial March 2008 44

Object aggregation use case

• You can aggregate objects to one another
at run-time
– Avoids the need to modify a base class to

provide pointers to all possible connected
objects

• Object aggregation is planned to be the
main way to create new Node types
(rather than subclassing Node)

 ns-3 tutorial March 2008 45

Object aggregation example

void

WifiChannel::Send (Ptr<WifiPhy> sender, Ptr<const
Packet> packet, ...)

{

 Ptr<MobilityModel> senderMobility = 0;

 Ptr<MobilityModel> receiverMobility = 0;

 ...

 senderMobility = sender->GetNode ()->

 GetObject<MobilityModel> ();

}
class Node does not need to know
about MobilityModel

 ns-3 tutorial March 2008 46

Use cases for attributes

• An Attribute represents a value in our
system

• An Attribute can be connected to an
underlying variable or function
– e.g. TcpSocket::m_cwnd;
– or a trace source

 ns-3 tutorial March 2008 47

Use cases for attributes (cont.)

• What would users like to do?
– Know what are all the attributes that affect the

simulation at run time
– Set a default initial value for a variable
– Set or get the current value of a variable
– Initialize the value of a variable when a

constructor is called

• The attribute system is a unified way of
handling these functions

 ns-3 tutorial March 2008 48

How to handle attributes

• The traditional C++ way:
– export attributes as part of a class's public API
– walk pointer chains (and iterators, when

needed) to find what you need
– use static variables for defaults

• The attribute system provides a more
convenient API to the user to do these
things

 ns-3 tutorial March 2008 49

The traditional C++ way

class Foo
{
public:
 void SetVar1 (uint32_t value);
 uint32_t GetVar1 (void);
 static void SetInitialVar1(uint32_t value);
 void SetVar2 (uint32_t value);
 uint32_t GetVar2 (void);
 static void SetInitialVar2(uint32_t value);
 ...
private:
 uint32_t m_var1; // document var1
 uint32_t m_var2; // document var2
 static uint32_t m_initial_var1;
 static uint32_t m_initial_var2;
}

Foo::Foo() : m_var1(Foo::m_initial_var1), m_var2(Foo::m_initial_var2)
{
}

to modify an instance of Foo, get the pointer somehow, and use the public accessor functions
to modify the default values, modify the statics
Default values may be available in a separate framework (e.g. ns-2 Bind())

 ns-3 tutorial March 2008 50

Navigating the attributes

• Attributes are exported into a string-based
namespace, with filesystem-like paths
– namespace supports regular expressions

• Attributes also can be used without the
paths
– e.g. “WifiPhy::TxGain”

• A Config class allows users to manipulate
the attributes

 ns-3 tutorial March 2008 51

Navigating the attributes using paths

• Examples:
– Nodes with NodeIds 1, 3, 4, 5, 8, 9, 10, 11:

“/NodeList/[3-5]|[8-11]|1”

– UdpL4Protocol object instance aggregated to
matching nodes:

“/$UdpL4Protocol”

– EndPoints which match the SrcPort=1025
specification:

“/EndPoints/*:SrcPort=1025”

 ns-3 tutorial March 2008 52

What users will do

• e.g.: Set a default initial value for a
variable

• (Note: this replaces DefaultValue::Bind())
Config::Set (“WifiPhy::TxGain”, Double (1.0));

• Syntax also supports string values:
Config::Set (“WifiPhy::TxGain”, “1.0”);

Attribute Value

 ns-3 tutorial March 2008 53

What users will see

• Set or get the current value of a variable
– Here, one needs the path in the namespace to

the right instance of the object
Config::SetAttribute(“/NodeList/5/DeviceList/3/Phy
/TxGain”, Double(1.0));

Double d =
Config::GetAttribute(“/NodeList/5/NetDevice/3/Phy
/TxGain”);

• Users can get Ptrs to instances also, and
Ptrs to trace sources, in the same way

 ns-3 tutorial March 2008 54

CreateObject<> ();

• CreateObject<> is a wrapper for operator
new.

• ns3::Object objects must be created on the
heap using CreateObject<> (), which
returns a smart pointer; e.g.

Ptr<Node> rxNode = CreateObject<Node> ();

 ns-3 tutorial March 2008 55

Create<> ();

• What is Create<> ()?
• Create<> provides some smart pointer

help for objects that use ns3::Ptr<> but
that do not inherit from Object.

• Principally, class ns3::Packet
Ptr<Packet> p = Create<Packet> (data,size);

 ns-3 tutorial March 2008 56

Non-default constructors

• The attribute system allows you to also
pass them through the CreateObject<>
constructor.

• This provides a generic non-default
constructor for users (any combination of
parameters), e.g.:

Ptr<WifiPhy> phy = CreateObject<WifiPhy> (

 “TxGain”, Double (1.0));

 ns-3 tutorial March 2008 57

How is all this implemented (overview)

class Foo P public Object
{
public:
 static TypeId GetTypeId (void);
private:
 uint32_t m_var1; // document var1
 uint32_t m_var2; // document var2
}

Foo::Foo() {
}

TypeId Foo::GetTypeId (void)
{
 static TypeId tid = TypeId(“Foo”);
 .SetParent (<ooParent>
 .SetGroupName (“FooDefaults”)
 .AddConstructor<Foo> ();
 .AddAttribute (“m_var1”, “document var1”,
 UInteger(3),
 MakeUIntegerAccessor (&Foo::m_var1),
 MakeUIntegerChecker<uint32_t> ())
 .AddAttribute (“m_var2”, “”, ...)
 return tid;
}

 ns-3 tutorial March 2008 58

A real TypeId example

TypeId
RandomWalk2dMobilityModel::GetTypeId (void)
{
 static TypeId tid = TypeId ("RandomWalkMobilityModel")
 .SetParent<MobilityModel> ()
 .SetGroupName ("Mobility")
 .AddConstructor<RandomWalk2dMobilityModel> ()
 .AddAttribute ("bounds",
 "Bounds of the area to cruise.",
 Rectangle (0.0, 0.0, 100.0, 100.0),
 MakeRectangleAccessor (&RandomWalk2dMobilityModel::m_bounds),
 MakeRectangleChecker ())
 .AddAttribute ("time",
 "Change current direction and speed after moving for this delay.",
 Seconds (1.0),
 MakeTimeAccessor (&RandomWalk2dMobilityModel::m_modeTime),
 MakeTimeChecker ())
 .AddAttribute ("distance",
 "Change current direction and speed after moving for this distance.",
 Seconds (1.0),
 MakeTimeAccessor (&RandomWalk2dMobilityModel::m_modeTime),
 MakeTimeChecker ())

 ns-3 tutorial March 2008 59

Also part of Object: smart pointers

• ns-3 uses reference-counting smart
pointers at its APIs to limit memory leaks
– Or “pass by value” or “pass by reference to

const” where appropriate

• A “smart pointer” behaves like a normal
pointer (syntax) but does not lose memory
when reference count goes to zero

• Use them like built-in pointers:
 Ptr<MyClass> p = CreateObject<MyClass> ();

 p->method ();

 ns-3 tutorial March 2008 60

Statements you should understand now

 Ptr<Ipv4AddressAllocator> ipAddrs = CreateObject<Ipv4AddressAllocator> ();

C++ Smart Pointer ns3::Object

Config::SetDefault (“OnOffApplication::DataRate”, String(“448kb/s”));

Config::SetDefault (“/NodeList/*/DeviceList/*/Phy/TxGain”, Double(10.0));

Attribute namespace

 ns-3 tutorial March 2008 61

Tracing model

• Tracing is a structured form of simulation output
– tracing format should be relatively static across simulator

releases

• Example (from ns-2):
+ 1.84375 0 2 cbr 210 ------- 0 0.0 3.1 225 610

- 1.84375 0 2 cbr 210 ------- 0 0.0 3.1 225 610

r 1.84471 2 1 cbr 210 ------- 1 3.0 1.0 195 600

r 1.84566 2 0 ack 40 ------- 2 3.2 0.1 82 602

+ 1.84566 0 2 tcp 1000 ------- 2 0.1 3.2 102 611

• Needs vary widely

 ns-3 tutorial March 2008 62

Crude tracing

#include <iostream>

...

int main ()

{

 ...

 std::cout << "The value of x is " << x <<
std::endl;

 ...

}

 ns-3 tutorial March 2008 63

slightly less crude

#include <iostream>

...

int main ()

{

 ...

 NS_LOG_UNCOND ("The value of x is " << x);

 ...

}

 ns-3 tutorial March 2008 64

Simple ns-3 tracing

• these are wrapper functions/classes
• see examples/mixed-wireless.cc
 #include "ns3/ascii-trace.h"

 AsciiTrace asciitrace ("mixed-wireless.tr");

 asciitrace.TraceAllQueues ();

 asciitrace.TraceAllNetDeviceRx ();

 ns-3 tutorial March 2008 65

Simple ns-3 tracing (pcap version)

• these are wrapper functions/classes
• see examples/mixed-wireless.cc
 #include "ns3/pcap-trace.h"

 PcapTrace pcaptrace ("mixed-wireless.pcap");

 pcaptrace.TraceAllIp ();

 ns-3 tutorial March 2008 66

ns-3 tracing model (revisit)

• Fundamental #1: decouple trace sources
from trace sinks

• Fundamental #2: prefer standard trace
outputs for built-in traces

Trace source

Trace source

Trace source

Trace sink

unchanging
configurable by
user

 ns-3 tutorial March 2008 67

Tracing overview

• Simulator provides a set of pre-configured
trace sources
– Users may edit the core to add their own

• Users provide trace sinks and attach to the
trace source
– Simulator core provides a few examples for

common cases

• Multiple trace sources can connect to a
trace sink

 ns-3 tutorial March 2008 68

Multiple levels of tracing

• Highest-level: Use built-in trace sources
and sinks and hook a trace file to them

• Mid-level: Customize trace source/sink
behavior using the tracing namespace

• Low-level: Add trace sources to the
tracing namespace
– Or expose trace source explicitly

 ns-3 tutorial March 2008 69

Highest-level of tracing

• Highest-level: Use built-in trace sources
and sinks and hook a trace file to them

 // Also configure some tcpdump traces; each interface will be traced

 // The output files will be named

 // simple-point-to-point.pcap-<nodeId>-<interfaceId>

 // and can be read by the "tcpdump -r" command (use "-tt" option to

 // display timestamps correctly)

 PcapTrace pcaptrace ("simple-point-to-point.pcap");

 pcaptrace.TraceAllIp ();

 ns-3 tutorial March 2008 70

Mid-level of tracing

• Mid-level: Customize trace source/sink
behavior using the tracing namespace

void

PcapTrace::TraceAllIp (void)

{

 NodeList::Connect ("/nodes/*/ipv4/(tx|rx)",

 MakeCallback (&PcapTrace::LogIp, this));

}

Regular expression editing

Hook in a different trace sink

 ns-3 tutorial March 2008 71

Asciitrace: under the hood

void

AsciiTrace::TraceAllQueues (void)

{

 Packet::EnableMetadata ();

 NodeList::Connect ("/nodes/*/devices/*/queue/enqueue",

 MakeCallback (&AsciiTrace::LogDevQueueEnqueue, this));

 NodeList::Connect ("/nodes/*/devices/*/queue/dequeue",

 MakeCallback (&AsciiTrace::LogDevQueueDequeue, this));

 NodeList::Connect ("/nodes/*/devices/*/queue/drop",

 MakeCallback (&AsciiTrace::LogDevQueueDrop, this));

}

 ns-3 tutorial March 2008 72

Lowest-level of tracing

• Low-level: Add trace sources to the
tracing namespace

 Config::Connect ("/NodeList/.../Source",

 MakeCallback (&ConfigTest::ChangeNotification, this));

 ns-3 tutorial March 2008 73

Statistics

• Avoid large trace files

• Full statistics support planned for later in 2008

• Reuse tracing framework

• One similar approach: ns-2-measure project
– http://info.iet.unipi.it/~cng/ns2measure/
– Static “Stat” object that collects samples of variables

based on explicit function calls inserted into the code
– Graphical front end, and framework for replicating

simulation runs

Disclaimer: not yet part of ns-3

 ns-3 tutorial March 2008 74

Revisit our script

WiFi
(Infra-
structure
)

CSMA (LAN)

Applications: TCP flow,
Routing: OLSR routing

WiFi (AdHoc network)
Backbone

Hierarchical
mobility
1) AdHoc
movement in
backbone
2) Local
movement
relative to Access
Point

WiFi
(Infra-
structure
)

 ns-3 tutorial March 2008 75

Design patterns for topology scripts

Design approaches
• Use simple helper functions with attributes
• Use reusable “frameworks”

Note: This area of our API is under discussion; feedback wanted

 ns-3 tutorial March 2008 76

The Helper approach

• Is not generic
• Does not try to allow code reuse
• Provides simple 'syntactical sugar' to make

simulation scripts look nicer and easier to
read for network researchers

• Each function applies a single operation on
a ''set of same objects”

 ns-3 tutorial March 2008 77

Helper Objects

• NodeContainer: vector of Ptr<Node>

• NetDeviceContainer: vector of Ptr<NetDevice>

• InternetStackHelper

• WifiHelper

• MobilityHelper

• OlsrHelper

• ... Each model provides a helper class

 ns-3 tutorial March 2008 78

setup backbone

NodeContainer backbone;

backbone.Create (20);

MobilityHelper mobility;

mobility.SetPositionAllocator (“GridPositionAllocator”, “MinX”,
Double (-100), ...);

mobility.SetMobilityModel (“RandomDirectionMobilityModel”)

mobility.Layout (backbone

WifiHelper wifi;

wifi.SetMac (“AdhocWifiMac”);

wifi.SetPhy (“WifiPhy”, “TxGain”, Double (10));

wifi.SetRemoteStationManager (“ConstantRateWifiManager”, “DataMode”,
String (“wifia-54mb”))

Ptr<WifiChannel> channel = ...;

NetDeviceContainer backboneDev = wifi.Build (backbone, channel);

 ns-3 tutorial March 2008 79

setup wifi subnets

for (uint32_t I = 0; I < 20; i++)

NodeContainer subnet;

subnet.Create (29);

subnets.push_back (subnet);

mobility.PushReferenceModel (backbone.Get (i));

mobility.SetMobilityModel (...)

mobility.SetPositionAllocator (...);

mobility.Layout (subnet);

subnet.Add (backbone.Get (i));

Ptr<WifiChannel> subnetChannel = ...;

NetDeviceContainer subnetDev =

 wifi.Build (subnet, subnetChannel);

subnetDevs.push_back (subnetDev);

 ns-3 tutorial March 2008 80

setup ip over backbone and subnets

IpNetworkAddressAllocator network;

network.SetMask (“192.168.0..0”, “255.255.0.0”);

InternetStackHelper ip;

ip.SetAddressAllocator (network.GetNext ());

ip.Setup (backboneDev);

for (uint32_t I = 0; I < 20; i++)

NetDeviceContainer subnetDev = subnetDevs[i];

ip.SetAddressAllocator (network.GetNext ());

ip.Setup (subnetDev);

 ns-3 tutorial March 2008 81

setup olsr on backbone

OlsrHelper olsr;

olsr.Enable (backbone);

 ns-3 tutorial March 2008 82

setup traffic sinks everywhere

TrafficSinkHelper sink;

// listen on port 1026 for protocol udp

sink.EnableUdp (1026);

sink.Setup (NodeList::Begin (), NodeList::End ());

 ns-3 tutorial March 2008 83

setup trace sources

OnOffApplicationHelper source;

source.SetUdpDestination (“168.192.4.10”, 1026);

NodeContainer one = subnets[2].Get ();

source.Setup (one);

 ns-3 tutorial March 2008 84

Frameworks

• Observation: Many of the operations
executed by the helper class are
repetitively executed, in slightly different
ways

// Create Nodes

// Add NetDevice and Channel

// Add Protocol Stack

// Add Applications

// Add Mobility

 ns-3 tutorial March 2008 85

Frameworks

• Idea: Can we write the same flow of
operations once, but delegate them to a
Manager?

• The Manager implements the functions
• The functions are virtual
• Users wishing to specialize them can

override them as needed

 ns-3 tutorial March 2008 86

Frameworks

• This design pattern is called Inversion Of
Control

• This provides more reusable
scenario/topology scripts than ones based
on the Helper classes

walk through mixed-wireless-topology.cc
and src/topology/

 ns-3 tutorial March 2008 87

Outline

• Introduction to ns-3
• Reading ns-3 code
• Tweaking ns-3 code
• Extending ns-3 code

 ns-3 tutorial March 2008 88

How do simulator objects fit together?

• ns-3 objects are C++ objects
– can be subclassed

• ns-3 Objects support aggregation

ns-3 models are composed of hooking C++ classes together
in the traditional way, and also with object aggregation

 ns-3 tutorial March 2008 89

Aside: C++ templates

• templates allow a programmer to write one
version of code that is applicable over
multiple types

• templates are declared, defined and used
• Declaration:
• template <typename T> T Add (T first, T second);
• T Add (T first, T second);

• might eventually become
• int Add (int first, int second);

 ns-3 tutorial March 2008 90

Aside: C++ templates

• Definition:
 template <typename T>

 T Add (T first, T second)

 {

 return first + second;

 }

• Usage:
 int x, y, z;

 z = Add<int> (x, y);

 ns-3 tutorial March 2008 91

Classes may also be templatized

• Declaration:
 template <typename T>
 class MyStack
 {
 void Push (T data);
 T Pop (void);
 };

• Definition:
 template <typename T> void MyStack<T>::Push (T data)
 { ... }

• Usage:
 MyStack<int> stack;
 stack.Push (x);
 y = stack.Pop ();

 ns-3 tutorial March 2008 92

Scheduler and callbacks

• Let’s look at samples/main-simulator.cc
• Schedules a single event, then exits

int main (int argc, char *argv[])
{
 MyModel model;

 Simulator::Schedule (Seconds (10.0), &random_function, &model);

 Simulator::Run ();

 Simulator::Destroy ();
}

 ns-3 tutorial March 2008 93

ns-3 callbacks

• Class template Callback<> implements the functor design
pattern

• Callbacks are like function pointers, but more type-safe
static double CbOne (double a, double b) {}

 ^ ^ ^

 | ---| ------|

 | | |

Callback<double, double, double> one;

• Bind a function with a matching signature to a callback
one = MakeCallback (&CbOne);

double returnOne = one (10.0, 20.0);

 ns-3 tutorial March 2008 94

Path of a packet (send)
Note: This architecture is under additional work

 ns-3 tutorial March 2008 95

Path of a packet (receive)

 ns-3 tutorial March 2008 96

current ns-3 routing model

classes Ipv4RoutingProtocol, Ipv4Route
• Each routing protocol maintains its own

RIB --> no common FIB
• Routing protocols are registered with

AddRoutingProtocol (Ptr<> protocol,
int16_t priority)

• Routes are looked up by querying each
protocol for a route
–Ipv4L3Protocol::Lookup()

 ns-3 tutorial March 2008 97

Writing new ns-3 models

1) Define your requirements
– reusability
– dependencies
– functionality

2) API review
– Provide sample header file for API review
– gather feedback from the ns-developers list

 ns-3 tutorial March 2008 98

Writing new ns-3 models

3) Create a non-functional skeleton
– review coding style
– decide which compilation unit it resides in
– add to waf
– build with body ifdeffed out
– copyright and headers
– initial doxygen

 ns-3 tutorial March 2008 99

Writing new ns-3 models

4) Build a skeleton
– header include guards
– namespace ns3
– constructor, empty function prototypes
– key variables
– Object/TypeId code
– write small test program
– start a unit test

 ns-3 tutorial March 2008 100

Writing new ns-3 models

5) Build core functions and unit tests
– use of logging, and asserts

6) Plumb into other modules, if needed

7) Post for review on developers list

8) Resolve comments and merge

 ns-3 tutorial March 2008 101

Porting from ns-2

• Objects can be ported from ns-2 (or other
simulators)

• Make sure licensing is compatible
• Example:

– ns-2: queue/errmodel.{cc,h}
– ns-3: src/common/error-model.{cc,h}

 ns-3 tutorial March 2008 102

Validation

• Can you trust ns-3 simulations?
– Can you trust any simulation?
– Onus is on the researcher to verify results

• ns-3 strategies:
– Open source benefits
– Validation of models on testbeds
– Reuse of code
– Unit tests
– Event driven validation tests

 ns-3 tutorial March 2008 103

Walk through examples (time permitting)

• Beyond simple simulation scenarios

• Add a new type of MAC+PHY:

• subclass a NetDevice and a Channel

• Add new types of transport layers:

• subclass Node and Socket

• subclass Ipv4 class to implement per-node Ipv4 forwarding table
and Ipv4

• interface configuration

• for example, the Linux TCP stack could be easily integrated into a
new type of node, LinuxNode with a LinuxTcpSocket

• Add a new type of traffic generation and analysis:

• subclass Application

• • use Socket API

 ns-3 tutorial March 2008 104

ns-3 goals for emulation

virtual
machine

ns-3

virtual
machine

real
machine

ns-3

 Testbed

real
machine

ns-3

1) ns-3 interconnects virtual
machines

2) testbeds interconnect ns-3
stacks

real machine

 ns-3 tutorial March 2008 105

Summary

• ns-3 is an emerging simulator to replace ns-2
• Consider ns-3 if you are interested in:

– Open source and collaboration
– More faithful representations of real computers and the

Internet
– Integration with testbeds
– A powerful low-level API
– Python scripting

• ns-3 needs you!

 ns-3 tutorial March 2008 106

Proposed Google Summer of Code
projects

• Performance Evaluation and Optimization
• Linux Kernel Network Stack Integration
• Parallel Simulations
• GUI Development
• Real World Code Integration

 ns-3 tutorial March 2008 107

Resources

Web site:
http://www.nsnam.org

Mailing list:
http://mailman.isi.edu/mailman/listinfo/ns-developers

Tutorial:
http://www.nsnam.org/docs/tutorial/tutorial.html

Code server:
http://code.nsnam.org

Wiki:
http://www.nsnam.org/wiki/index.php/Main_Page

http://www.nsnam.org/
http://www.nsnam.org/
http://mailman.isi.edu/mailman/listinfo/ns-developers
http://www.nsnam.org/docs/tutorial/tutorial.html
http://www.nsnam.org/docs/tutorial/tutorial.html
http://code.nsnam.org/
http://code.nsnam.org/
http://www.nsnam.org/wiki/index.php/Main_Page
http://www.nsnam.org/wiki/index.php/Main_Page

