ns-3 tutorial

nsnam

Presenter: Tom Henderson
University of Washington

Simutools Conference
March, 2008

ns-3 tutorial March 2008

Acknowledgments

* Thanks to Mathieu Lacage and Craig
Dowell for assembling the tutorial source
code and materials

* Thanks to ns-3 development team!

* Tom Henderson is supported by NSF
CNS-0551686 (University of Washington)

HS H ﬂ:m ns-3 tutorial March 2008

Goals of this tutorial

* Learn about the ns-3 project and its goals

* Understand the software architecture,
conventions, and basic usage of ns-3

* Read and modify an example ns-3 script

* Learn how you might extend ns-3 to
conduct your own research

* Provide feedback to the ns-3 development
team

HsSRHdm ns-3 tutorial March 2008 3

Assumptions

* Some familiarity with C++ programming
language

* Some familiarity with Unix Network
Programming (e.g., sockets)

* Some familiarity with discrete-event
simulators

HS H ﬂ:m ns-3 tutorial March 2008

Outline

* Introduction to ns-3
* Reading ns-3 code
* Tweaking ns-3 code
* Extending ns-3 code

HS H ﬂm ns-3 tutorial March 2008

What is ns (or ns-2)?

* nsis a discrete-event network simulator for
Internet systems

— protocol design, multiple levels of abstraction
—written in multiple languages (C++/OTcl)

* nS has a companion network animator
called nam

—hence, has been called the nsnham project

ns-3 is a research-oriented, discrete event simulator l

HsSRHdm ns-3 tutorial March 2008 6

ns-3 features

open source licensing (GNU GPLv2) and
development model

Python scripts or C++ programs

alignment with real systems (sockets, device
driver interfaces)

alignment with input/output standards (pcap
traces, ns-2 mobility scripts)

testbed integration is a priority
modular, documented core

HS H ﬂ:m ns-3 tutorial March 2008

ns-3 models

7 ™
Applications

o vy

7 ™
Transport layer

p. vy

7 ™
Metwork layer

p. vy
Link layer]
Physical layer]
s 1

upport

L

Existing core ns-2 capability

ping, wat, telnet, FTP, rmulticast FTF, HTTP,
probabilistic and trace-driven traffic generators,
webcache

TCP {many variants), UDF, SCTF, XCP, TFRC,
RAP, RTP
Mulicast: PG, SRM, RLM, PLM

Unicast: 1P, MobilelP, generic dist. vector and
link state, IPinIP, source routing, Nizvector

Multicast: SR, generic centralized

MANET: AQDV,DSR,DSDV, TORA, IMEP

ARP, HDLC, GAF, MPLS, LLF, Diffserv

Queueing: DropTail RED, RIQ, WFQ, SER,
Semantic Packet Queue, REM, Priority, VQ

MACs: CSMA, 802.11h, 802.15.4 (WPAN,
satellite Aloha

TwoWay, Shadowing, CrmniAntennas,
Energyhiodel, Satellite Repeater

Random munber generators, tracing,
monitors, mathemnatical support, test suite,
animation {nam), error models

Existing ns-3

CnOff Application, asynchronous
sockets API, packet sockets

ULF, TCP

Unicast: [Pv4, global static routing
Multicast: static roufing
MANET: OLSR

PointToPoint, CSMA, 802.11 MAC low and high
and rate control algorithms

802 .11a, Friis propagation loss model, log distance
propagation loss model, basic wired (loss, delay)

Random number generators, tracing,
unit tests, logging, callbacks, mobility visualizer,
error models

Project focus has been on the software core, to date

nsnam

ns-3 tutorial March 2008

ns-3 people

* NSF Pls:

— Tom Henderson, Sumit Roy (University of

Washington), George Riley (Georgia Tech.),
Sally Floyd (ICIR)

* Associated Team: INRIA Sophia Antipolis,
Planete group

—Wa(lji;j Dabbous, Mathieu Lacage (software
lea

* Developers: Raj Bhattacharjea, Gustavo
Carneiro, Craig Dowell, Joseph Kopena,
Emmanuelle Laprise

HS H ﬂ:m ns-3 tutorial March 2008

ns-3 relationship to ns-2

ns-3 is not an extension of ns-2
* does not have an OTcl API

— C++ wrapped by Python

* synthesis of yans, ns-2, GTNetS simulators, and
new software

—example ns-2 models so far: random
variables, error models, OLSR
* guts of simulator are completely replaced
* new visualizers are in works

HsSRHdm ns-3 tutorial March 2008 10

ns-3 status (March 2008)

ns-3 is in a pre-alpha state

* monthly development releases

* APlIs being finalized

* emphasis has been on setting the architecture
* new users should expect rough edges

* many opportunities to work on the core models

HS H ﬂm ns-3 tutorial March 2008

ns-3 status (March 2008)

What others are already using ns-3 for:

* wifi-based simulations of OLSR and other
MANET routing

* MANET routing (SMF and unicast protocols)

* OntoNet: Scalable Knowledge Based

Networking" by Joe Kopena and Boon Thau Loo
(UPenn)

HsSRHdm ns-3 tutorial March 2008 12

ns-3 roadmap (2008)

near term (through June)

* finalize and release simulation core
(April/May)

—core APlIs

* ns-3.1 complete release (June timeframe)
—add Internet and Device models
—add validation framework

—some higher-level topology/scenario
APls
HS H ﬂ:m ns-3 tutorial March 2008

13

ns-3 roadmap (2008)

planned for later this year

* emulation modes

* statistics

* support for real code

* additional ns-2 porting/integration
* distributed simulation

* visualization

HS H ﬂ:m ns-3 tutorial March 2008

14

Resources

Web site:
Mailing list:

Tutorial:

Code server:

WiKki:

nsnam

ns-3 tutorial March 2008

15

http://www.nsnam.org/
http://www.nsnam.org/
http://mailman.isi.edu/mailman/listinfo/ns-developers
http://www.nsnam.org/docs/tutorial/tutorial.html
http://www.nsnam.org/docs/tutorial/tutorial.html
http://code.nsnam.org/
http://code.nsnam.org/
http://www.nsnam.org/wiki/index.php/Main_Page
http://www.nsnam.org/wiki/index.php/Main_Page

Links to materials

* Today's code

3-tutorial.tar.gz

* Tutorial slides:
—PPT:

3-tutorial.ppt
—PDF:
http://www.nsnam.org/tutorials/simutools08/ns

nsn ﬂ?}itUto ral. pdf ns-3 tutorial March 2008 16

http://www.nsnam.org/tutorials/simutools08/ns-3-tutorial.tar.gz
http://www.nsnam.org/tutorials/simutools08/ns-3-tutorial.ppt

nsnam

Questions so far?

ns-3 tutorial March 2008

17

Outline

* Reading ns-3 code

nsnam

ns-3 tutorial March 2008

18

Reading ns-3 code

* Browsing the source code
* Conceptual overview
* Script walkthrough

HS H ﬂm ns-3 tutorial March 2008

19

Basics

* ns-3 is written in C++

* Bindings in Python

* ns-3 uses the waf build system

* |.e., instead of ./configure;make, type ./wat

* simulation programs are C++ executables
(python scripts)

HsSRHdm ns-3 tutorial March 2008 20

Browse the source

tomh@A3803721 ~/home/ns-3-dev

S 1s
AUTHORS README VERSION examples samples tutorial waf wscript
LICENSE RELEASE NOTES doc ns3 src utils waf.bat

Pause presentation to browse source code

http://www.nsnam.org/tutorials/simutools08/ns-3-tutorial.tar.gz

HsSRHdm ns-3 tutorial March 2008 21

Doxygen documentation

* Most of the ns-3 APl is documented with
Doxygen

— http://www.stack.nl/~dimitri/doxygen/

Pause presentation to browse Doxygen
http://www.nsnam.org/doxygen/index.html

HsSRHdm ns-3 tutorial March 2008 22

the waf build system

* Waf is a Python-based framework for
configuring, compiling and installing
applications.

— It is a replacement for other tools such as
Autotools, Scons, CMake or Ant

— http://code.google.com/p/waf/

Pause presentation to build with waf

HsSRHdm ns-3 tutorial March 2008 23

waf key concepts

* For those familiar with autotools:
 configure -> ./waf -d [optimized|debug] configure
* make -> ./waf

* make test -> ./waf check (run unit tests)

* Can run programs through a special waf
shell; e.q.

— ./waf —--run simple-point-to-point

— (this gets the library paths right for you)

HS H ﬂ:m ns-3 tutorial March 2008

24

The basic model

-
[Applicationﬁ
/ Sockets-like

JU— s AP

~
N
\
1
1

Profocol

sthek Packet(s)

[NetDe ice [C] (Channﬂ

. Channel

~

2 R

nsnam

Vi

ns-3 tutorial March 2008

-

[Applicatio

4

25

Fundamentals

Key objects in the simulator are Nodes,
Packets, and Channels

Nodes contain Applications, “stacks”, and
NetDevices

HS H ﬂ:m ns-3 tutorial March 2008

26

Node basics

A Node is a husk of a computer to which
applications, stacks, and NICs are added

Apr* .
Appli Application

7 G _. “DTN”
é; j 4 |
y ;
)
N

nsnd ns-3 tutorial March \ 27

7

NetDevices and Channels

NetDevices are strongly bound to Channels
of a matching type

WifiNetDevice

Nodes are architected for multiple interfaces

HsSRHdm ns-3 tutorial March 2008 08

Node basics

Two key abstractions are maintained:

1) applications use an (asynchronous, for
now) sockets API

2) the boundary between |IP and layer 2
mimics the boundary at the device-
iIndependent sublayer in Linux

l.e., Linux Packet Sockets

HsSRHdm ns-3 tutorial March 2008 29

ns-3 Packets

* each network packet contains a byte buffer,
a list of tags, and metadata

—buffer: bit-by-bit (serialized) representation of
headers and trailers

—tags: set of arbitrary, user-provided data
structures (e.g., per-packet cross-layer
messages, or flow identifiers)

—metadata: describes types of headers and
and trailers that have been serialized

* optional-- disabled by default

HsSRHdm ns-3 tutorial March 2008 30

ns-3 Packets

* to add a new header, subclass from
Header, and write your Serialize() and
Deserialize() methods

—how bits get written to/from the Buffer
* Similar for Packet Tags

* Packet Buffer implements a (transparent)
copy-on-write implementation

HS H ﬂ:m ns-3 tutorial March 2008

31

example: UDP header

class UdpHeader : public Header
{
public:

volid SetDestination (uintl6 t port);

vold Serialize (Buffer::Iterator start) const;

uint32 t Deserilalilize (Buffer::Iterator start);
private:

uintlé t m sourcePort;

uintl6 t m destinationPort;

uintlé t m payloadSize;

uint16_t m_initialChecksum;

}
HS H ﬂm ns-3 tutorial March 2008

32

example: UDP header

void
UdpHeader::Serialize (Buffer::Iterator start) const
{
Buffer::Iterator 1 = start;
1.WriteHtonUl6 (m sourcePort);
1.WriteHtonUl6 (m destinationPort);
1.WriteHtonUl6 (m payloadSize + GetSerializedSize ());
1.WriteUlo6e (0);
if (m calcChecksum)
{
uintl6 t checksum = Ipv4ChecksumCalculate (...);
1.WriteUl6 (checksum);

}

}
HS H ﬂm ns-3 tutorial March 2008

Simulation basics

* Simulation time moves discretely from
event to event

 C++ functions schedule events to occur at
specific simulation times

* A simulation scheduler orders the event
execution

* Simulation::Run() gets it all started

* Simulation stops at specific time or when

events end
HS H ﬂ:m ns-3 tutorial March 2008 34

Sample script walkthrough

WiFi (AdHoc network)
Backbone

CSMA (LAIN)

/ Hierarchical

mobility

1) AdHoc
movement in
backbone

2) Local
movement
relative to Access

KPoint

WiFi
(Infra-
structure

)

(Infra-

structure

pplications: UDP flow,

~

/

:

ns-3 tutorial March 2008

A
[Routing: OLSR on backbo

nsnam

35

Sample script walkthrough

Walk through mixed-wireless.cc

HS H ﬂm ns-3 tutorial March 2008

36

(aside) similar looking code in Python

import sys
import ns3 as ns

def main () :

ik
##
##
##
##

ns.
ns.
ns.

ns.

i
i

n0
nl
n2
n3

Set up some default values for the simulation. Use the Bind()
technique to tell the system what subclass of Queue to use,

and what the queue limit is

The below Bind command tells the queue factory which class to
instantiate, when the queue factory is invoked in the topology code

DefaultValue.Bind ("Queue", "DropTailQueue™)
DefaultValue.Bind ("OnOffApplicationPacketSize", "210")
DefaultValue.Bind ("OnOffApplicationDataRate", "448kb/s")

CommandLine.Parse(sys.argv)

Here, we will explicitly create four nodes. In more sophisticated
topologies, we could configure a node factory.

= ns.InternetNode
= ns.InternetNode
= ns.InternetNode
= ns.InternetNode

HS H -‘Im ns-3 tutorial March 2008

37

examples/ directory

* examples/ contains other scripts with similar themes

S 1s

csma-broadcast.cc
csma-multicast.cc
csma—-one-subnet.cc
csma-packet-socket.cc
mixed-global-routing.cc
simple-alternate-routing.cc
simple-error-model.cc
simple-global-routing.cc
simple-point-to-point-olsr.cc

simple-point-to-point.cc
tcp-large-transfer—-errors.cc
tcp-large-transfer.cc
tcp-nonlistening-server.cc
tcp-small-transfer-oneloss.cc
tcp-small-transfer.cc
udp—-echo.cc

waf

wscript

HsSRHdm ns-3 tutorial March 2008 38

Outline

* Introduction to ns-3
* Reading ns-3 code
* Tweaking ns-3 code
* Extending ns-3 code

nsnam

ns-3 tutorial March 2008

39

ns-3 logging

* ns-3 has a built-in logging facility to stderr

 Features:

—can be driven from shell environment
variables

— Multiple log levels like syslog
— Function and call argument tracing
* Intended for debugging, but can be
abused to provide tracing
—we do not guarantee that format is unchanging

HsSRHdm ns-3 tutorial March 2008 40

ns-3 logging example

* NS LOG_UNCOND();

* NS_LOG environment variable
* per-source-file logging

* log levels

* example scripts

HS H ﬂm ns-3 tutorial March 2008

41

attributes and tracing

* Next, we would like to talk about attributes
(default values, settable and gettable
values) and tracing

* To understand this, we'll introduce the ns-
3 Object system

HS H ﬂ:m ns-3 tutorial March 2008 42

Object metadata system

* ns-3 is, at heart, a C++ object system

* ns-3 objects that inherit from base class
ns3::0bject get several additional features
—dynamic run-time object aggregation
—an attribute system
—smart-pointer memory management

Disclaimer: This is not all main-line ns-3 code-- parts are in
a proposal in the mathieu/ns-3-param repository

HsSRHdm ns-3 tutorial March 2008 43

Object aggregation use case

* You can aggregate objects to one another
at run-time

— Avoids the need to modify a base class to
provide pointers to all possible connected
objects

* Object aggregation is planned to be the
main way to create new Node types
(rather than subclassing Node)

HS H ﬂ:m ns-3 tutorial March 2008 44

Object aggregation example

vold

WifiChannel::Send (Ptr<WifiPhy> sender, Ptr<const
Packet> packet, ...)

Ptr<MobilityModel> senderMobility = 0;
Ptr<MobilityModel> receiverMobility = 0;

senderMobility = sender->GetNode ()->

GetObject<MobilityModel> () ;

class Node does not need to know

3‘ about MobilityModel
H H ﬂm ns-3 tutorial March 2008 45

Use cases for attributes

* An Attribute represents a value in our
system

* An Attribute can be connected to an
underlying variable or function
—e.g. TcpSocket::m cwnd;
—or a trace source

HS H ﬂm ns-3 tutorial March 2008

46

Use cases for attributes (cont.)

* \What would users like to do?

—Know what are all the attributes that affect the
simulation at run time

— Set a default initial value for a variable
— Set or get the current value of a variable

— |nitialize the value of a variable when a
constructor is called

* The attribute system is a unified way of

handling these functions
HS H ﬂ:m ns-3 tutorial March 2008 47

How to handle attributes

* The traditional C++ way:
—export attributes as part of a class's public AP

—walk pointer chains (and iterators, when
needed) to find what you need

— use static variables for defaults

* The attribute system provides a more
convenient API to the user to do these
things

HsSRHdm ns-3 tutorial March 2008 48

The traditional C++ way

class Foo
{
public:
void SetVarl (uint32 t value);
uint32 t GetVarl (void);
static void SetInitialVarl (uint32 t value);
void SetVarz (uint32 t value);
uint32 t GetVar2 (void);
static void SetInitialVar2 (uint32 t value);

private:
uint32 t m varl; // document varl
uint32 t m var2; // document var2

static uint32 t m initial varl;
static uint32 t m initial var2;

Foo::Foo() : m varl(Foo::m initial varl), m var2(Foo::m initial var2)
{
}

to modify an instance of Foo, get the pointer somehow, and use the public accessor functions

to modify the default values, modify the statics
Default values may be available in a separate framework (e.g. ns-2 Bind())

HS H -‘Im ns-3 tutorial March 2008

49

Navigating the attributes

* Attributes are exported into a string-based
namespace, with filesystem-like paths

—namespace supports regular expressions

* Attributes also can be used without the
paths

—e.g. "Wifi1Phy: :TxGain”
* A Config class allows users to manipulate
the attributes

HsSRHdm ns-3 tutorial March 2008 50

Navigating the attributes using paths

* Examples:
—Nodes with Nodelds 1, 3, 4, 5, 8, 9, 10, 11:
“/NodeList/[3-5]|[8-11]|1”
—UdpL4Protocol object instance aggregated to
matching nodes:

“/I$UdpL4Protocol”

— EndPoints which match the SrcPort=1025
specification:
“/EndPoints/*:SrcPort=1025"

HsSRHdm ns-3 tutorial March 2008 51

What users will do

* e.g.: Set a default initial value for a
variable

* (Note: this replaces DefaultValue::Bind())

Config::Set (“WifiPhy::TxGain”, Double (1.0));

* Syntax also supports string values:
Config::Set ("WifiPhy::TxGain”, “1.0");

Attribute Vllue

HsSRHdm ns-3 tutorial March 2008 52

What users will see

* Set or get the current value of a variable

—Here, one needs the path in the namespace to
the right instance of the object

Config::SetAttribute (“/NodelList/5/DevicelList/3/Phy
/TxGain”, Double (1.0));

Double d =
Config::GetAttribute (“/NodeList/5/NetDevice/3/Phy
/TxGain”) ;

* Users can get Ptrs to instances also, and
Ptrs to trace sources, in the same way

HsSRHdm ns-3 tutorial March 2008 53

CreateObject<> ();

* CreateObject<> is a wrapper for operator
new.

* ns3::0Dbject objects must be created on the
heap using CreateObject<> (), which
returns a smart pointer; e.g.

Ptr<Node> rxNode = CreateObject<Node> ();

HS H ﬂ:m ns-3 tutorial March 2008 54

Create<> ();

* What is Create<> ()?

* Create<> provides some smart pointer
help for objects that use ns3::Ptr<> but

that do not inherit from Object.

* Principally, class ns3::Packet
Ptr<Packet> p = Create<Packet>

HS H ﬂ:m ns-3 tutorial March 2008

(data, size) ;

55

Non-default constructors

* The attribute system allows you to also
pass them through the CreateObject<>
constructor.

* This provides a generic non-default
constructor for users (any combination of
parameters), e.g.:

Ptr<WifiPhy> phy = CreateObject<WifiPhy> (
“TxGain”, Double (1.0));

HsSRHdm ns-3 tutorial March 2008 56

How is all this implemented (overview)

class Foo P public Object
{
public:
static Typeld GetTypeId (void);
private:
uint32_t m varl; // document varl
uint32 t m var2; // document var2

}

Foo::Foo () {
}

Typeld Foo::GetTypeld (void)
{
static Typeld tid = Typeld(“Foo”) ;
.SetParent (<ooParent>
.SetGroupName (“FooDefaults”)
.AddConstructor<Foo> ();
.AddAttribute (“m varl”, “document varl”,
Ulnteger (3),
MakeUIntegerAccessor (&Foo::m varl),
MakeUIntegerChecker<uint32 t> ())
.AddAttribute (“m var2”, “”, ...)
return tid;

HS H -‘Jm ns-3 tutorial March 2008

S7

A real Typeld example

TypeId
RandomWalk2dMobilityModel: :GetTypelId (void)
{
static TypeId tid = Typeld ("RandomWalkMobilityModel")
.SetParent<MobilityModel> ()
.SetGroupName ("Mobility")
.AddConstructor<RandomWalk2dMobilityModel> ()
AddAttribute ("bounds",
"Bounds of the area to cruise.",
Rectangle (0.0, 0.0, 100.0, 100.0),
MakeRectangleAccessor (&RandomWalk2dMobilityModel::m bounds),
MakeRectangleChecker ())
.AddAttribute ("time",
"Change current direction and speed after moving for this delay.",
Seconds (1.0),
MakeTimeAccessor (&RandomWalk2ZdMobilityModel::m modeTime),
MakeTimeChecker ())

AddAttribute ("distance",
"Change current direction and speed after moving for this distance.",

Seconds (1.0),
MakeTimeAccessor (&RandomWalkZdMobilityModel::m modeTime),

MakeTimeChecker ())

HsSRHdm ns-3 tutorial March 2008 58

Also part of Object: smart pointers

* ns-3 uses reference-counting smart
pointers at its APIs to limit memory leaks

—Or “pass by value™ or “pass by reference to
const” where appropriate

* A "smart pointer” behaves like a normal
pointer (syntax) but does not lose memory
when reference count goes to zero

* Use them like built-in pointers:

Ptr<MyClass> p = CreateObject<MyClass> ()

p—->method ()
HSRAmM ns-3 tutorial March 2008 59

Statements you should understand now

...........

................................
...........

¢¢¢¢¢

*

Ptr<Ipv4AddregsAllocator> ipAddrs = CreateObject<Ipvid4AddressAllocator> ();

* 3
L] «
L
e,

*
““““““
L] .

lllllllllllllllllllllllllllllll

C++ Smart Pointer ns3::0Object

Config::SetDefault (“OnOffApplication::DataRate”, String(“448kb/s”));

..............
[3d ",
. .
*

“

.
., *
L] “

L] .
........

Attribute namespace

HsSRHdm ns-3 tutorial March 2008 60

Tracing model

* Tracing is a structured form of simulation output
— tracing format should be relatively static across simulator

releases
* Example (from ns-2):
+ 1.84375 0 2 cbr 210 —--——---- 0 0.0 3.1 225 610
- 1.84375 0 2 cbr 210 —--—---- 0 0.0 3.1 225 610
r 1.84471 2 1 cbr 210 —--——---- 1 3.0 1.0 195 600
r 1.84566 2 0 ack 40 -—-—-—- 2 3.2 0.1 82 602
+ 1.84566 0 2 tcp 1000 ———-—-- 2 0.1 3.2 102 611

* Needs vary widely

HS H ﬂm ns-3 tutorial March 2008

61

Crude tracing

#include <iostream>

int main ()

{

std: :cout << "The wvalue of x 1is
std: :endl;

HS H ﬂm ns-3 tutorial March 2008

" KK x <L

62

slightly less crude

#include <iostream>

int main ()

{

NS LOG UNCOND

nsnam

("The value of x 1s

ns-3 tutorial March 2008

"< x);

63

Simple ns-3 tracing

* these are wrapper functions/classes
* see examples/mixed-wireless.cc

#include "ns3/ascii-trace.h"

AsciiTrace asciitrace ("mixed-wireless.tr");
asclitrace.TraceAllQueues () ;
asciitrace.TraceAllNetDeviceRx () ;

HS H ﬂm ns-3 tutorial March 2008

64

Simple ns-3 tracing (pcap version)

* these are wrapper functions/classes
* see examples/mixed-wireless.cc

#include "ns3/pcap-trace.h"

PcapTrace pcaptrace ("mixed-wireless.pcap"):

pcaptrace.TraceAllTIp ()

HS H ﬂm ns-3 tutorial March 2008

65

ns-3 tracing model (revisit)

* Fundamental #1: decouple trace sources
from trace sinks

* Fundamental #2: prefer standard trace
outputs for built-in traces

Trace source

Trace source
Trace source i
configurable by
unchanging user

HS H ﬂm ns-3 tutorial March 2008

66

Tracing overview

* Simulator provides a set of pre-configured
trace sources

—Users may edit the core to add their own
* Users provide trace sinks and attach to the
trace source

— Simulator core provides a few examples for
common cases

* Multiple trace sources can connect to a

trace sink
nSsndm ns-3 tutorial March 2008 67

Multiple levels of tracing

* Highest-level: Use built-in trace sources
and sinks and hook a trace file to them

* Mid-level: Customize trace source/sink
behavior using the tracing namespace

* Low-level: Add trace sources to the
tracing namespace

— Or expose trace source explicitly

HS H ﬂ:m ns-3 tutorial March 2008

68

Highest-level of tracing

* Highest-level: Use built-in trace sources
and sinks and hook a trace file to them

// Also configure some tcpdump traces; each interface will be traced
// The output files will be named

// simple-point-to-point.pcap-<nodeId>-<interfaceId>

// and can be read by the "tcpdump -r" command (use "-tt" option to
// display timestamps correctly)

PcapTrace pcaptrace ("simple-point-to-point.pcap"):;

pcaptrace.TraceAllIp ()

HS H ﬂm ns-3 tutorial March 2008

69

Mid-level of tracing

* Mid-level: Customize trace source/sink
behavior using the tracing namespace

void Regular expression editing

PcapTrace: :TraceAllIp (void) ‘////////
{

NodeList::Connect ("/nodes/*/ipv4/ (tx|rx)",

MakeCallback (&PcapTrace::Loglp, this));

} N

Hook in a different trace sink

HS H ﬂm ns-3 tutorial March 2008

70

Asciitrace: under the hood

void
AsciiTrace: :TraceAllQueues (void)
{
Packet: :EnableMetadata ()
NodeList::Connect ("/nodes/*/devices/*/queue/enqueue",
MakeCallback (&AsciiTrace: :LogDevQueueEnqueue, this));
NodeList::Connect ("/nodes/*/devices/*/queue/dequeue",
MakeCallback (&AsciiTrace: :LogDevQueueDequeue, this));
NodeList::Connect ("/nodes/*/devices/*/queue/drop",

MakeCallback (&AsciiTrace: :LogDevQueueDrop, this));

HS H -‘Im ns-3 tutorial March 2008

71

Lowest-level of tracing

* Low-level: Add trace sources to the
tracing namespace

Config::Connect ("/NodeList/.../Source",

MakeCallback (&ConfigTest::ChangeNotification, this));

HS H ﬂm ns-3 tutorial March 2008

72

Statistics [Disclaimer: not yet part of ns-3 }

* Avoid large trace files
* Full statistics support planned for later in 2008
* Reuse tracing framework

* One similar approach: ns-2-measure project
— http://info.iet.unipi.it/~chg/ns2measure/

— Static “Stat” object that collects samples of variables
based on explicit function calls inserted into the code

— Graphical front end, and framework for replicating
simulation runs

HsSRHdm ns-3 tutorial March 2008 73

Revisit our script

WiFi (AdHoc network)
Backbone

CSM? (LAIN)
= | / Hierarchical \
e N mobility
WiFi 1) AdHoc
(Infra- (Infra- movement in
structure structure backbone
)) 2) Local
movement
relative to Access

Routing: OLSR routing

Poi
[Applications: TCP flow, } K oint /

HS H ﬂm ns-3 tutorial March 2008 74

Design patterns for topology scripts

Design approaches
* Use simple helper functions with attributes
* Use reusable “frameworks”

Note: This area of our APl is under discussion; feedback wanted

HsSRHdm ns-3 tutorial March 2008 75

The Helper approach

* Is not generic
* Does not try to allow code reuse

* Provides simple 'syntactical sugar' to make
simulation scripts look nicer and easier to
read for network researchers

* Each function applies a single operation on
a "set of same objects”

HsSRHdm ns-3 tutorial March 2008 76

Helper Objects

* NodeContainer: vector of Ptr<Node>

* NetDeviceContainer: vector of Ptr<NetDevice>
* InternetStackHelper

* WifiHelper

* MobilityHelper

* OlsrHelper

* ... Each model provides a helper class

HS H ﬂ:m ns-3 tutorial March 2008

7

setup backbone

NodeContainer backbone;
backbone.Create (20);
MobilityHelper mobility;

mobility.SetPositionAllocator (“GridPositionAllocator”, “MinX",
Double (-100), ...);

mobility.SetMobilityModel (“RandomDirectionMobilityModel”)
mobility.Layout (backbone

WifiHelper wifi;

wifi.SetMac (“AdhocWifiMac”) ;

wifi.SetPhy (“WifiPhy”, “TIxGain”, Double (10));

wifi.SetRemoteStationManager (“ConstantRateWifiManager”, “DataMode”,
String (“wifia-54mb”))

Ptr<WifiChannel> channel = ...;

NetDeviceContainer backboneDev = wifi.Build (backbone, channel);

HsSRHdm ns-3 tutorial March 2008 78

setup wifi subnets

for (uint32 t I = 0; I < 20; 1i++)

NodeContainer subnet;

subnet.Create (29);

subnets.push back (subnet);

mobility.PushReferenceModel (backbone.Get (1))

mobility.SetMobilityModel (...)

mobility.SetPositionAllocator (...);

mobility.Layout (subnet):;

subnet.Add (backbone.Get (1))

Ptr<WifiChannel> subnetChannel = ...;

NetDeviceContainer subnetDev =
wifi.Build (subnet, subnetChannel);

subnetDevs.push back (subnetDev);

HS H ﬂm ns-3 tutorial March 2008

setup ip over backbone and subnets

IpNetworkAddressAllocator network;

network.SetMask (“192.168.0..0", %“255.255.0.0");

InternetStackHelper ip;

1p.SetAddressAllocator (network.GetNext ());

ip.Setup (backboneDev) ;

for (uint32 t I = 0; I < 20; 1i++)
NetDeviceContainer subnetDev = subnetDevs[i];
1p.SetAddressAllocator (network.GetNext ());

ip.Setup (subnetDbev) ;

HS H -‘Im ns-3 tutorial March 2008

setup olsr on backbone

OlsrHelper olsr;

olsr.Enable (backbone);

HS H -‘Im ns-3 tutorial March 2008

81

setup traffic sinks everywhere

TrafficSinkHelper sink;

// listen on port 1026 for protocol udp
sink.EnableUdp (1026);

sink.Setup (NodeList::Begin (), NodeList::End ());

HS H -‘Im ns-3 tutorial March 2008

82

setup trace sources

OnOffApplicationHelper source;
source.SetUdpDestination (“168.192.4.10”, 1026);
NodeContainer one = subnets[2].Get ();

source.Setup (one);

HS H -‘Im ns-3 tutorial March 2008

83

Frameworks

* Observation: Many of the operations
executed by the helper class are
repetitively executed, in slightly different
ways

// Create Nodes

// Add NetDevice and Channel

// Add Protocol Stack

// Add Applications

// Add Mobility
HS H ﬂ:m ns-3 tutorial March 2008

84

Frameworks

* |[dea: Can we write the same flow of
operations once, but delegate them to a
Manager?

* The Manager implements the functions
* The functions are virtual

* Users wishing to specialize them can
override them as needed

HS H ﬂ:m ns-3 tutorial March 2008

85

Frameworks

* This design pattern is called Inversion Of
Control

* This provides more reusable
scenario/topology scripts than ones based
on the Helper classes

walk through mixed-wireless-topology.cc
and src/topology/

HsSRHdm ns-3 tutorial March 2008 86

Outline

* Introduction to ns-3
* Reading ns-3 code

* Extending ns-3 code

nsnam

ns-3 tutorial March 2008

87

How do simulator objects fit together?

* ns-3 objects are C++ objects
—can be subclassed

* ns-3 Objects support aggregation

ns-3 models are composed of hooking C++ classes together
in the traditional way, and also with object aggregation

|

HS H ﬂm ns-3 tutorial March 2008

88

Aside: C++ templates

* templates allow a programmer to write one
version of code that is applicable over
multiple types

* templates are declared, defined and used
* Declaration:

* template <typename T> T Add (T first, T second);
* T Add (T first, T second):;

* might eventually become
* int Add (int first, int second);

HsSRHdm ns-3 tutorial March 2008 89

Aside: C++ templates

* Definition:
template <typename T>

T Add (T first, T second)
{

return first + second;

}
* Usage:

int x, vy, Z;

z = Add<int> (x, V);

HS H ﬂm ns-3 tutorial March 2008

90

Classes may also be templatized

 Declaration:

template <typename T>
class MyStack

{
void Push (T data);
T Pop (void);

b

* Definition:

template <typename T> void MyStack<T>::Push (T data)
{ ...}

* Usage:
MyStack<int> stack;
stack.Push (x);

y = stack.Pop ()

HS H ﬂm ns-3 tutorial March 2008

Scheduler and callbacks

* Let's look at samples/main-simulator.cc
* Schedules a single event, then exits

int main (int argc, char *argv|[])
{
MyModel model;
Simulator::Schedule (Seconds (10.0), &random function, &model);

Simulator::Run ();

Simulator::Destroy ()

}

HS H ﬂm ns-3 tutorial March 2008

92

ns-3 callbacks

* Class template Callback<> implements the functor design
pattern

* Callbacks are like function pointers, but more type-safe
static double CbOne (double a, double b) {}

Callback<double, double, double> one;

* Bind a function with a matching signature to a callback
one = MakeCallback (&CbOne);
double returnOne = one (10.0, 20.0);

HsSRHdm ns-3 tutorial March 2008 93

Path of a packet (send)

Function/object trace for sending a packet

ll!%%l!!!!!!!!’

Socket:Send()
GetAddress{outgoing if)
< UdpSocket)« Ipva)
nBendd)
L
< UdpProtocol)
nEen

di
:Lookup()
al)-7 [pvwd Route
diy

< Ipwd Protoc
)

En
Lookup(}
(ArplpvdInterface)F ArpProtocol]
l Sendi)

etDevios

ote. IS arcnitecture IS under aaditional wor

Step in packet sending process:

1. The Application has previously created a socket (here, a UdpSocket),
It calls Socket::Send(). Eitherreal data or durnmy datais passed atthe APL

2. Socket: Send() forwards to UdpSocket: DoSend() and later to UdpSocket:DoSendTo(),
These functions set the proper source and destination addresses, handle socket calls

such as bindi) and connect) and then the UdpProtocol:: Send() functonis called. Asina
resl implementation, the socket must query the Ipvd layer to find the right source address

to match the destination address,

3. UdpProtocol is where the socket-independent

protocol logic for UDP is implemented. The Send() method adds the

UDP header, nitializes the checksum, and sends the packet to the [pvd layer,
Here, a private API {IpwdPrivate) is queried, and the Send{) method iz called.

4. Ipw4Protocol adds the [P header, looks up a route, and sends the packet to an
appropriate [pvd Interface instance. In this example, the device is one that supports
Arp, sothe packetis sent to an Arplpvd Interface object.

5. IpvdInterface is an abstract base class; here, we depict the Arplpvd Interface
concrete class, This object looks up the MAC address if Arp iz supported on this
MetDevice technology, and if there is a cache hit, it sends it to the NetDevice, or

else it first inftiates an Arp request,

HS H ﬂ:m ns-3 tutorial March 2008 94

Path of a packet (receive)

Function/object trace for receiving a packet

(m_rzCallback}->Recv() or RecvDurnmy ()

UdpSocket

im_rzCallback)-»ForwardUp()

[pw4 EndPoint
Tgv4EndPumﬂ}em}?’
s ForwardUp()

—

_—

- f:ﬂ:d];ooku
UdpProtocel pl)

iReceive() { [pw4::ProtocolH and]}frs

[pwd Protocol

iReceive()

” m receiveCallback
etDevios

nsnam

Step in packet receive process:

7. UdpSocket itself calls one of two callbacks to get the data
to the application. If the Application is sending fake data, the RecvDurnmmgy()
callback iz called; else, the Recw() callback iz called.

6. IpwdEndPoint has a callback where a Socket object is able to
register a receive method. Here, this callback calls to
UdpSocket: ForwardUp()

5. UdpProtocol is where the socket-independent

protocollogic for UDP is implemented. The Receive() method removes the
UDP header and looks up the per-flow context state, which is one or more
[pw4EndPoint objects stored in an Ipv4 EndPointDernux {indexed by src addr,
src port, dest addr, destport). Itthen calls [pv4EndPoint:: ForwardUpi)
when done.

4. IpvdProtocol removes the [F header, checks checksum {if implemented), and

either Forwards the packet or calls ForwardUp(). ForwardUp() then looks up the

[P protocol number in a callback-based demultiplexer (similar to Node:: ProtocolHandlers,
and calls the registered . Receive() method.

3. Node::ReceiveFromDevice stores a set of callbacks that are looked
up based on protocol number and device. In this case, the lockup
will result in [pwd Protocol:: Receive() being called.

2. This is typically the Node:: ReceiveFromDewice() functon
1. NetDevice calls the function registered at Wode!m receiveCallback

ns-3 tutorial March 2008

95

current ns-3 routing model

classes Ipv4RoutingProtocol, Ipv4Route

* Each routing protocol maintains its own
RIB --> no common FIB

* Routing protocols are registered with
AddRoutingProtocol (Ptr<> protocol,
intl6o t priority)
* Routes are looked up by querying each
protocol for a route

—Ipv4L3Protocol: :Lookup ()
HS H ﬂ:m ns-3 tutorial March 2008

96

Writing new ns-3 models

1) Define your requirements
—reusability
—dependencies
—functionality

2) APl review

—Provide sample header file for API review
—gather feedback from the ns-developers list

HS H ﬂm ns-3 tutorial March 2008

97

Writing new ns-3 models

3) Create a non-functional skeleton
—review coding style
—decide which compilation unit it resides in
—add to waf
— build with body ifdeffed out
—copyright and headers
—initial doxygen

HS H ﬂm ns-3 tutorial March 2008

98

Writing new ns-3 models

4) Build a skeleton

—header include guards

—namespace ns3

—constructor, empty function prototypes
—key variables

— QObject/Typeld code

—write small test program

—start a unit test

HS H ﬂm ns-3 tutorial March 2008

99

Writing new ns-3 models

5) Build core functions and unit tests
—use of logging, and asserts

6) Plumb into other modules, if needed
/) Post for review on developers list
8) Resolve comments and merge

HSHAmM ns-3 tutorial March 2008 100

Porting from ns-2

* Objects can be ported from ns-2 (or other
simulators)

* Make sure licensing is compatible

* Example:
—ns-2. queue/errmodel.{cc,h}
—ns-3: src/common/error-model.{cc,h}

HSHAmM ns-3 tutorial March 2008 101

Validation

* Can you trust ns-3 simulations?
— Can you trust any simulation?
—Onus is on the researcher to verify results

* ns-3 strategies:
—Open source benefits
—Validation of models on testbeds
—Reuse of code
—Unit tests
— Event driven validation tests
nSsndm ns-3 tutorial March 2008

102

Walk through examples (time permitting)

* Beyond simple simulation scenarios
* Add a new type of MAC+PHY:

* subclass a NetDevice and a Channel
* Add new types of transport layers:

* subclass Node and Socket

* subclass Ipv4 class to implement per-node lpv4 forwarding table
and Ipv4

* interface configuration

« for example, the Linux TCP stack could be easily integrated into a
new type of node, LinuxNode with a LinuxTcpSocket

* Add a new type of traffic generation and analysis:
subclass Application

HS RA ot API ns-3 tutorial March 2008 103

ns-3 goals for emulation

real machine

virtual
machine

ns-3

!

virtual
machine

ns-3

real
machine

1) ns-3 interconnects virtual

machines

nsnam

ns-3 tutorial March 2008

ns-3

real
machine

Testbed

2) testbeds interconnect ns-3
stacks

104

Summary

* ns-3 is an emerging simulator to replace ns-2

* Consider ns-3 if you are interested In:
— Open source and collaboration

— More faithful representations of real computers and the
Internet

— Integration with testbeds
— A powerful low-level API
— Python scripting

* ns-3 needs you!

HSHAmM ns-3 tutorial March 2008 105

Proposed Google Summer of Code
projects

* Performance Evaluation and Optimization
* Linux Kernel Network Stack Integration

* Parallel Simulations

* GUI Development

* Real World Code Integration

HSHAmM ns-3 tutorial March 2008 106

Resources

Web site:
Mailing list:
Tutorial:
Code server:
Wiki:

HSHAmM ns-3 tutorial March 2008 107

http://www.nsnam.org/
http://www.nsnam.org/
http://mailman.isi.edu/mailman/listinfo/ns-developers
http://www.nsnam.org/docs/tutorial/tutorial.html
http://www.nsnam.org/docs/tutorial/tutorial.html
http://code.nsnam.org/
http://code.nsnam.org/
http://www.nsnam.org/wiki/index.php/Main_Page
http://www.nsnam.org/wiki/index.php/Main_Page

