Goals of this tutorial
Experimentation with ns-3

Mathieu Lacage * Understand the goals of the ns-3 project
mathieu.lacage @sophia.inria.fr * Learn what has been done to achieve these goals

+ |dentify future work directions
INRIA

Trilogy Summer School, 27th august 2009

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 1/95 Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy'’2009  2/95

Tutorial schedule

Part |

® 15h00-16h00: The ns-3 architecture I ntrOd UCtlon

® 16h00-17h00: The ns-3 object model

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 3/95 Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 4/95



Simulation considered harmful Simulation considered harmful
Why not reuse an existing simulator ?
What is so special about ns-3 ?

What we learned along the way

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy'’2009  5/95 Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy'2009  6/95

Recent history (1995-2005) What is wrong about ns-2 ?

- Split object model (OTcl and C++) and use of Tcl:

- Doesn’t scale well
- Makes it difficult for students

+ Large amount of abstraction at the network layer and below

* ns-2 became the main choice for research usage. Search of
ACM Digital Library papers citing simulation, 2001-04:

| | ns2 | OPNET [ QualNet/Glomosim | leads to big discontinuities when transitioning from simulation to
> layer 4 | 123 (75%) | 30 (18%) 11 (7%) experiment
= layer 3 | 186 (70%) | 48 (18%) 31 (12%) - Accretion of unmaintained and incompatible models
< layer2 | 114 (43%) | 96 (36%) 55 (21%) - Lack of support for creating methodologically sound simulations
+ Funding for ns-2 development dropped in the early 2000’s + Lack of, and outdated, documentation

* In ns-2, validation really means regression: no documented
validation of the models, outside of TCP

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 7195 Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 8/95



Overheard on e2e-interest A recurring misconception

mailing list

September 2005 archives of the e2e-interest mailing list: * Using ns-2 is actively harmiul

- “...Tragedy of the Commons..”
- “..around 50% of the papers appeared to be... bogus...”
+ “Who has ever validated NS2 code?”

* “To be honest, I'm still not sure whether | will use a simulation in
a paper.”

+ “...I will have a hard time accepting or advocating the use of
NS-2 or any other simulation tool”

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy'’2009  9/95 Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 10/95
A recurring misconception A recurring misconception

+ Using ns-2 is actively harmful + Using ns-2 is actively harmful

+ Simulation is ns-2 + Simulation is ns-2

Thus, simulation is actively harmful

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 10/95 Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 10/95



Back in 2000’s, the rise of

testbeds

+ Hardware costs going down
+ OS virtualization going up
+ Development of control and management software

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009

Why do we need simulation at

all ?

+ Simulation models are not validated
- Simulation model implementations not verified
* No need for validation and verification in testbeds

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009

11/95

12/95

Back in 2000’s, the rise of
testbeds

+ Hardware costs going down

+ OS virtualization going up

+ Development of control and management software
Result:

+ Emulab: http://www.emulab.net

+ ORBIT: http://www.orbit-lab.org

* Planetlab: http://planet-lab.org

* ModelNet: https://modelnet.sysnet.ucsd.edu

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009

Why do we need simulation at
all ?

+ Simulation models are not validated
- Simulation model implementations not verified
* No need for validation and verification in testbeds

However, there are lots of good things about simulation:
+ Reproducibility
- Easier to setup, deploy, instrument
* Investigate non-existent systems
- Scalability

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009

11/95

12/95


http://www.emulab.net
http://www.orbit-lab.org
http://planet-lab.org
https://modelnet.sysnet.ucsd.edu
http://www.emulab.net
http://www.orbit-lab.org
http://planet-lab.org
https://modelnet.sysnet.ucsd.edu

We want to get the best from both worlds:
- Simulators: reproducibility, debuggability, ease of setup
+ Testbeds: realism

We want an integrated experimentation environment:
+ Use each tool separately:
- Parameter space exploration with simulations

We need simulations:
- Easier to use, debug, reproduce than testbeds
+ Not constrained by existing hardware/software
We need a special simulator:
* Improves model validation

+ More realism with testbeds * Improves model implementation verification
+ Use both tools together: + Allow users to move back and forth between simulation and
- Simulator for elements of the topology to scale testbeds

- Testbed for other elements to get realism

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 13/95 Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 14/95

The biggest reason to start from ns-2 is:
* A large existing userbase
+ A large set of existing models
But, we need to address many issues:
+ Most existing models lack validation, verification, maintenance

* Bi-language system (C++/tcl) makes debugging complex:
removing it would mean dropping backward compatibility
+ Core packet data-structure:
* Inappropriate for emulation
- Fragmentation unsupported
Re-engineering ns-2 to fix all these issues would make it a new
different simulator: we would lose our existing userbase.

Why not reuse an existing simulator ?

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 15/95 Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 16/95



Proprietary simulators Omnetpp

There are many of them (google for network simulator):

* Opnet
- QualNet * It was not clear in 2005 it would still be alive in 2009
- Shunra * Major worries over the bi-language architecture: learning curve,
. etc debugging, etc.
. - Software structure did not seem to lend itself to the realism we
But:
sought.
+ Terms of use
* Very costly for industrial partners or publicly-funded research
which cannot get education licenses.
Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 17 /95 Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 18/95

Yes, we did fall prey to that syndrome too:
we thought we could do it better than the others

What is so special about ns-3 ?

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy'2009 19/95 Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 20/95



Good debuggability

Long term project lifetime

A open source community:
+ An open license (GPLv2)

C++-only simulations: no need to debug two languages at the same + All design and implementation discussions in the open on
time mailing-lists (even flame wars)

* ns-3is a library written in C++ + Everyone can (should) become a maintainer

+ Simulation programs are C++ executables This is critical to allow:

+ Bindings in Python for python simulations + The project to scale to many models

 The project to last beyond initial seed funding

+ Model/implementations reviews in the open:
Given enough eyeballs, all bugs are shallow

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy'’2009  21/95 Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy'’2009  22/95

Low cost of model validation A usecase: NSC

Architecture

| NSC TCP
model

Make models close to the real world:

* Models are less abstract: easier to validate

- Makes it easy to perform direct execution of real code

+ Emulation is native and robust against changes in models
How ?

* Real IP addresses

+ Multiple interfaces per node

 Bsd-like sockets

 Packets contain real network bytes

connect,
send,
packet received,
timer, read

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy'2009 23/95 Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 24 /95



NSC implementation NSC accuracy

. o Accurac
+ Globalizer: per-process kernel source code and add indirection y
to all global variable declarations and accesses *Have shown NSC to be very accurate — able to produce
- Glue: per-kernel (and per-kernel-version) glue to provide kernel packet races thal are almost identical to traces measured
APIs for kernel code:
+ kmalloc: memory allocation — —
+ NetDevice integration - IJ_}—/_J_' ﬁ
* Socket integration e
+ Provides glue for: - -
+ linux 2.6.18, 2.6.26, 2.6.28 - e ; Lo -
+ FreeBSD 5 b o
* Iwip 1.3 _ - -
. OpenBSD 3 (a) Simulated FreeBSD (b) Measured FreeBSD
WAND w w
Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 25/95 Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 26/95

Summary Outline

ns-3 has a strong focus on realism:

+ Makes models closer to the real world: easier to validate

* Allows direct code execution: no model validation

+ Allows robust emulation for large-scale and mixed experiments
ns-3 also cares about good software engineering:

- Single-language architecture is more robust in the long term

+ Open source community ensures long lifetime to the project

What we learned along the way

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy'2009 27 /95 Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 28 /95



Things You Should Never Do Building an open source

community is hard

It's an old axiom of software engineering: It's a lot of work to attract contributors and keep them: they want to
Don’t rewrite from scratch, ever. have fun, they want to have impact on the project:
* Never flame people on mailing-lists:
+ Always answer questions kindly, point out manuals and FAQ

We did not really start from scratch: - Don’t answer provocative statements
- Stole code and concepts from GTNetS (applications) * English is not the native language of most users
- Stole code and concepts from yans (wifi) + We need to do the boring work (release management, bug

tracking, server maintenance)

* No discussion behind closed doors: increases communication
cost

* It's a meritocracy: those who contribute the most should have
power to decide for the project

+ Stole code and concepts from ns-2 (olsr, error models)
Even then, it took us 2 years to get to a useful state

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy'’2009  29/95 Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy'2009  30/95

Need for integrated statistical Need for a high-level

tools experimentation environment

ns-3 provides low-level functionality:
+ Tap devices
+ Realtime simulation core
But we want to allow easy switching and mixing of simulation and

Initially, we thought we could:
+ Allow users to easily instrument the system

 Delegate analysis to third-party tools such as R testbeds. We need higher-level abstractions for:
It does not work that way though: + Experiment description (topology, application traffic)
+ Lack of methodology documentation + Experiment configuration
 Fancy statistical tools are too complex for most users + Tracing conflgurahon.
Future work: integrate tools to automatically measure and improve ’ Deployment. aytomatlon ) . o
confidence intervals on simulation output Work towards thls is underway with NEPI (ROADS’09: NEPI: Using
Independent Simulators, Emulators, and Testbeds for Easy
Experimentation:

http://www-sop.inria.fr/members/Mathieu.Lacage/roads09-nepi.pdf)

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy'2009 31/95 Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 32/95


http://www-sop.inria.fr/members/Mathieu.Lacage/roads09-nepi.pdf

Need for more direct code Need for more direct code

execution | execution Il

Integrate normal POSIX network applications in the simulator:
+ No source code modifications

 Easy to debug (great network application development platform Status:

)] - Running demonstrations with ping, traceroute

Needs: - Simple socket applications can run: a couple of threads, select,

+ Globalization: global variables must be virtualized for each tcp server/client

instance of the application running in the simulator - Larger applications using fancy socket ioctls don’t work very well
* Filesystem virtualization: each application needs a separate yet

filesystem (to get different configuration and log files for

example)

+ Socket library: need a complete implementation of sockets in
the simulator, including all the crazy ioctls

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy'2009  33/95 Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy'’2009 34 /95

Introduction

Part Il

The ns-3 architecture

Fundamental network model structure

Topology construction

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 35/95 Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 36 /95



QOutline Environment setup

Install all needed tools:
Introduction Ubuntu

sudo apt-get install build-essential g++ python mercurial

Windows
cygwin
python
mercurial

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy'’2009 37 /95 Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy'2009  38/95

Getting ns-3 Running ns-3

Availability (linux, osx, cygwin, mingw):

* Released tarballs: http://www.nsnam.org/releases Use waf to build it (similar to make):

+ Development version: http://code.nsnam.org/ns-3-dev At
Jwa

. . Jwaf shell
The development version is usually stable: a lot of people use it for N

daily work:

./build/debug/examples/csma-broadcast

hg clone http://code.nsnam.org/ns-3-dev

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 39/95 Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 40/95


http://www.nsnam.org/releases
http://code.nsnam.org/ns-3-dev

Exploring the source code

Node

Smart pointers

Dynamic type system
Attributes

Mathieu Lacage (INRIA)

Outline

Callbacks
Tracing

Logging

Random Variables

Experimentation with ns-3

Fundamental network model structure

Mathieu Lacage (INRIA)

Experimentation with ns-3

NetDevice High-I )
Address types 'gh-level wrappers
No smart pointers
Queues Al d at inti
Socket imed at scripting
Ipv4 helper
L
' )
routing internet-stack devices MobilityModels
- (static, random walk,
Events node mobility <_I_ etc.)
Scheduler . J
Time arithmetic simulator common <
L
core
Packets

Packet tags

Packet headers
Pcap file writing

Trilogy’2009

Trilogy’2009

41/95

43/95

A typical simulation

+ Create a bunch of C++ objects

+ Configure and interconnect them

+ Each object creates events with Simulator::Schedule
+ Call Simulator::Run to execute all events

A (fictional) simulation
Node *a = new Node ();
Node *b = new Node ();
Link *link = new Link (a,b);

Simulator::Schedule (Seconds (0.5),

Simulator::Run ();

Mathieu Lacage (INRIA)

The basic model

&Node::StartCbr, a,

// in 0.5s from now

// call StartCbr on ’a’

"100bytes", "0.2ms", b); // pass these arguments

Experimentation with ns-3

Trilogy’2009

4 N\ 4 N\
I Application I I Application I
Socket-like
API __)
\ \
3\ 3\
Protocol Protocol
Stack Stack
J J
A %
Node Node
. J . J

Mathieu Lacage (INRIA)

Channel
>,

Experimentation with ns-3

Trilogy’2009

42/95

44/ 95



The fundamental objects Important remark

’ _Nf[’d?: the motherboard of a computer with RAM, CPU, and, 10 NetDevices are strongly bound to Channels of a matching type:
interfaces

 Application: a packet generator and consumer which can run on o o _
Node and talk to a Set Of network stacks WifiNetDevice WifiNetDevice CsmaNetDevice
a
+ Socket: the interface between an application and a network

* NetDevice: a network card which can be plugged in an 10

+ Channel: a physical connector between a set of NetDevice

objects

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy'’2009  45/95 Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy'’2009 46 /95

Existing models For example, the wifi models

* Network stacks: arp, ipv4, icmpv4, udp, tcp (ipv6 under review)
+ Devices: wifi, csma, point-to-point, bridge

+ Error models and queues

+ Applications: udp echo, on/off, sink

* Mobility models: random walk, etc.

* Routing: olsr, static global

* New model, written from 802.11 specification

+ Accurate model of the MAC

- DCF, beacon generation, probing, association

A set of rate control algorithms (ARF, ideal, AARF, Minstrel, etc.)
* Not-so-slow models of the 802.11a PHY

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy'2009 47 /95 Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 48 /95



Development of wifi models

New contributions from many developers:
+ University of Florence: 802.11n, EDCA, frame aggregation,

block ack - Core models are based on well-known abstractions: sockets,
* Russian Academy of Sciences: 802.11s, HWMP routing protocol devices, etc.

* Boeing: 802.11b channel models, validation
* Deutsche Telekom Laboratories: PHY modelization, validation

+ Karlsruhe Institute of Technology: PHY modelization (Rayleigh,
Nakagami)

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy'’2009  49/95 Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 50/ 95

- Core models are based on well-known abstractions: sockets,
devices, etc.

+ An active community of contributors

Topology construction

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 50/ 95 Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 51/95



The Helper/Container API Typical containers and helpers

We want to:
* Make it easy to build topologies with repeating patterns Example containers:
+ Make the topology description more high-level (and less * NodeContainer
verbose) to make it easier to read and understand « NetDeviceContainer
The idea is simple: * Ipv4AddressContainer
« Sets of objects are stored in Containers Example helper classes:
+ One operation is encoded in a Helper object and applies on a - InternetStackHelper
Container

* WifiHelper

* MobilityHelper

* OlsrHelper

+ etc. Each model provides a helper class

Helper operations:
+ Are not generic: different helpers provide different operations

* Do not try to allow code reuse: just try to minimize the amount of
code written

* Provide syntactical sugar. make the code easier to read

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy'’2009  52/95 Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy'’2009  53/95

Create a couple of nodes Then, the csma network

NetDeviceContainer csmaDevices; Create empty device container
CsmaHelper csma; Create csma helper
Set data rate

NodeContainer csmaNodes; Create empty node container

csmaNodes.Create (2); Create two nodes csma.SetChannel Attribute ("DataRate"
NodeContainer wifiNodes; Create empty node container StringValue ("5Mbps™):

wifiNodes.Add (csmaNodes.Get (1)); | Add existing node to it csma.SetChannelAttribute ("Delay”, Set delay
wifiNodes.Create (3); And then create some more nodes StringValue (Hzms;,)).

csmaDevices = csma.Install (csmaNodes); § Create csma devices and
channel

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 54 /95 Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 55/95



Comparison with low-level

And a couple of wifi interfaces

version

Finally, setup the wifi channel:

YansWifiChannelHelper wifiChannel = YansWifiChannelHelper::Default ();
YansWifiPhyHelper wifiPhy = YansWifiPhyHelper::Default ();
wifiPhy.SetChannel (wifiChannel.Create ());

And create adhoc devices on this channel: Fire up editor for tutorial-helper.cc and tutorial-lowlevel.cc

NetDeviceContainer wifiDevices;

WifiHelper wifi = WifiHelper::Default ();
wifiDevices = wifi.Install (wifiPhy, wifiNodes);

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy'’2009 56 /95 Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy'’2009 57 /95

Summary Summary

* It's always possible to create objects by hand, interconnect and * It's always possible to create objects by hand, interconnect and
configure them configure them

+ But it can be easier to reuse the for loops encapsulated in
Helper classes

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 58 /95 Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 58 /95



+ It's always possible to create objects by hand, interconnect and
configure them

+ But it can be easier to reuse the for loops encapsulated in
Helper classes

* Helper classes make scripts less cluttered and easier to read
and modify

Part Ill

The ns-3 object model

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy'2009  58/95 Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy'’2009  59/95

simulator

A coherent memory management scheme
Maximizing model reuse It's just a matter of:
* Provide an event scheduler

Getting the right object
* Implement a couple of models to create and consume events

A uniform configuration system But it's much harder to build a network simulator which:
+ Allows models to be reusable independently
Controlling trace output format - Ensures API coherence between models

_ + Automates common tasks (tracing, configuration)
The underlying type metadata database

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy'2009 60 /95 Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 61/95



Why are objects so

complicated to create ?

A coherent memory management scheme

We do:
Ptr<Node> node0 = CreateObject<Node> ();

Why not:

Node *node0 = new Node ();

Node node0 = Node ();

|o

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy'’2009  62/95 Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy'’2009 63 /95

Templates: the Nasty Brackets

Memory Management

It is hard in C++:

+ Contain a list of type arguments * No garbage collector
+ Parameterize a class or function from input type + Easy to forget to delete an object
* In ns-3, used for: - Pointer cycles

* Standard Template Library - Ensure coherency and uniformity

- Syntactical sugar for low-level facilities )
- Saves a lot of typin S0, we use:
. P g * Reference counting: track number of pointers to an object
* No portability/compiler support problem (Ref+Unref)

* Sometimes painful to decipher error messages. + Smart pointers: Ptr<>, Create<> and, CreateObject<>

+ Sometimes, explicit Dispose to break cycles

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy'2009 64 /95 Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 65/95



Where is my MobileNode

Ptr<Node> node = CreateObject<Node> ();

Ptr<MobilityModel> mobility = CreateObject<...> ();
node->AggregateObject (mobility);

Maximizing model reuse - Some nodes need an IPv4 stack, a position, an energy model.

- Some nodes need just two out of three.

+ Others need other unknown features.
+ The obvious solution: add everything to the Node base class:
+ The class will grow uncontrollably over time
+ Everyone will need to patch the class
- Slowly, every piece of code will depend on every other piece of
code (cannot reuse anything without dragging in everything)
+ A maintenance nightmare...
* A better solution:
- Separate functionality belongs to separate classes
- Objects can be aggregated at runtime to obtain extra functionality

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 66 /95 Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 67 /95
Object aggregation Outline

Node MebilityMode! + A circular singly linked-list

Q C) - AggregateObject is a constant-time

l operation
+ GetObject is a O(n) operation

v/_\ - Aggregate contains only one object Getting the right object

oo P of each type
- /N
pva Node wobilityMode

& =

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy'2009 68 /95 Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 69 /95



The traditional approach Use a namespace string !

In C++, if you want to call methods on an object, you need a pointer Set an attribute:
to this object. To get a pointer, you need to:

+ keep local copies of pointers to every object you create

+ walk pointer chains to get access to objects created within other
objects Connect a trace sink to a trace source:

Config::SetAttribute ("/NodeList/5/DeviceList/0/Phy/TxGain",
StringValue ("10"));

For example, in ns-3, you could do this: Config::Connect ("/NodeList/5/DeviceList/0/Phy/TxGain",
MakeCallback (&LocalSink));

Ptr<NetDevice> dev = NodeList::Get (5)->GetDevice (0);
Ptr<WifiNetDevice> wifi = dev->GetObject<WifiNetDevice> (); Just get a pointer:

Ptr<WifiPhy> phy = dev->GetPhy ();
phy->SetAttribute ("TxGain", ...);
phy->ConnectTraceSource (...);

Config::MatchContainer match;
match = Config::LookupMatches ("/NodeList/S/DeviceList/0/Phy/");

Ptr<WifiPhy> phy = match.Get (0)->GetObject<WifiPhy> ();

It's not fun to do...

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 70/95 Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 71/95
The object namespace | The object namespace |l
Object namespace strings represent a path through a set of object Navigating the attributes using paths:
pointers: « /NodeList/[3-5]181[0-1]: matches nodes index 0, 1, 3, 4, 5, 8

* /NodeList/*: matches all nodes

* /NodeList/3/$ns3::Ipv4: matches object of type ns3::Ipv4
aggregated to node number 3

* /NodeList/3/DeviceList/*/$ns3::CsmaNetDevice: matches all
devices of type ns3::CsmaNetDevice within node number 3

IFramesize * /NodeList/3/DeviceList/0/RemoteStationManager: matches the
object pointed to by attribute RemoteStationManager in device 0
in node 3.

INodelList/[0-n] IDeviceList/[0-n]

/DataRate /Interfr,

For example, /NodeList/x/DeviceList/y/InterframeGap represents the
InterframeGap attribute of the device number y in node number x.

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy'2009 72 /95 Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 73/95



QOutline Traditionally, in C++

+ Export attributes as part of a class’s public API
+ Use static variables for defaults
For example:

class MyModel {
public:
MyModel () : m_foo (m_defaultFoo) {}
void SetFoo (int foo) {m_foo = foo;}
int GetFoo (void) {return m_foo}
static void SetDefaultFoo (int foo) {m_defaultFoo = foo;}
static int GetDefaultFoo (void) {return m_defaultFoo;}
private:
int m_foo;
static int m_defaultFoo = 10;

)5

A uniform configuration system

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy'’2009 74 /95 Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009  75/95

In ns-3, done automatically I

In ns-3, done automatically |

- Set a default value: - Load, Change, and Save all values from and to a raw text or xml
file with or without a GUI:

Config::SetDefaultValue ("ns3::WifiPhy::TxGain", StringValue ("10"));
GtkConfigStore config;

+ Set a value on a specific object: config ConfigureDefaults ()

phy->SetAttribute ("TxGain", StringValue ("10"));

config.ConfigureAttributes ();

+ Set a value from the command-line —ns3::WifiPhy::TxGain=10: . , .
- Set a value with an environment variable

CommandLine cmd; NS_ATTRIBUTE_DEFAULT=ns3::WifiPhy:: TxGain=10

cmd.Parse (arge, argv);

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 76 /95 Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 77/95



Graphical navigation Doxygen documentation

Object Attributes Attribute Value 2 Eile Edit View History Bookmarks TIools Help GBookmarks 5
< ns3::NodeListPriv @ v & # [®]nttp://www.nsnam.org/doxygen-release/index. html [~ [Gv[ns-3-30minutes &) @ v
¥ NodeList S
‘ Main Page | Related Pages | Modules. | Namespaces | Classes. | Files ‘
v 0 . .
= The list of all attributes.
DeviceList [Core]
v 0

Collaboration diagram for The list of all attributes.

Address 00:00:00:00:00:01 = =
The list of all attributes.

EncapsulationMode L

ns3:V4Ping
SendEnable true
« Remote: The address of the machine we want to ping
ReceiveEnable true
ns3:ConstantRateWifiManager
DataRate 5000000bps
« DataMode: The transmission mode to use for every data packet transmission
P TxQueue * ControlMode: The transmission mode to use for every control packet transmission
P ns3:WifiRemote StationManager
b ApplicationList o IsLowLatency: Iftrue, we attempt to modelize a so-called low-latency device: a device where decisions about t parameters can be made on a per-packet basis and

feedback about the transmission of each packet is obtained before sending the next. Otherwise, we modelize a high-latency device, that is a device where we cannot

ns3::PacketSocketFactory update our decision about tx parameters after every packet transmission

b ns3::IpvaL4Demux  MaxSsrc: The maximum number of retransmission attempts for an RTS. This value wil not have any effect on some rate contral algarithms.
« Maxsirc: The maximum number of retransmission attempts for a DATA packet. This value will not have any effect on some rate control algorithms.
D ns3::Tep * RitsCtsThreshold: If a data packet is bigger than this value, we use an RTS/CTS handshake before sending the data. This value will not have any effect on some rate
control algorithms
ns3::udp * FragmentationThreshald: If a data packet is bigger than this value, we fragment it such that the size of the fragments are equal or smaller than this value. This value
TR = will not have any effect on some rate control algorithms.

ns3:: ArpLaProtocol ns3:OnoeWifiManager

* UpdatePeriod: The interval between decisions abot rate control changes
« RaiseThreshold: Attempt to raise the rate if we hit that threshold
 AddCreditT hreshold: Add credit threshold

D ns3::Ipv4L3Protocol

Done

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy'’2009  78/95 Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009  79/95

Outline Tracing requirements

+ Tracing is a structured form of simulation output
+ Example (from ns-2):
+ 1.8437502 cbr 210 ------- 00.03.1225610
-1.843750 2 cbr 210 ------- 00.03.1225610
r 1.84471 2 1 cbr 210 ------- 13.01.0 195 600
r 1.84566 2 0 ack 40 ------- 23.20.1 82602
+ 1.84566 0 2 tcp 1000 ------- 20.13.2102611
+ Problem: tracing needs vary widely

- Would like to change tracing output format without editing the core
- Would like to support multiple output formats

Controlling trace output format

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy'2009 80/95 Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 81/95



Tracing overview The ns-3 tracing model

Decouple trace sources from trace sinks:

+ Simulator provides a set of pre-configured trace sources
- Users may edit the core to add their own sovree l l
A

 Users provide trace sinks and attach to the trace source [: ;[ -~ ] [ -~ }{ @

Source

Source
+ Simulator core provides a few examples for common cases T x T
Source

Unchanging Configurable by user Unchanging

 Multiple trace sources can connect to a trace sink Source

Benefit: Customizable trace sinks

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy'’2009  82/95 Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy'2009  83/95

Ns-3 trace sources Multiple levels of tracing

+ Various trace sources (e.g., packet receptions, state machine
transitions) are plumbed through the system

+ Organized with the rest of the attribute system
+ High-level: use a helper to hook a predefined trace sink to a

@ v e @ [B]http://www.nsnam.org/doxygen-release/index.html [v] [C¥Ins-3-30minutes &) @ v R ) ..
= trace source and generate simple tracing output (ascii, pcap)
The list of all trace sources. . . . . .
teorel + Mid-level: hook a special trace sink to an existing trace source to
generate adhoc tracing

- Low-level: add a new trace source and connect it to a special

ns3:NgstaWifiMac
 Assoc: Associated with an access point. H
i et s Ot trace sink

ns3:WifiMac

[ v Page | Relsted Pages | Modhies | Namespaces | ciasses | Fi

Collaboration diagram or The list of all trace sources.

« MacTx Apacket has been received from higher layers and s being processed in preparation for queueing for transmission

 MacTxDrop: A packet has been dropped in the MAC layer before being queued for transmission

 MacPromiscRx A packet has been received by this device, has been passed up from the physical layer and is being forwarded up the local protocal stack, This is a
promiscuous trace

« MacRx A packet has been received by this device, has been passed up from the physical layer and is being farwardd up the local protocal stack. This s a
non-promiscuous trace

« MacR«Drap: A packet has been drapped in the MAC layer after it has been passed up from the physical layer.

Rs3:WifiPhy

« PhyT«Begin: Trace source indicating a packet has begun transmitting over the channel medium
« PhyT«ENd: Trace source indicating a packet has been completely transmitted over the channel
* PhyT«Drop: Trar c ket has been drapped by the device during trans
being received from the ch
mpletely received from the c

mission
medium by the devi

« PhyRMEEgI. T jce
« PhyREND: Tra el medium by the device o)

Done

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy'2009 84 /95 Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 85/95



High-level tracing Mid-level tracing

* Provide a new trace sink
+ Use predefined trace sinks in helpers + Use attribute/trace namespace to connect trace sink and source

+ All helpers provide ascii and pcap trace sinks
void
DevTxTrace (std::string context,

CsmaHelper::EnablePcap ("filename", nodeid, deviceid); Ptr<const Packet> p, Mac48Address address)

std::ofstream os;

{

os.open ("filename.tr");

. . S std::cout << " TX to=" << address << " p: " << *p << std::endl;
CsmaHelper::EnableAscii (0s, nodeid, deviceid);

}
Config::Connect ("/NodeList/*/DeviceList/*/Mac/MacTx",
MakeCallback (&DevTxTrace));

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy'’2009  86/95 Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 87 /95

Pcap output Outline

The trace sink:

static void PcapSnifferEvent (Ptr<PcapWriter> writer,
Ptr<const Packet> packet)

{

writer->WritePacket (packet);

}
Prepare the pcap output:

non non

oss << filename << "-" << nodeid << "-" << deviceid << ".pcap";
Ptr<PcapWriter> pcap = ::ns3::Create<PcapWriter> ();
pcap->Open (0ss.str ());

pcap->WriteWifiHeader ();

Finally, connect the trace sink to the trace source:

oss << "/NodeList/" << nodeid << "/DeviceList/" << deviceid; The underlying type metadata database
oss << "/$ns3::WifiNetDevice/Phy/PromiscSniffer";

Config::ConnectWithoutContext (0ss.str (),
MakeBoundCallback (&PcapSnifferEvent, pcap));

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy'2009 88/95 Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 89/95



The ns-3 type system The ns-3 type system

It is not very complicated to use:
* Derive from the ns3::Object base class
* Define a GetTypeld static method:

+ The aggregation mechanism needs information about the type
of objects at runtime

+ The attribute mechanism needs information about the attributes class Foo : public Object {
supported by a specific object public:
- The tracing mechanism needs information about the trace static Typeld GetTypeld (void);
sources supported by a specific object b
Al this information is stored in ns3::Typeld: - Define the features of your object:
+ The parent type static Typeld tid = Typeld ("ns3::Foo")
+ The name of the type .SetParent<Object> ()

.AddAttribute ("Name", "Help", ...)
.AddTraceSource ("Name", "Help", ...);
return tid;

+ The list of attributes (their name, their type, etc.)
+ The list of trace sources (their name, their type, etc.)

+ call NS_OBJECT_ENSURE_REGISTERED

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy'’2009 90/ 95 Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy'’2009  91/95

+ Memory management is uniform and simple + Memory management is uniform and simple
- Dynamic aggregation makes models easier to reuse

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 92 /95 Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 92/95



Summary Summary

+ Memory management is uniform and simple + Memory management is uniform and simple

» Dynamic aggregation makes models easier to reuse + Dynamic aggregation makes models easier to reuse

+ Path strings allow access to every object in a simulation Path strings allow access to every object in a simulation
+ Attributes allow powerful and uniform configuration

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy'’2009  92/95 Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy'’2009  92/95

Summary Summary

+ Memory management is uniform and simple + Memory management is uniform and simple

- Dynamic aggregation makes models easier to reuse - Dynamic aggregation makes models easier to reuse

- Path strings allow access to every object in a simulation - Path strings allow access to every object in a simulation
+ Attributes allow powerful and uniform configuration + Attributes allow powerful and uniform configuration

+ Trace sources allow arbitrary output file formats + Trace sources allow arbitrary output file formats

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 92 /95 Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy’2009 92 /95



Summary Resources

+ Simulation is a key component of network research
- Debuggability + Web site: http://www.nsnam.org
* Reproducibility - Developer mailing list:

* Parameter explorationl : http://mailman.isi.edu/mailman/listinfo/ns-developers
- No dependency on existing hardware/software

- ns-3 has a strong focus on realism: + User mailing “.St: http://groups.google.com/group/ns-3-users
- Makes models closer to the real world: easier to validate * IRC: #ns-3 at irc.freenode.net
* Allows direct code execution: no model validation + Tutorial: http://www.nsnam.org/docs/tutorial/tutorial.html

- Allows robust emulation for large-scale and mixed experiments
* ns-3 also cares about good software engineering:

- Single-language architecture is more robust in the long term
+ Open source community ensures long lifetime to the project

+ Code server: http://code.nsnam.org
+ Wiki: http://www.nsnam.org/wiki/index.php/Main_Page

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy'’2009  93/95 Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy'’2009 94 /95

Acknowledgments

+ Many slides stolen from other’s presentations and tutorials
* Many contributors to the ns-3 codebase (developers, testers)
- Google summer of code students (2008,2009)

Mathieu Lacage (INRIA) Experimentation with ns-3 Trilogy'2009 e /e


http://www.nsnam.org
http://mailman.isi.edu/mailman/listinfo/ns-developers
http://groups.google.com/group/ns-3-users
http://www.nsnam.org/docs/tutorial/tutorial.html
http://code.nsnam.org
http://www.nsnam.org/wiki/index.php/Main_Page

	Introduction
	Simulation considered harmful
	Why not reuse an existing simulator ?
	What is so special about ns-3 ?
	What we learned along the way

	The ns-3 architecture
	Introduction
	Fundamental network model structure
	Topology construction

	The ns-3 object model
	A coherent memory management scheme
	Maximizing model reuse
	Getting the right object
	A uniform configuration system
	Controlling trace output format
	The underlying type metadata database

	Parting thoughts

