ns-3 tutorial

ns-3

Tom Henderson
University of Washington
and
Mathieu Lacage
INRIA, Planete

Workshop on ns-3
March 2009

Workshop on ns-3, March 2009

Workshop on ns-3 schedule

n30: Tutorial

N00: Coffee break
n30: Tutorial

Nn00: Lunch

Nn00: Focus on Wifi
Nn30: Coffee break
N00: Short talks

09h00-"
N30--
N00--
N30--
N00--
N00--
N30--

o O O NN - O

o O AN -~ O

ns _3 Workshop on ns-3, March 2009

Focus on ns-3 Wifi

* Authors: Ruben Merz, Cigdem Sengul, and Mustafa Al-Bado

« Title: Accurate Physical Layer Modeling for Realistic Wireless Network
Simulation

« Authors: Timo Bingmann and Jens Mittag
« Title: An overview of PHY-layer models in ns-3

 Author: Mirko Banchi
e Title: Realization of 802.11n and 802.11e models

« Author: Kirill V. Andreev
« Title: Realization of the draft standard for Mesh Networking (IEEE802.11s)

* Author: Guangyu Pei and Tom Henderson
« Title: 802.11b PHY model and validation

ns _3 Workshop on ns-3, March 2009

Short talks (miscellaneous)

« Authors: Ramon Bauza, Miguel Sepulcre, and Javier Gozalvez

« Title: ns-3 scalability constraints in heterogeneous wireless
simulations: iTETRIS a case study

« Authors: Francisco Carmona, Juan Carlos Moreno, Ana Cabello,
Francisco Lobo, and David Mora

« Title: ns-3 Script Generator

« Authors: Providence Salumu Munga and Hakima Chaouchi
» Title: An ns-3-based IEEE 802.21 MIH Module

« Author: Mohamed Amine Ismail
 Title: A Mobile WIMAX Module for ns-3

ns _3 Workshop on ns-3, March 2009

Goals of this tutorial

* Learn about the ns-3 project and its goals

 Understand the software architecture,
conventions, and basic usage of ns-3

 Read and modify an example ns-3 script

* Learn how you might extend ns-3 to conduct
your own research

* Provide feedback to the ns-3 development team

ns _3 Workshop on ns-3, March 2009

Assumptions

Some familiarity with:

« C++ and Python programming language
 TCP/IP

* Unix Network Programming (e.g., sockets)
* Discrete-event network simulation

ns _3 Workshop on ns-3, March 2009

Outline

1. Overview of ns-3 features

2. End-to-end perspective of the system
3. Extending ns-3

4. Advanced topics (time permitting)

ns _3 Workshop on ns-3, March 2009

Overview of ns-3 features

Examplles
Models: Real-time scheduler "
- WiFi intro Emulation modes |
Start with a research question -TCP Debugging I
P ” / \4
”
N\ .~ / Visualization
Topology Models Configuratio Execution
Definition
. | | (i Output Analysis
. ‘.
,' Modify scenario, or perform independent replication ’f
| X
I’-I [API d tai ‘) :
elper s and containers i A i
P Attributes \ Tracing
Names Y. Wireshark

Command line args . Statistics framework

Default values
Env. variables

ns _3 Workshop on ns-3, March 2009

\
Random variables

Introductory Software Overview

ns _3 Workshop on ns-3, March 2009

Basics

* Ns-3 iIs written in C++
* Bindings in Python
* ns-3 uses the waf build system
—I.e., instead of . /configure;make, type . /wat

» simulation programs are C++ executables
or python scripts

ns _3 Workshop on ns-3, March 2009 10

Simulation basics

* Simulation time moves discretely from
event to event

« C++ functions schedule events to occur at
specific simulation times

A simulation scheduler orders the event
execution

« Simulation::Run() gets it all started

« Simulation stops at specific time or when
events end

ns _3 Workshop on ns-3, March 2009 11

Scheduling events

Yr ot Mode:C4+; c-file—-style:"gnu™;: indent-tabs-mode:nil; -*- #/
#finclude "ns3/simulator.h®

#finclude "ns3i/nstime.h"”

#include <iostream:

using hatespace ns3;

class MyModel
public:

woid Start (wvoid):
b

void
MyModel: :3tart (woid)
{
std:icout << "Starting” << stdi:iendl;

static woid
random function (MyModel *model)
{
std::cout <« "random function received event at o<«
Simmlataor: :Now [).Get3econds (] << 2" << =td:iendl:
model->3tart ():

int mwain [(int argc, char *arow[])
{
MyHModel model;

’

ns _3 Workshop on ns-3, March 2009

from samples/
main-simulation.cc

Introductory demo

ns _3 Workshop on ns-3, March 2009

Random Variables

« Currently implemented distributions
— Uniform: values uniformly distributed in an interval
— Constant: value is always the same (not really random)
— Sequential: return a sequential list of predefined values
— Exponential: exponential distribution (poisson process)
— Normal (gaussian)
— Log-normal
— pareto, weibull, triangular,

— 3000
= =m

2500

import pylab

import ns3 2000
(n) (o)

rhng = n=3.Hormal¥ariable(10.0, 5.0}

#x = [rng.Get¥alue() for £t in range (1000007] 1000

1500

500

pvlab.hi=t (., 100)
pvlab.zshow () 0

[t} =) 20

OO+ BB x=14.6, y=3.45e+03

ns _3 Workshop on ns-3, March 2009

APls

 Most of the ns-3 API is documented with
Doxygen

— http://www.stack.nl/~dimitri/doxygen/

~
NS-3 Mzin Page Modules Namespaces Classes Related Pages
[£] ns-3 Documentation

@ NS-3 Modules

Class List Class Hierarchy Class Members

! . ns3: InetSocketAddress

¥ NS.3 Class List

@ NS-3 Class Hierarchy
] Class Members ns3::lnetSocketAddress Class Reference
“[E] NS-3 Graphical Class Hierarchy [Address]

=@ NS-3Namespace List
@ Namespace Members
B@®: NS_3Related Pages

an Inet address class Maore...

#include <inet-socket-address.h>

Collaboration diagram far ns3::InetSocketAddress:

ns3::Ipv4Address

m_ipvd
|

| ns3:InetSocketAddress |

[legend]
List of all mermbers.

Public Member Functions

ns _3 Workshop on ns-3, March 2009

the waf build system

» Waf is a Python-based framework for
configuring, compiling and installing
applications.

— It is a replacement for other tools such as
Autotools, Scons, CMake or Ant

— http://code.google.com/p/waf/

ns _3 Workshop on ns-3, March 2009

16

waf key concepts

* For those familiar with autotools:

« configure -> ./waf -d [optimized|debug] configure
* make -> ./waf

« make test -> ./waf check (run unit tests)

» Can run programs through a special waf
shell; e.g.
— ./waf —--run simple-point-to-point

— (this gets the library paths right for you)

ns _3 Workshop on ns-3, March 2009

17

A software organization view

High-level wrappers
for everything else

No smart pointers

Node class
NetDevice ABC Aimed at scripting
Address types
(Ipv4, MAC, etc.) helper
Queues
Socket ABC . .
Ipv4 ABCs Routing Internet stack Devices
Packet sockets
node mObllity Events
Scheduler
. Time arithmetic
common simulator
core
Smart pointers Callbacks, Tracing iac::e:s-r Mobility models
Dynamic type system Logging Packe ¢ Hagz (static, random
Attributes Random Variables acket rieaders walk, etc)

ns-3

Pcapl/ascii file writing

Workshop on ns-3, March 2009

Getting started: Linux

* Working from development version

sudo apt-get install build-essential g++ python
mercurial (for Ubuntu)

hg clone http://code.nsnam.org/ns-3-allinone
cd ns-3-allinone

./download.py

./build.py

cd ns-3-dev

ns _3 Workshop on ns-3, March 2009

Building from within ns-3-dev

cd ns-3-dev

./waf distclean (similar to make distclean)
./waf configure

or ./waf -d optimized configure

./waf

* Helpful options:
—-j# where # is number of cores
— ./waf --help shows you other options

ns _3 Workshop on ns-3, March 2009

Running programs

* Programs are built as
build/<variant>/path/program-name

—programs link shared library libns3.so

* Using ./waf --shell
./waf --shell

./build/debug/samples/main-simulator

» Using ./waf --run

./waf --run examples/csma-bridge.cc

./waf —--pyrun examples/csma-bridge.py

ns _3 Workshop on ns-3, March 2009

Getting started: Windows

Install build tools

— Cygwin (g++, wget)

— Python (http://www.python.org)

Download

— wget http://www.nsnam.org/releases/ns-3.3.tar.bz2
* Build

— ./waf configure

— ./waf check (runs unit tests)
(rest of instructions similar to Linux)

ns _3 Workshop on ns-3, March 2009

ns-3 features

ns _3 Workshop on ns-3, March 2009

Overview of ns-3 features

Examplles
Models: Real-time scheduler "
- WiFi intro Emulation modes |
Start with a research question - TCP Debugging I
P ” / \4
”
N\ .~ / Visualization
Topology Models Configuratio Execution
Definition
. | | (i Output Analysis
. ‘.
,' Modify scenario, or perform independent replication ’f
| X
I’-I [API d tai ‘) :
elper s and containers i A i
P Attributes \ Tracing
Names Y. Wireshark

Command line args . Statistics framework

Default values
Env. variables

ns _3 Workshop on ns-3, March 2009

\
Random variables

Sample program

 Four Wifi ad hoc nodes
 One additional node connected via CSMA

data transfer

O BN NS BN S . . .y

_—
=~ o~
N-

Available today at:
http://www.nsnam.org/temp/wns3-helper.cc

‘ http://www.nsnam.org/temp/wns3-lowlevel.cc

Workshop on ns-3, March 2009

=

ns-3

Review of sample program

#include <iostream>

#include <fstream>

#include "ns3/simulator-module.h"
#include "ns3/node-module.h"

#include "ns3/core-module.h"

#include "ns3/helper-module.h"
#include "ns3/global-route-manager.h"
#include "ns3/contrib-module.h"

using namespace ns3;
int main (int argc, char *argv([])

{

CommandLine cmd;
cmd.Parse (argc, argv);

ns _3 Workshop on ns-3, March 2009

Review of sample program (cont.)

int main (int argc, char *argv([])
{

CommandLine cmd;
cmd.Parse (qﬁqu—aTgV77

—
—
/’ ~
- ~
- ~
- ~

”NsaeContainer csmaNodes; s
» csmaNodes.Create (2); S
NodeContainer wifiNodes;
wifiNodes.Add (csmaNodes.Get (1)) ; \
wifiNodes.Create (3); \

___———__—
—
—

. .) |
NetDeviceContalner csmaDevices; I
CsmaHelper csma;

csma.SetChannelAttribute ("DataRate", StringValue ("5Mbps"));
csma.SetChannelAttribute ("Delay", StringValue ("2ms")); /

csmaDevices = csma.Install (csmaNodes); ‘,/
s
S o P
~ -
~ -

-
\\

- - ” Topology
Configuration

—
— —‘
~———————__

ns _3 Workshop on ns-3, March 2009

The basic model

C C
L n
{Appllcatlon [Applicationw
— Sockets-like
--------------- . API
Prolocol I
sthek Packet(s)
Node
a
[NetDe S (Channﬂ
N
(Channel
k J
Workshop on ns-3, March 2009 28

ns-3

Fundamentals

Key objects in the simulator are Nodes,
Packets, and Channels

Nodes contain Applications, “stacks”, and
NetDevices

ns _3 Workshop on ns-3, March 2009

29

Node basics

A Node is a husk of a computer to which
applications, stacks, and NICs are added

Apr" _
p Appl Application

¢ & i “DTN”

Workshop on ns-3, Mz ;‘ 30

ns-3

NetDevices and Channels

NetDevices are strongly bound to Channels
of a matching type

WifiNetDevice

Nodes are architected for multiple interfaces

ns _3 Workshop on ns-3, March 2009 31

Internet Stack

* |[nternet Stack
—Provides |IPv4 models currently

—IPv6 models are scheduled for ns-3.5/ns-3.6
timeframe

» Uses an interface design pattern to
support multiple implementations

ns _3 Workshop on ns-3, March 2009

Other basic models in ns-3

* Devices
—wifl, csma, point-to-point, bridge
* Error models and queues
* Applications
—echo servers, traffic generator
* Mobility models

ns _3 Workshop on ns-3, March 2009

Containers

» Containers are part of the ns-3 “helper
AP/’

» Containers group similar objects, for
convenience

— They are often implemented using C++ std
containers

« Container objects also are intended to
provide more basic (typical) API

ns _3 Workshop on ns-3, March 2009

The Helper API (vs. low-level API)

* |s not generic
* Does not try to allow code reuse

* Provides simple 'syntactical sugar' to make
simulation scripts look nicer and easier to
read for network researchers

* Each function applies a single operation on
a "set of same objects”

ns _3 Workshop on ns-3, March 2009 35

Helper Objects

 NodeContainer: vector of Ptr<Node>
NetDeviceContainer: vector of Ptr<NetDevice>
InternetStackHelper

WifiHelper

* MobilityHelper

OlsrHelper

... Each model provides a helper class

ns _3 Workshop on ns-3, March 2009 36

Sample program (revisit)

 Four Wifi ad hoc nodes
 One additional node connected via CSMA

data transfer

O BN NS BN S . . .y

\——
=~
N-

ns _3 Workshop on ns-3, March 2009

Review of sample program (cont.)

int main (int argc, char *argv([])
{

CommandLine cmd;

cmd.Parse (argc, argv); Create empty node container

/ Create two nodes

/ Create empty node container

NodeContainer csmaNodes;
csmaNodes.Create (2);
NodeContainer wifiNodes;

wifiNodes.Add (csmaNodes.Get (1)); «— Add existing node to it
wifiNodes.Create (3); ‘“‘“‘*—~—-_~_h__
and then create some more nodes

NetDeviceContainer csmaDevices;

CsmaHelper csma;

csma.SetChannelAttribute ("DataRate", StringValue ("5Mbps"));
csma.SetChannelAttribute ("Delay", StringValue ("2ms"));
csmaDevices = csma.Install (csmaNodes):;

ns _3 Workshop on ns-3, March 2009

Review of sample program (cont.)

NetDeviceContainer wifiDevices;

YansWifiChannelHelper wifiChannel = YansWifiChannelHelper::Default ();
YansWifiPhyHelper wifiPhy = YansWifiPhyHelper::Default ();
wifiPhy.SetChannel (wifiChannel.Create ()); L
WifiHelper wifi = WifiHelper::Default (); Wifi
wifiDevices = wifi.Install (wifiPhy, wifiNodes);

MobilityHelper mobility;
mobility.SetPositionAllocator ("ns3::RandomDiscPositionAllocator",
"X"™, StringValue ("100.0"),
"y", StringValue ("100.0"),
"Rho", StringValue ("Uniform:0:30")); Mobility
mobility.SetMobilityModel ("ns3::StaticMobilityModel");
mobility.Install (wifiNodes);

ns _3 Workshop on ns-3, March 2009

ns-3 Wifi model

 new model, written from 802.11
specification

e accurate model of the MAC

 DCF, beacon generation, probing,
association

* a set of rate control algorithms
* not-so-slow models of the 802.11a PHY

ns _3 Workshop on ns-3, March 2009

ns-3 Wifi development

Several research groups are maturing the original INRIA model:

Karlsruhe Institute of Technology: 802.11 PHY, 802.11e

— Equalizing PHY models including capture effects, user-definable coding
rates (e.g. 5.9 GHz from 802.11p), EDCA QoS extensions of 802.11e,
Nakagami/Rayleigh propagation loss model

University of Florence: 802.11n features

— Frame Aggregation, Block ACK, HCF (EDCA and support for
HCCA),TXOP, HT terminal (also with protection modes), MIMO

Russian Academy of Sciences: 802.11s
— a complete model of IEEE802.11s D2.0 Draft Standard

Deutsche Telekom Laboratories in Berlin: 802.11 PHY
Boeing: 802.11b channel models, validation
(and others...)

ns _3 Workshop on ns-3, March 2009

ns-3 Wifi model (cont.)

Send(packet, dest, proto)

'

ForwardUp

i

WifiNetDevice
Engueue|packet, to)
q P ForwardUp
Y
NgstaWifiMac “an active probing and association state machine
which handles automatic re-association whenever
A too many beacons are missed"
"implements the DCF function" Enqueue(packet) Receive
NotifyAccessGranted E- '
DcfManager | DcaTxOp MacRxMiddle ' "handles the packe queue, packet fragmentation,
- ' and packet retransmission, if they are needed"
AA R I Y]
E . StartTransmission Receive
H ! Listener
E ememmmesse————————— MacLow “takes care of RTS/CTS/DATAJACK transactions"
E B ReceiveOk/ReceiveEmor
H SendPacket
E Listener
LT TP WifiPhy
Send ' StartReceivePacket
WifiChannel

ns-3

Workshop on ns-3, March 2009

Mobility models

« The MobilityModel interface:
— void SetPosition (Vector pos)
— Vector GetPosition ()

« StaticMobilityModel
— Node is at a fixed location; does not move on its own

« RandomWaypointMobilityModel
— (works inside a rectangular bounded area)
— Node pauses for a certain random time
— Node selects a random waypoint and speed
— Node starts walking towards the waypoint
— When waypoint is reached, goto first state

« RandomDirectionMobilityModel
— works inside a rectangular bounded area) yA
— Node selects a random direction and speed
— Node walks in that direction until the edge
— Node pauses for random time
— Repeat

X
3D Cartesian coordinate system

ns _3 Workshop on ns-3, March 2009

Review of sample program (cont.)

Ipvd4InterfaceContainer csmalnterfaces;
Ipvd4InterfaceContainer wifilnterfaces;
InternetStackHelper internet;
internet.Install (NodeContainer::GetGlobal ());
Ipv4AddressHelper ipv4;

ipv4.SetBase ("10.1.1.0", "255.255.255.0"
csmalnterfaces = ipv4.Assign (csmaDevices
ipv4.SetBase ("10.1.2.0", "255.255.255.0"
wifiInterfaces = ipv4.Assign (wifiDevices

Ipv4 configuration

14

14

14

~— ~— ~— ~—

4

GlobalRouteManager: :PopulateRoutingTables (); Routing

ns _3 Workshop on ns-3, March 2009

Internet stack

Corresponding
public interface
I

UdpSocketimpl

=Send ()

UdpL4Protocol

:Send ()

Ipv4L3Protocol

Send ()

Arplpvdinterface

2Send ()

‘lIHHHHHiHHHIII'

ns _3 Workshop on ns-3, March 2009

ns-3 TCP

* Three options exist:
—native ns-3 TCP
— TCP simulation cradle (NSC)
— Use of virtual machines (more on this later)

 To enable NSC:

internetStack.SetNscStack ("liblinux2.6.26.s0");

ns _3 Workshop on ns-3, March 2009

ns-3 simulation cradle

* Port by Florian Westphal of Sam Jansen’s Ph.D. work

Architecture

NSC TCP
maodel

connect,
send,
packet received,
timer, read

Figure reference: S. Jansen, Performance, validation and testing with the Network
WanD | Simulation Cradle. MASCOTS 2006.

N 8-3 Workshop on ns-3, March 2009

ns-3 simulation cradle

Accuracy

*Have shown NSC to be very accurate — able to produce
packet traces that are almost identical to traces measured
from a test network

i Fadl |

Tl Sinmelades] FreeBS0 (b} Messured FreeBSD

For ns-3:

* Linux 2.6.18
* Linux 2.6.26
* Linux 2.6.28

Others:

* FreeBSD 5
* lwip 1.3

* OpenBSD 3

Other simulators:
* NS-2
s OMNET++

Figure reference: S. Jansen, Performance, validation and testing with the Network

Simulation Cradle. MASCOTS 2006.

ns _3 Workshop on ns-3, March 2009

IPv4 rework

* The IP-related classes are undergoing
rework (in repository ~tomh/ns-3-ip) for ns-
3.5 release
— Multiple IPv4 addresses per interface

—Delegate IP forwarding logic to an
IPv4Routing class

— Align better with Linux interfaces and system
architecture

— Align with IPv6 work

ns _3 Workshop on ns-3, March 2009

current ns-3 routing model

classes Ipv4RoutingProtocol, Ipv4Route

* Each routing protocol maintains its own
RIB --> no common FIB

* Routing protocols are registered with
AddRoutingProtocol (Ptr<> protocol,

intl6 t priority)
* Routes are looked up by querying each
protocol for a route

—Ipv4L3Protocol: :Lookup ()

ns _3 Workshop on ns-3, March 2009

50

Routing options so far

* Global routing

—mainly for static topologies
— point-to-point and CSMA links

 OLSR
—dynamic routing
—can handle wired and wireless topologies

ns _3 Workshop on ns-3, March 2009

Future plans: quagga routing

Support for a synchronous Posix socket API
« each Posix type and function is redefined in the simulator
* processes get their own private stack
— somewhat like a lightweight virtual machine
 Example use case:
— compile quagga with -fPIC option
— load quagga binary with ns-3 Process API
» Benefits:

— makes porting real world application code much easier

— makes writing applications easier because the BSD socket APl is
faithfully followed

* see the “~mathieu/ns-3-simu” code repository
N 5_3 Workshop on ns-3, March 2009 52

IPv4 address configuration

* An lpv4 address helper can assign
addresses to devices in a NetDevice
container

Ipv4AddressHelper ipv4;
ipv4.SetBase ("10.1.1.0", "255.255.255.0");

csmalnterfaces = ipv4.Assign (csmaDevices);
ipv4.NewNetwork (); // bumps network to 10.1.2.0
otherCsmalnterfaces = ipv4.Assign (otherCsmaDevices);

ns _3 Workshop on ns-3, March 2009

Review of sample program (cont.)

ApplicationContainer apps;
OnOffHelper onoff ("ns3::UdpSocketFactory",
InetSocketAddress ("10.1.2.2", 1025));

onoff.SetAttribute ("OnTime", StringValue ("Constant:1.0"));
onoff.SetAttribute ("OffTime", StringValue ("Constant:0.0"));
apps = onoff.Install (csmaNodes.Get (0));
apps.Start (Seconds (1.0));

apps.Stop (Seconds (4.0));

PacketSinkHelper sink ("ns3::UdpSocketFactory",
InetSocketAddress ("10.1.2.2", 1025));

apps = sink.Install (wifiNodes.Get (1))

apps.Start (Seconds (0.0));

apps.Stop (Seconds (4.0));

ns _3 Workshop on ns-3, March 2009

Traffic generator

Traffic receiver

Applications and sockets

* In general, applications in ns-3 derive from
the ns3::Application base class

— A list of applications is stored in the ns3::Node
— Applications are like processes

* Applications make use of a sockets-like
API

— Application::Start () may call
ns3::Socket::SendMsg() at a lower layer

ns _3 Workshop on ns-3, March 2009

Sockets API

Plain C sockets ns-3 sockets
int sk; Ptr<Socket> sk =
sk = socket (PF_INET, SOCK DGRAM, 0); udpFactory->CreateSocket () ;

struct sockaddr_in src;

inet pton (AF INET,”0.0.0.0”,&src.sin ad sk->Bind (InetSocketAddress (80));
dr) ;

src.sin port = htons(80);

bind(sk, (struct sockaddr *) &src,
sizeof (src));

struct sockaddr in dest; sk->SendTo (InetSocketAddress (Ipv4Address
inet pton(AF INET,”10.0.0.1”,&dest.sin (”10.0.0.1"), 80), Create<Packet>
addr) ; C’hello”, 6));

dest.sin port = htons(80);
sendto (sk, “hello”, 6, 0, (struct
sockaddr *) &dest, sizeof (dest));

char buf[6]; sk->SetReceiveCallback (MakeCallback
recv (sk, buf, 6, 0); (MySocketReceive)) ;
} . [..] (Simulator::Run ())

void MySocketReceilve (Ptr<Socket> sk,
Ptr<Packet> packet)

{

ns-3 Workshop on ns-3, March 2009

Review of sample program (cont.)

- - —y

(:‘onoff.SetAttribute ("OnTime", StringValue ("Constant:1.0")); :}
Bro&fSetAttribute ("OffTime", StringValue ("Constant:0.4")7 ~
apps = onoff.Install (TsmaNcaes Bet—(M7T;~ — ~ ~ Attributes
apps.Start (Seconds (1.0));

apps.Stop (Seconds (4.0));

PacketSinkHelper sink ("ns3::UdpSocketFactory",
InetSocketAddress ("10.1.2.2", 1025));

apps = sink.Install (wifiNodes.Get (1))

apps.Start (Seconds (0.0));

apps.Stop (Seconds_(4.0));

L I -
_— _—
y = = _—

- T~ Tracin
,'St’d: :ofstream ascii; \\\ 9
," ascii.open ("wns3-helper.tr"); '\\
| CsmaHelper: :EnableAsciiAll (ascii);]
\\ CsmaHelper: :EnablePcapAll ("wns3-helper"); ‘//
\~\¥3nsWifiPhyHelper::EnablePcapAll ("wsn3—helg§;fy;
- ~ — -
S _:-———l-l-ﬂ_—_—_—~— - -
~ “GtkConfi g; T
’ onfigStore config; N .
\ _ config.Configure (); R Conflg store
~ o -

ns _3 Workshop on ns-3, March 2009

ns-3 attribute system

Problem: Researchers want to know all of the values in
effect in their simulations

— and configure them easily

ns-3 solution: Each ns-3 object has a set of attributes:

— A name, help text

— Atype

— An initial value
Control all simulation parameters for static objects
Dump and read them all in configuration files
Visualize them in a GUI

Makes it easy to verify the parameters of a simulation

ns _3 Workshop on ns-3, March 2009

58

Mmigression: Object metadata

* ns-3 is, at heart, a C++ object system

* ns-3 objects that inherit from base class
ns3:.0bject get several additional features
—dynamic run-time object aggregation
—an attribute system {1
—smart-pointer memory management

We’ll talk about the other two features later l

ns _3 Workshop on ns-3, March 2009 59

Use cases for attributes

* An Attribute represents a value in our
system

* An Attribute can be connected to an
underlying variable or function
—e.g. TcpSocket::m_cwnd;
—or a trace source

ns _3 Workshop on ns-3, March 2009

60

Use cases for attributes (cont.)

 \What would users like to do?

— Know what are all the attributes that affect the
simulation at run time

— Set a default initial value for a variable
— Set or get the current value of a variable

— Initialize the value of a variable when a
constructor is called

* The attribute system is a unified way of
handling these functions

ns _3 Workshop on ns-3, March 2009 61

How to handle attributes

* The traditional C++ way:
—export attributes as part of a class's public API

—walk pointer chains (and iterators, when
needed) to find what you need

— use static variables for defaults
* The attribute system provides a more

convenient API to the user to do these
things

ns _3 Workshop on ns-3, March 2009 62

Navigating the attributes

 Attributes are exported into a string-based
namespace, with filesystem-like paths

—namespace supports regular expressions
o Attributes also can be used without the

paths
—e.g. "'ns3::Wifi1Phy::TxGain”

» A Config class allows users to manipulate
the attributes

ns _3 Workshop on ns-3, March 2009 63

Attribute namespace

» strings are used
to describe paths

through the
namespace

[NodelList

[fnodes,f[()—n]

)
J

[Inter|

r_J

(Ipv4L3Protocol

LN

]

[,frx I,’interfacesj[l[)—n]

)

=
1]
o
[m]
(1]

CICH

(Node]
(;devicesj[o-n]]
\ ’

PointToPointNetDevice

CsmaNetDevice

[fqueue I,frx

] (fqueue

C

J

Queue
— <
/enqueue

——————
/dequeue

4

Jdrop
«

Config::Set ("/NodeList/1/$ns3::Ns3NscStack<linux2.6.26>/net.ipv4.tcp_sack", StringValue ("0"));

ns-3

Workshop on ns-3, March 2009

Navigating the attributes using paths

 Examples:

—Nodes with Nodelds 1, 3, 4, 5, 8, 9, 10, 11:
“/NodeList/[3-5]|[8-11]|1"

— UdpL4Protocol object instance aggregated to
matching nodes:
“/$ns3::UdpL4Protocol”

ns _3 Workshop on ns-3, March 2009

65

What users will do

* e.g.: Set a default initial value for a

variable

Config::Set ("ns3::WifiPhy::TxGain”,
DoubleValue (1.0));

» Syntax also supports string values:
Config::Set (“WifiPhy::TxGain”, StringValue

(“1.07)) ; {

Attribute Value

ns _3 Workshop on ns-3, March 2009 66

Fine-grained attribute handling

» Set or get the current value of a variable

—Here, one needs the path in the namespace to

the right instance of the object

Config::SetAttribute (“/NodelList/5/DevicelList/3/Ph
v/TxGain”, DoubleValue (1.0));

DoubleValue d; nodePtr->GetAttribute (
“/NodeList/5/NetDevice/3/Phy/TxGain”, V) ;

» Users can get Ptrs to instances also, and
Ptrs to trace sources, in the same way

ns _3 Workshop on ns-3, March 2009 67

ns-3 attribute system

] ObJeCt attrlbutes Object Attributes Attribute Value

=~ ns3::NodeListPriv

are organized and < NogsLi

- 0

documented in the
~ 0
Doxygen Address 00:00:00:00:00:01
EncapsulationMode Llc
SendEnable true
ReceiveEnable true
¢ Enables the DataRate 5000000bps

[TuQueue

construction of N
graph ical D ApplicationList

ns3::PacketSocketFactory

configuration tools:) s puaLipamus

[ns3::Tep

ns3::Udp

ns3::Ipv4

ns3:: ArpL3Protocol

[ns3::Ipv4L3Protocal =]

|Esit| [Load] [Sauel8

n S _3 WOI’kShOp on n>-o9, wiaruir cuvay

Attribute documentation

Main Page Related Pages Modules Namespaces Classes Files

The list of all attributes.
[Core]

Collaboration diagrarm for The list of all attributes

Core M—— The listofall attributes.

ns3::V¥4Ping
e Remote: The address of the machine we want to ping.
ns3::ConstantRateWifiManager

e DataMode: The transmission mode to use for every data packet transmission
 ControlMode: The transmission mode to use for every control packet transmission.

hs3::WifiRemoteStationManager

o |sLowlatency: If true, we attempt to modelize a so-called low-latency device: a device where decisions about t parameters can
be made on a per-packet basis and feedback about the transmission of each packet is obtained before sending the nesxt.
Otherwise, we modelize a high-latency device, that is a device where we cannot update our decision about t parameters after

every packet transmission.

e haxSsro: The maximumn number of retransmission attempts for an RTS. This value will not have any effect on some rate control

algarithms.

e MaxSirc: The maximum number of retransmission attemnpts for a DATA packet. This value will not have any effect on some rate

control algarithms.

e RtsCtsThreshold: If a data packet is higger than this value, we use an RTS/CTS handshake before sending the data. This value

will not have any effect on some rate control algorithms.

ns _3 Workshop on ns-3, March 2009

Options to manipulate attributes

Individual object attributes often derive from default values
— Setting the default value will affect all subsequently created objects
— Ability to configure attributes on a per-object basis
« Set the default value of an attribute from the command-line:
CommandLine cmd;
cmd.Parse (argc, argv);

 Set the default value of an attribute with NS ATTRIBUTE DEFAULT

« Set the default value of an attribute in C++:

Config::SetDefault
("ns3::Ipv4L3Protocol::CalcChecksum",

BooleanValue (true));

« Set an attribute directly on a specic object:
Ptr<CsmaChannel> csmaChannel = ...;
csmaChannel->SetAttribute ("DataRate",
StringValue ("5Mbps"));

ns _3 Workshop on ns-3, March 2009

Object names

* It can be helpful to refer to objects by a
string name
—"access point”

. “eth O”

* Objects can now be associated with a
name, and the name used Iin the attribute

system

ns _3 Workshop on ns-3, March 2009

Names example

NodeContailner n;

n.Create (4);

Names: :Add ("client", n.Get (0));
Names::Add ("server", n.Get (1))

Names: :Add ("client/ethO0", d.Get (0));

Config::Set ("/Names/client/eth0/Mtu", UintegerValue
(1234));

Equivalent to:

Config::Set (“/NodeList/0/DeviceList/0/Mtu”, UintegerValue
(1234));

ns _3 Workshop on ns-3, March 2009

Tracing and statistics

* Tracing is a structured form of simulation

output
« Example (from ns-2):
+ 1.84375 0 2 cbr 210 -——=———- 0 0.0 3.1
- 1.84375 0 2 cbr 210 ——————- 0 0.0 3.1 225 610
r 1.84471 2 1 cbr 210 -—-—=-——- 1 3.0 1.0
r 1.84566 2 0 ack 40 -—-————- 2 3.2 0.1 82 602
+ 1.84566 0 2 tcp 1000 -—=————- 2 0.1 3.2 102 611

Problem: Tracing needs vary widely
—would like to change tracing output without

editing the core

—would like to support multiple outputs

ns _3 Workshop on ns-3, March 2009

225 610

195 600

73

Tracing overview

» Simulator provides a set of pre-configured
trace sources

—Users may edit the core to add their own
» Users provide trace sinks and attach to the
trace source

— Simulator core provides a few examples for
common cases

* Multiple trace sources can connect to a
trace sink

ns _3 Workshop on ns-3, March 2009 74

ns-3 has a new tracing model

ns-3 solution: decouple trace sources from
trace sinks

Trace source
Trace source)
configurable by
unchanging user

Benefit: Customizable trace sinks

Workshop on ns-3, March 2009

ns-3

ns-3 tracing

 various trace sources (e.g., packet receptions, state
machine transitions) are plumbed through the system

« Organized with the rest of the attribute system

NS-3

[E] ns-3 Documentation
@ NS-3 Modules

5@ NS-3 Class List

= @ N5-3 Class Hierarchy
[E] Class Members
Ej'@ NS-3 Namespace List
(] Namespace Members
®'@: NS 3 Related Pages

ns o

Fﬂ NS-3 Graphical Class Hierarchy

h=in Page Modules Marespaces Classes Related FPages

The list of all trace sources.
[Core]

Collaboration diagrarm for The list of all trace sources.

| Core |4—| The list of all trace sources,

ns3.WifiNetDevice

+ Rx Received payload from the MAC layer.
+ T Send payload to the MAC layer.

ns3:WifiPhy

¢ State: The WifiPhy state

+ RxOk A packet has been received successfully.

+ RxError A packet has been received unsuccessfully.
+ T Packet transmission is starting.

ns3::MobhilityModel

+ CourseChange The walue of the position and/or velocity vectar changed
ns3:olsr:Agentimpl

+ P Receive OLSRE packet.
+ Tx Send OLSR packet.
+ RoutingTableChanged: The OLSR routing table has changed.

hs3:PacketSink 76

Basic tracing

* Helper classes hide the tracing details
from the user, for simple trace types

—ascii or pcap traces of devices

std::ofstream ascii;

ascii.open ("wns3-helper.tr");

CsmaHelper: :EnableAsciiAll (ascii);

CsmaHelper: :EnablePcapAll ("wns3-helper");
YansWifiPhyHelper: :EnablePcapAll ("wsn3-helper");

ns _3 Workshop on ns-3, March 2009

Multiple levels of tracing

* Highest-level: Use built-in trace sources
and sinks and hook a trace file to them

* Mid-level: Customize trace source/sink
behavior using the tracing namespace

 Low-level: Add trace sources to the
tracing namespace

— Or expose trace source explicitly

ns _3 Workshop on ns-3, March 2009

78

Highest-level of tracing

* Highest-level: Use built-in trace sources
and sinks and hook a trace file to them

// Also configure some tcpdump traces; each interface will be traced
// The output files will be named

// simple-point-to-point.pcap-<nodeId>-<interfacelId>

// and can be read by the "tcpdump -r" command (use "-tt" option to
// display timestamps correctly)

PcapTrace pcaptrace ("simple-point-to-point.pcap");

pcaptrace.TraceAllIp ();

ns _3 Workshop on ns-3, March 2009

79

Mid-level of tracing

* Mid-level: Customize trace source/sink
behavior using the tracing namespace

void Regular expression editing

PcapTrace::TraceAllIp (void) K////////
{

NodeList::Connect ("/nodes/*/ipv4d/ (tx|rx)",

MakeCallback (&PcapTrace::Loglp, this));

} ™

Hook in a different trace sink

ns _3 Workshop on ns-3, March 2009

80

Asciitrace: under the hood

void
AsciiTrace::TraceAllQueues (void)
{

Packet::EnableMetadata ()

NodeList::Connect ("/nodes/*/devices/*/queue/enqueue",

MakeCallback (&AsciiTrace::LogDevQueueEnqueue, this));

NodeList::Connect ("/nodes/*/devices/*/queue/dequeue",

MakeCallback (&AsciiTrace::LogDevQueueDequeue, this));

NodeList::Connect ("/nodes/*/devices/*/queue/drop",

MakeCallback (&AsciiTrace::LogDevQueueDrop, this));

ns _3 Workshop on ns-3, March 2009

81

Lowest-level of tracing

 Low-level: Add trace sources to the
tracing namespace

Config::Connect ("/NodelList/.../Source",

MakeCallback (&ConfigTest::ChangeNotification, this));

ns _3 Workshop on ns-3, March 2009

82

Callback Objects

« ns-3 Callback class implements function objects
— Type safe callbacks, manipulated by value
— Used for example in sockets and tracing

« Example
double MyFunc (int x, float vy) {
return double (x + vy) /| 2;
}
[...]
Callback<double, int, float> cbl;
cbll = MakeCallback (MyFunc) ;
double result = cbl (2,3); // result receives 2.5

ns _3 Workshop on ns-3, March 2009

Callback Objects

Class MyClass {
public:
double MyMethod (int x, float vy) {
turn double (x [+ v) /|2;
b
[...]
Callback<double, int, floa£> cbl;

MyClass myobj;
cbl = MakeCallback (¢MyClass: :MyMethod, &myobj) ;
double result = cbl (2,3); // result receives 2.5

ns _3 Workshop on ns-3, March 2009

Emulation support

Support moving between simulation and testbeds or live
systems

* A real-time scheduler, and support for two modes of
emulation

GlobalValue::Bind (“SimulatorImplementationType”,
StringValue (“ns3::RealTimeSimulatorImpl”));

ns _3 Workshop on ns-3, March 2009 85

ns-3 emulation modes

real machine
ns-3 ns-3
virtual virtual real real
machine ns-3 machine machine machine

l l Testbed

1) ns-3 interconnects real or virtual 2) testbeds interconnect ns-3
machines stacks

Various hybrids of the above are possible I

ns _3 Workshop on ns-3, March 2009 86

Example: ORBIT and ns-3

» Support for use of Rutgers WINLAB
ORBIT radio grid

ns-3

navigation

= Main Page

= Community portsl
= Current swents
» Recert changes
= Random page

= Help

= Wihat inks here
= Related changes
= Upload file

® Special pages

= Printable version

search

toolbox

= Permanent link

2 Login create account

page || discussion | | viewsource || history |

HOWTO use ns-3 directly on the ORBIT testbed hardware

Main Page - Roadmap - Current Develop - Developer FAQ - User FAQ
Installation - Troubleshooting - HOWTOs - Samplesd - Contributed Code -
Papers

We provide a realtime emulation package that allows us to connect ns-3 to real networks on real machines:
Typically the real network will be a testbed of some kind. ORBIT is a two-tier laboratory emulatorfield trial
netwark project of WINLAB (Wireless Information Metwork Laboratory), at Rutgers. This wireless netwark
emulator provides a large two-dimensional grid of 400 802.11 radio nodes as well as a number of smaller
"sandhox" testheds to allow one to test without reserving the main grid. This HOWTO shows how ns-3 scripts
can he used to drive these radio nodes

We assume that you have sorme expetience with the ORBIT systern. If you are new to ORBIT, please take a
look at hitp: /A arbit-lab orgd & and go through the "Basic Tutorial” and the "Tutorials on contralling the
testbed nodes” at a minimum. We will assume throughout this HOWWTO that you have registered for an ORBIT
account and have made a reservation on the ORBIT Scheduler for a testbed. This HOWTO assumes that you
are on the sandbox one (sb1) testbed.

HOWTO use ns-3 directly on the ORBIT testbed hardware

We provide a node image on the ORBIT system that includes everything you need to get an ns-3 environment up
and running on your testhed nodes. This includes the GNU toolchain, a copy of a precompiled ns-3.3 repositary,
emacs editor, etc. The first step is to get this environment up on the nodes in your testbed. In ORBIT
terminology, we need to “image the nodes.”

ns-3 Workshop on ns-3, March 2009 87

example: CORE and ns-3

Scalable Network Emulator

* Network lab “in a box”
— Efficient and scalable
— Easy-to-use GUI canvas
» Kernel-level networking efficiency bcel
— Reference passing packet sending 5 internal network

10011424

a:0:Erad

e Runs real binary code 10002724 3041704

— No need to modify applications 1ok s
« Connects with real networks
— Hardware-in-the-loop I
— Distributed - runs on multiple servers ""“"**
— Virtual nodes process real packets
* Fork of the IMUNES project
— University of Zagreb

* Open Source

to Windows client

ns _3 Workshop on ns-3, March 2009

Debugging support

» Assertions: NS_ASSERT (expression);
— Aborts the program if expression evaluates to false
— Includes source file name and line number

« Unconditional Breakpoints: NS BREAKPOINT ();
— Forces an unconditional breakpoint, compiled in

« Debug Logging (not to be confused with tracing!)

— Purpose
» Used to trace code execution logic
« For debugging, not to extract results!
— Properties
* NS_LOG* macros work with C++ |O streams
« E.g.: NS _LOG _UNCOND ("l have received ” << p->GetSize () <<” bytes”);
« NS_LOG macros evaluate to nothing in optimized builds

« When debugging is done, logging does not get in the way of execution
performance

ns _3 Workshop on ns-3, March 2009

Debugging support (cont.)

* Logging levels:

NS LOG_ERROR (...): serious error messages only

NS LOG_WARN (...): warning messages

NS LOG DEBUG (...): rare ad-hoc debug messages

NS LOG INFO (...): informational messages (eg. banners)
NS _LOG_FUNCTION (...):function tracing

NS LOG_PARAM (...): parameters to functions

NS LOG _LOGIC (...): control flow tracing within functions

« Logging "components”

Logging messages organized by components
Usually one component is one .cc source file
NS _LOG_COMPONENT_DEFINE ("OlsrAgent");

« Displaying log messages. Two ways:

ns-3

Programatically:
* LogComponentEnable("OlsrAgent", LOG_LEVEL ALL);

From the environment:
NS_LOG="OlsrAgent" ./my-program

Workshop on ns-3, March 2009

Visualization

 Various projects in work to build animators and
visualizers for ns-3

— May provide a simulation implementation that allows
for GUI interaction with the scheduler (e.g., pause)

« Examples:
— Gustavo Carneiro pyviz (demoed earlier)
— George Riley’'s NetAnim (demo to follow)
— Hagen Paul Pfeifer's OpenGL animator
— Colorado School of Mines iNSpect tool
— Eugene Dedu, awk scripts for ns-3 and nam

ns _3 Workshop on ns-3, March 2009

Statistics framework

 Tracing system supports a statistical and data
management framework

— currently a contributed module
— src/contrib/stats; examples/stats

* Features:
— manage multiple independent runs of a scenario

— marshal data into several output formats
* including databases, with per-run metadata
— hook into ns-3 trace sources

— statistics objects can interact with simulator at run-
time
 e.g. stop simulation when counter reaches a value

ns _3 Workshop on ns-3, March 2009

92

statistics framework (cont.)

e Detalils at:

Simul ation Instance (trial or rn)
s Traces
pciey
i Colleced
E Data Analysis Scripts,
signals q + Graphing Tools, ete
(termination} Data
Collection Persistent
Jser Storage
SimUstion | —
Program Traces & ||
Direct Calls |
Basic Statistics

Instance Spawring
Distribution

Experiment Control

ns _3 Workshop on ns-3, March 2009

Data Collection objects

« DataCollector
—Provides framework for data collection

 DataCalculator

— Connected to ns-3 trace sources via different
techniques

« DataOutputlinterface

— Defines the output interface for the processed
data

ns _3 Workshop on ns-3, March 2009

DataCollector

// Create a DataCollector object to hold information about this
run.
DataCollector data;
data.DescribeRun (experiment,
strategy,
input,
runlD) ;

// Add any information we wish to record about this run.
data.AddMetadata ("author", "tjkopena");

ns _3 Workshop on ns-3, March 2009

DataCalculator

// This ... creates a counter to
// are received. Instead of our
// method of an adapter class to
// trace signal generated by the

track how many frames

own glue function, this uses a
connect a counter directly to the
WiFi MAC.

Ptr<PacketCounterCalculator> totalRx =
CreateObject<PacketCounterCalculator>();
totalRx->SetKey ("wifi-rx-frames");
Config::Connect ("/NodeList/1/DevicelList/*/$ns3::WifiNetDevice/Rx",
MakeCallback (&PacketCounterCalculator: :FrameUpdate,

data.AddDataCalculator (totalRx) ;

totalRx)) ;

 Other DataCalculators

— PacketCounter
— MinMaxAvgT otal

— TimeMinMaxAvgTotal

ns-3

Workshop on ns-3, March 2009

DataOutputinterface

Simulation::Run ();

Simulation: :Destroy ()

/==
//-- Generate statistics output.
e R R

// Pick an output writer based in the requested format.
Ptr<DataOutputInterface> output = 0;
if (format == "omnet") {
NS LOG INFO ("Creating omnet formatted data output.");
output = CreateObject<OmnetDataOutput> () ;
} else 1f (format == "db") {
#ifdef STATS HAS SQLITE3
NS LOG INFO ("Creating sglite formatted data output.");
output = CreateObject<SgliteDataOutput> ()
#endif
} else {
NS LOG ERROR ("Unknown output format " << format);

// Finally, have that writer interrogate the DataCollector and save
// the results.
if (output != 0)

output->Output (data) ;

LI I Y A 4

Rajifagoyariables and independent

« Many simulation uses involve running a
number of iIndependent replications of the
same scenario

* In ns-3, this is typically performed by
incrementing the simulation run number

—not by changing seeds

ns _3 Workshop on ns-3, March 2009

ns-3 random number generator

» Uses the MRG32k3a generator from
Pierre L'Ecuyer

— http://www.iro.umontreal.ca/~lecuyer/myftp/pa
pers/streams00.pdf

—Period of PRNG is 3.1x10757
* Partitions a pseudo-random number

generator into uncorrelated streams and
substreams

—Each RandomVariable gets its own stream
— This stream partitioned into substreams

ns _3 Workshop on ns-3, March 2009

Run number vs. seed

* If you increment the seed of the PRNG,
the RandomVariable streams across
different runs are not guaranteed to be
uncorrelated

* If you fix the seed, but increment the run
number, you will get an uncorrelated
substream

ns _3 Workshop on ns-3, March 2009

new in ns-3.4

* Ns-3 simulations use a fixed seed and run
number by default
— default was random seeding prior to 3.4

* a class SeedManager used to edit seeds
and run numbers

SeedManager: :SetSeed (3); // Changes seed from default of 1 to 3
SeedManager::SetRun (7); // Changes run number from default of 1 to 7
// Now, create random variables

UniformVariable x(0,10);

ExponentialVariable y (2902);

ns _3 Workshop on ns-3, March 2009

Flexibility in changing these values

 Use NS GLOBAL VALUE environment
variable

NS GLOBAL VALUE="RngRun=3" ./waf --run program-name

 Pass command-line argument

./waf —--command-template="%s --RngRun=3" --run program-name

* Another way (outside of waf)

./build/optimized/scratch/program-name --RngRun=3

ns _3 Workshop on ns-3, March 2009

Validation

« Can you trust ns-3 simulations?

— Can you trust any simulation?

« Onus is on the simulation project to validate and document
results

* Onus is also on the researcher to verify results

* ns-3 strategies:
— regression and unit tests
* Need to be event-based rather than trace-based
— validation of models on testbeds
— reuse of code

— documented scripts and repositories
 discussion topic_;_fq_r'_l_e}t'e'r__t_c_)'clvay_/____

1S-9

Regressions

* ns-3-dev is checked nightly on multiple
platforms

—Linux gcc-4.x, Linux gcc-3.4, 1386 and
x86 64, OS X ppc
* ./waf --regression will run regression tests

—a python script in regression/test directory will
typically compare trace output with known
good traces

ns _3 Workshop on ns-3, March 2009

Improving performance

* Debug vs optimized builds
—./waf -d debug configure
— ./waf -d debug optimized

 Build ns-3 with static libraries
—Patch is in works

» Use different compilers (icc)

ns _3 Workshop on ns-3, March 2009

Resources

Web site:
Mailing list:

IRC: #ns-3 at freenode.net
Tutorial:

Code server:

Wiki:

UW EE Colloquium Feb. 2009 106

Acknowledgments

Thanks to:
e (Gustavo Carneiro for tutorial content

the core development team and research project leads

— Raj Bhattacharjea, Gustavo Carneiro, Walid Dabbous, Craig
Dowell, Joe Kopena, Mathieu Lacage (software lead), George
Riley, Sumit Roy

« 2008 Google Summer of Code mentors and students
* many code authors and testers

* the ns-2 Pls and developers for creating ns-2 and for
supporting ns-3 activities

« USC ISl for hosting project mailing lists

ns _3 Workshop on ns-3, March 2009 107

