Distributed simulation with MPI in ns-3

Josh Pelkey
Dr. George Riley
Overview

- Parallel and distributed discrete event simulation [1]
 - Allows single simulation program to run on multiple interconnected processors
 - Reduced execution time! Larger topologies!
- Terminology
 - Logical process (LP)
 - Rank or system id
Quick and Easy Example

Figure 1. Simple point-to-point topology
Quick and Easy Example

Figure 2. Simple point-to-point topology, distributed
Implementation Details

• **LP communication**
 – Message Passing Interface (MPI) standard
 – Send/Receive time-stamped messages
 – MpiInterface in ns-3

• **Synchronization**
 – Conservative algorithm using lookahead
 – DistributedSimulator in ns-3
Implementation Details (cont.)

- Assigning rank
 - Currently handled manually in simulation script
 - Next step, MpiHelper for easier node/rank mapping

- Remote point-to-point links
 - Created automatically between nodes with different ranks through point-to-point helper
 - Packet sent across using MpiInterface
Implementation Details (cont.)

- Distributing the topology
 - All nodes created on all LPs, regardless of rank
 - Applications are only installed on LPs with target node

Figure 3. Mixed topology, distributed
Performance Test

- DARPA NMS campus network simulation
 - Allows creation of very large topologies
 - Any number of campus networks are created and connected together
 - Different campus networks can be placed on different LPs
 - Tested with 2 CNs, 4 CNs, and 6 CNs
Campus Network Topology

Figure 4. Single campus network
2 Campus Networks

Figure 5. Execution time with 2 campus networks

Figure 6. Speedup with 2 LPs
Figure 7. Execution time with 4 campus networks

Figure 8. Speedup with 4 LPs
Figure 9. Execution time with 6 campus networks

Figure 10. Speedup with 6 LPs
• Distributed simulation in ns-3 allows a user to run a single simulation in parallel on multiple processors
• By assigning a different rank to nodes and connecting these nodes with point-to-point links, simulator boundaries are created
• Simulator boundaries divide LPs, and each LP can be executed by a different processor
• Distributed simulation in ns-3 offers solid performance gains in time of execution for large topologies
Distributed wireless simulation

• Popular feature request
 – Wireless technology is everywhere
 – Wireless simulation is complex

• Introduces new issues
 – Partitioning (We have mobility!)
 – Small propagation delay, small lookahead
 – Very large number of events
Sample Topology

Figure 11. Wireless network topology
Geographic Partitioning

Figure 12. Wireless network topology, partitioned
Node-based Partitioning

Figure 13. Wireless network topology, partitioned
Lookahead

- Typical wireless scenarios present small lookahead due to node distances and the speed of light
- Small lookahead is detrimental to distributed simulation performance
- Possible optimizations
 - Protocol lookahead [2]
 - Event lookahead [3]
Wireless Simulation Events

- Wireless simulations require a large number of events
- Increased inter-LP communication (bad)
- Event Reduction [4]
 - Decreases overhead
 - However, must ensure simulation fidelity
Event Reduction Techniques

• Set a propagation limit
 – Carrier Sensing Threshold (too inaccurate?)
 – Popular distance limit [5]

• Lazy Updates
 – Leverage protocol mechanics and simulator knowledge
 – Ex: Lazy MAC state update [6]

• Event Bundling
 – Send fewer events but deliver the same information
 – Ex: LP-Rx event [3]
Initial Development Plans

- Geographic and node-based partitioning
- Simple lookahead
 - Assume minimal lookahead
- Event Reduction
 - Use carrier sensing threshold for propagation limit
 - Use event bundling
Distributed Wireless Summary

- People want distributed wireless
- Implementing distributed wireless simulation should be easy
- Optimizing distributed wireless simulation is hard
- The good news is a great amount of research and previous implementations give us direction for optimization

