
IEEE 802.11s Mesh Networking NS-3 Model

Kirill Andreev
Institute for Information Transmission Problems

Bolshoy Karetny per. 19,
Moscow, 127994, Russia

andreev@iitp.ru

Pavel Boyko
Institute for Information Transmission Problems

Bolshoy Karetny per. 19,
Moscow, 127994, Russia

boyko@iitp.ru

ABSTRACT
We present an IEEE 802.11s wireless mesh networking model
implemented in the open source Network Simulator 3 envi-
ronment. Design solutions, supported and unsupported fea-
tures of draft standard, optional protocols extensions and
heuristics are summarized. Simulation of two typical mesh
networking scenarios illustrates model behavior and simula-
tion methodology. We argue that our NS-3 802.11s model
provides a general framework for WiFi mesh networking sim-
ulation and future research.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless communication

Keywords
IEEE 802.11s, mesh networking, NS-3

1. INTRODUCTION
Wireless mesh networking is a relatively new technology
originating out of ad-hoc networking research of the last
decade. There are many research solutions in mesh net-
working, none of them being accepted as universal. This
situation is supposed to be changed by an adoption of an
IEEE 802.1s draft standard [1], which is one of the most
actively developed solutions in the field.

It is needless to say, that wireless networking research is fun-
damentally depends on simulations and mesh networking is
not an exception. In this paper we present an IEEE 802.11s
wireless mesh networking model implemented in the open
source Network Simulator 3 environment [2]. The contri-
bution of this paper is threefold: first, the freely available
802.11s model is developed, we are the first in doing so.
Second, we present a common protocol-independent multi-
radio mesh station architecture which can be used to develop
a model of any other link layer meshing solution. Third, the

behaviour of base 802.11s mechanisms is illustrated in two
simple but significant mesh usage scenarios.

The rest of the paper is organized as follows. In the section
2 we overview IEEE 802.11s draft standard version 3.0. All
core protocols and rules are explained as well as a number
of advanced features. Section 3 presents the design and im-
plementation of the NS-3 common mesh architecture and
implementation details and features of IEEE 802.11s model
based on this architecture. This is the central section of this
paper. Section 4 show model behaviour in two simple mesh
networking use cases. In the section 5 we overview the direc-
tions of future work and the paper ends with the conclusion
at section 6.

2. BACKGROUND
2.1 IEEE 802.11 standard
IEEE 802.11 Standard [3] specifies the physical, MAC and
link layer operations for wireless LANs. At the MAC layer
IEEE 802.11 uses both carrier sensing and virtual carrier
sensing and random backoff procedure prior to sending data
to avoid collisions. Virtual carrier sensing is accomplished
through use of Ready-to-Send (RTS) and Clear-to-Send (CTS)
frame exchange, NAV (network allocation vectors). The
NAV is used to perform virtual channel sensing by indicat-
ing that the channel is busy. This is known as CSMA/CA
medium access mechanism. After a destinations properly
receives a data frame, it sends an acknowledgment (ACK)
to the source. This signifies that the packet was successfully
received. If ACK is not received by a source, frame trans-
mission shall be retried until short (or long retry counter
when no answer for RTS was received) retry counter will
exceed a threshold. All broadcast frames are sent without
CTS/RTS and ACK procedures.

IEEE 802.11 standard defines two types of WLAN deploy-
ment. The first one (BSS mode) is Access Point (AP) and
a number of associated stations (STA). All traffic goes from
AP to station and back. The second form of network (IBSS
mode) is an ad-hoc mode, when stations communicate di-
rectly with each other without infrastructure. Put in other
words, IEEE 802.11 Standard provides wireless networks
with one- or two-hop topologies.

2.2 802.11s: mesh networking
IEEE 802.11s Draft standard [1] is an extension of 802.11 en-
abling transparent frame forwarding in arbitrary multi-hop



Figure 1: Peering link open handshake.

topologies. Multi-hop forwarding requires corresponding ad-
dress scheme extension, detection of duplicates, etc. and is
discussed in more detail in section 2.2.1. Each mesh station
participating in the 802.11s wireless mesh network operates
as link layer router and is responsible for cooperation with
all the other mesh stations in frame delivery. This is done
using several dedicated protocols, two of them being most
important. Peering management protocol is responsible for
neighbor mesh station (peer) discovery and management, it
is described in section 2.2.2. Routing protocol is responsible
for multi-hop path discovery and maintenance, see section
2.2.3 for more details.

Apart of basic multi-hop path discovery and forwarding func-
tions, 802.11s standard includes a number of advanced fea-
tures such as inter-networking, security, power safe, channel
assignment, etc., they are briefly presented in section 2.2.4.

2.2.1 Addressing and forwarding
802.11s mesh stations are addressed using unique 48-bit MAC
addresses. If mesh station has multiple physical interfaces
then both station and every interface are addressed, it is as-
sumed that station itself has an address of its first interface.
The minimal information needed for successful multi-hop
frame delivery includes four addresses: two of them being
the frame original source and final destination and another
two are current transmitter and receiver. This is known as
4-address addressing scheme. To forward frames, originating
or ending (or both) at a point outside of mesh network, one
or two additional addresses are required. This is known as 6-
address scheme. Additional, comparing to standard 802.11
header, addresses are placed in the dedicated 6 to 24 octets
long Mesh Control header which is added to all multi-hop
frames right before 802.11 header.

Apart of address extension Mesh Control header contains
an 8-bit flags field, one octet time to live (TTL) field to
limit the effect of path loops and 4-octet mesh sequence
number to suppress duplicates. Mesh sequence numbers are
used for broadcast frames only and must be unique in the
context of originator address. Every mesh station remember
maximal known sequence number for every known originator
and discards all frames with (cyclically) smaller sequence
numbers from that originator as duplicates.

2.2.2 Peering management
The Peering management protocol is used to open, maintain
and close links (or peerings) with neighbour mesh stations,
choosing whether open a new link and closing links when
detecting their failures. Mesh stations are not allowed to
transmit frames, other than the ones used for peering man-

agement, to a neighboring mesh stations until a correspond-
ing peer link has been established.

To be visible to its neighbors, every mesh station periodically
sends small one-hop management frames known as beacons.
As soon as beacons are sent strictly periodically (because it
is needed for power save), if two beacons from two neighbor
station have collided, they may collide forever. So, there
is a mechanism that allows to avoid collisions among bea-
cons. Peer link open handshake starts when mesh stations
receives beacon from the previously unknown mesh station
and decides to open link with it. A Peering Open one-hop
management frame containing mesh parameters is sent to
potential peer station. The mesh station processes the re-
ceived parameters. If it agrees with the parameters, it sends
a Peering Confirm management frame in response of the
Peering Open frame. The peer link is established only when
both stations have sent Peering Open requests and received
Peering Confirm replies, this requirement guarantees that all
established links are bidirectional. An example of successful
peer link open handshake is shown on Fig. 1.

Standard intentionally does not specify any events causing
peer link close. Link failure detection heuristics are impor-
tant for routing protocol operation and will be discussed in
section 3.2.1.

2.2.3 Routing
The routing (or path selection) protocol is used to discover
and maintain multi-hop paths in the mesh network. As
usual, routing protocol uses path selection metric to choose
the optimal one of different possible paths.

802.11s standard allows vendor implement any routing pro-
tocol and/or path selection metric to meet special applica-
tion needs. At the same time, standard includes a default
mandatory routing protocol (HWMP) and default manda-
tory path selection metric (Airtime Link Metric) for all im-
plementations, to ensure minimum interoperability between
devices from different vendors. Only one routing protocol
and only one path selection metric shall be used by a mesh
station at a time.

The Hybrid Wireless Mesh Protocol (HWMP) is a mesh
routing protocol inspired by AODV and tree-routing. It is
believed that the combination of reactive (on-demand) and
proactive elements of HWMP enables efficient path selection
in a wide variety of mesh networks. HWMP uses a common
set of protocol primitives, generation and processing rules
adapted from Ad Hoc On Demand Distance Vector Protocol
[4] for MAC addressing and link metric awareness. HWMP
supports two modes of operation depending of configuration.
Note that these modes are not exclusive and can be used
concurrently.

In the on-demand mode the path discovery starts when a
source mesh station has has a data to transmit to unknown
destination. It broadcasts a Path Request (PREQ) man-
agement frame for that destination. Each station, receiving
PREQ creates a route to a source, updates metric and for-
wards it. If the station has a valid routing information to a
destination or the station is the destination itself, it gener-
ates a Path Reply (PREP) management frame. Whether an



Figure 2: HWMP on-demand route discovery.

Figure 3: HWMP proactive route discovery.

intermediate station sends PREP depends on PREQ flags.
PREP is forwarded hop-by-hop using created route to the
source. The best route among multiple PREPs is chosen
at source by path metric. Path selection uses a sequence
number mechanism to assure that every station can distin-
guish current path information from stale one at all times in
order to maintain loop-free connectivity. On-demand route
discovery cycle is illustrated on Fig. 2. When peering man-
agement protocol detects that a link is broken, a Path Error
(PERR) management frame is sent to all stations, which
are known to use broken link in their routes. To remem-
ber potential receivers of PERR routing table keeps list of
precursors. Precursor is the previous station in mesh path,
since HWMP path discovery discovers a path both to source
and a destination at each intermediate station, each interme-
diate station knows both next and previous stations of mesh
path. When actively used route is discarded by PERR sta-
tion starts new route discovery process as described above.

In the proactive mode of operation, a single mesh station is
configured to be a path tree root and it broadcasts PREQs
periodically. Each station receiving a proactive PREQ up-
dates it path to root and answers to it by PREP always or
when it has data to send (depends on the flags of the PREQ).
Due to this, every station knows route to tree root and root
knows a route to every mesh station. If direct route to des-
tination is unknown, data will be forwarded to root which
is responsible to forward it to the final destination, this is
illustrated on Fig. 3.

Airtime multi-hop path selection metric is defined as the
sum of independent airtime link metrics, it is assumed that
better links have smaller metric. Airtime link metric reflects

the amount of channel resources consumed by transmitting
the frame over a particular link. This measure is known
to be approximate and designed for ease of implementation
and interoperability. Namely, the airtime estimates total
medium access time needed for frame transmission. It takes
into account an average number of retries, current data rate
and some medium access overhead, such as frame headers,
training sequences, acknowledgements etc.

2.2.4 Other protocols and features
Apart of these core functions, IEEE 802.11s draft includes
a number of advanced features. Though they are not im-
plemented in our NS-3 model, this sections briefly presents
them to make the 802.11s picture complete. The first and
one of the most important things is Mesh Coordination Func-
tion, which is an optional access method that allows mesh
stations to access the wireless medium at selected times with
lower contention that would otherwise be possible. Also our
implementation of Peering Management protocol does not
support mesh link security (i.e transmissions of all manage-
ment frames needed to establish a secure link between a pair
of mesh stations are not implemented). A portal announce-
ment and proxy protocols, needed for inter networking are
also out of scope of our model. These protocols are needed to
transmit a data between mesh station and station outside
a mesh network through portals and mesh access points.
Power save is not implemented too in our model.

2.3 Network Simulator 3
Network Simulator 3 [2] is an actively developed discrete-
event network simulator targeted primarily for research and
educational use. NS-3 is free software, licensed under the
GNU GPLv2 license [5], and is publicly available for re-
search, development, and use. NS-3 was designed and im-
plemented from scratch to be easily extensible, maintainable
and understandable.

Ease of use and contributing, available high fidelity IEEE
802.11 MAC and PHY models together with real world de-
sign philosophy and concepts made NS-3 our platform of
choice for 802.11s model development.

3. MODEL DESIGN & IMPLEMENTATION
In this section we overview the implementation of 802.11s
model. Reader is supposed to be familiar with general NS-3
concepts and object model, though in-depth understanding
of 802.11 model is not necessary.

The two main requirements to model design were identified:

1) Support multiple interfaces (wireless devices) at one node
handled by single instance of mesh protocols “stack”, e.g.
IEEE 802.11s.

2) Support different mesh networking protocol “stacks” via
single protocol-independent mesh station architecture. The
development of mesh networking protocols is considered as
one of the hot research topics and no universally accepted
solution is known for now. This is reflected in IEEE 802.11s
draft which allows vendor implement any routing as well as
auxiliary protocols.



MeshWifiInterfaceMacPlugin

Receive()

UpdateBeacon()

UpdateOutcomingFrame()DcaTxop

Queue()

NetDevice

Receive()

Send()

WifiMac

ForwardUp()

ForwardDown()

WifiNetDevice

SendFrom()

MeshL2RoutingProtocol

RequestRoute()

RemoveRoutingStuff()

HwmpProtocol

Install()

SetRoot()

HwmpProtocolMac

SendPreq()

SendPrep()

InitiatePerr()

ForwardPerr()

dot11s
MeshPointDevice

AddInterface()

GetInterface()

SetRoutingProtocol()

GetRoutingProtocol()

MeshWifiInterfaceMac

SendManagementFrame()

SendBeacon()

interface1..*

1

1

1

queue1..*

1

*

1

1

1..*

1

Figure 4: UML diagram of mesh core classes.

To meet these requirements we have designed and imple-
mented runtime configurable multi-interface and multi-protocol
mesh station architecture described in the next section. Sec-
tion 3.2 presents particular IEEE 802.11s protocols imple-
mented using this architecture.

3.1 Mesh module
The protocol-independent part of mesh networking model is
located in src/devices/mesh module of NS-3 distribution1.
Section 3.1.1 defines mesh object model and describes its
core classes. Section 3.1.2 overviews transmission and re-
ception packet flow.

3.1.1 Structure
The UML diagram of mesh module core class is shown on
Fig. 4. This is a two tier architecture: the station tier in-
cludes mesh point device and mesh protocols, while the in-
terface tier includes mesh interfaces and protocols plugins –
a concept to be defined below.

The mesh station is modeled with special kind of network
device, class MeshPointDevice, with routing functionality
and control over underlying real network devices (interfaces)
hidden from the upper-layer protocols, class WifiNetDevice.
This network device operates by the following scheme: it re-
ceives a packet, makes all route discovery procedures, chooses
an output interface and sends a packet. When receiving a

1We use ns-3.6 version to prepare this paper.

packet, it delivers a packet to upper-layer protocols or for-
wards it further to a proper interface using routing protocol.
Note, that any other network devices can coexist with Mesh-
PointDevice on the same node.

Every MeshPointDevice has its own MAC address, known
by network layer protocols. It is asserted, that single inter-
face MeshPointDevice has an address of its interface. The
concept of mesh station address is similar to the main ad-
dress of OLSR protocol [6]. MAC addresses of the individual
mesh interfaces are hidden from upper layers.

Apart of being the coordinator of its interfaces, mesh point
device serves as the fixing point of all mesh protocols. The
examples of mesh protocols are Peering Management Proto-
col and HWMP, discussed above. Any other mesh protocol
can be implemented in the same way. All enabled mesh pro-
tocols are supposed to be tied with (aggregated into) mesh
point device. Every mesh protocol (let it be Foo protocol)
is implemented by two classes:

1. Class FooProtocol implements all station-level protocol
logic and data base. An instance of FooProtocol is tied
to mesh point device.

2. An instance of class FooProtocolMac is tied to each
mesh interface MAC and extends its functions to sup-
port corresponding protocol. The extension mecha-
nism is based on the plugin concept and is discussed
below.

The interface between FooProtocol and FooProtocolMac is
not restricted, but it is recommended for MAC level plugin
to parse/make specific management frames and run interface
specific state machine, while station level protocol shouldn’t
known frame details but implements protocol logic, global
state, MLME and interacts with other protocols running on
the same mesh station.

Single routing protocol (subclass of MeshL2RoutingProtocol)
must be explicitly selected from all enabled protocols to al-
low route discovery. All frames will first pass through the
routing protocol to resolve route information before forward-
ing down to interface(s). Class MeshL2RoutingProtocol is
an abstract interface for all unicast mesh routing protocols.
Its RequestRoute method allow asynchronous route discov-
ery. RequestRoute is supposed to annotate route informa-
tion as some protocol-specific tag(s) on the packet to send.
Then, corresponding MAC plugin is responsible to read this
tag(s) and correctly create frame header. Complementary
RemoveRoutingStuff method is used to remove route anno-
tation from packet. Explicit sequence of RequestRoute and
RemoveRoutingStaff calls is shown in the next section.

Every mesh interface has its own MAC (class MeshWifiIn-
terfaceMac2) and PHY. Instead of implementing all known
mesh protocols, MeshWifiInterfaceMac implements only ba-
sic functions and runtime extensions mechanism – plugins
(class MeshWifiInterfaceMacPlugin). Basic functions include
Ad-Hoc MAC, as defined in [3], and beacon generation. Note

2Strictly speaking this is “high” MAC in parlance of NS-3
WiFi model.



Figure 5: Sending a packet. Solid: data packet flow,
dashed: beacon flow.

that ad-hoc MAC functions are inherited from the base class
and beacons are periodically sent, beacon send time can be
adjusted to avoid beacon collisions. MeshWifiInterfaceMac
maintains a list of installed plugins. Each MAC plugin must
define three pure virtual methods inherited from MeshInter-
faceMacPlugin: Receive, UpdateOutcomingFrame and Up-
dateBeacon used to modify MAC behaviour for particular
protocol needs. The detailed way, MeshWifiInterfaceMac
uses its plugins is shown in the next section.

3.1.2 Packet flow
Figure 5 illustrates send packet flow in the operating mesh
station, which is commented step-by-step below.

0) This step starts packet transmission. In this case we see
packet, originated from upper (from the link layer point of
view) layers of node protocols stack. Packet body, Ethernet
header and QoS priority class (known as traffic ID, TID) are
supplied.

1) Mesh point device calls its routing protocol RequestRoute
method for every packet. Both packet and Ethernet header
are passed. It is assumed, that RequestRoute works asyn-
chronously. This means that RequestRoute immediately re-
turns while packet is buffered inside routing protocol while
path discovery procedure will be finished. To return packet
on track when route is found, a callback of type RouteRe-
plyCallback is passed as argument to RequestRoute. This
paradigm allows to implement on-demand routing protocols
as well as proactive ones.

2) This step starts when routing protocol has routing in-
formation for this packet. This information is annotated
on packet using some protocol-specific packet tag(s). Then
route reply callback is called by routing protocol to signal-
ize that route is found and packet can be forwarded. The
only protocol-independent information, mesh point device
will know is an outcoming interface number (or all if packet
should be sent from all interfaces).

3) Mesh point device dispatches packet to one (or all) of its
interfaces. Note that all data packets are send in the name of

Figure 6: Receiving a packet. Solid: locally deliv-
ered packet, dashed: forwarded packet.

mesh point, using WifiNetDevice::SendFrom method. This
results in mesh station address in the From field of 802.11
header instead of interface address.

4) At this step mesh interface device passes packet to its
MAC, calling MeshWifiInterfaceMac::ForwardDown method.
Mesh interface MAC prepares 802.11 header to be added to
packet before transmission.

5) Here mesh interface MAC asks all installed plugins to
update packet and/or its 802.11 header calling UpdateOut-
comingFrame method of every plugin. It is important, that
one of these plugins corresponds to routing protocol used
before. It is responsible to remove routing information an-
notated as packet tag(s) and update 802.11 header and add
some protocol-specific headers if needed.

6) Every plugin can discard packet returning false from Up-
dateOutcomingFrame. Processing will stop and packet will
be silently dropped in this case. If all plugins return true
from UpdateOutcomingFrame, processing continues.

7) This is the first step for beacon frames. Beacons are pe-
riodically generated as an empty container of information
elements (class WifiInformationElementVector), see [3] for
the information element definition. Every plugin is asked to
add protocol-specific information to beacon if needed. Bea-
con frame will be generated from the list of information el-
ements added by individual plugins.

8) In contrast with data packets, plugins are not allowed to
discard beacons and this step is always passed.

9) 802.11 header is added to the packet and it is enqueued
to one of the 4 available TX queues depending on access
category mapped from TID. Beacons are queued to the ded-
icated beacon queue.

Figure 6 illustrates packet receiving flow in the operating
mesh station, which is commented step-by-step below.

0) This step starts packet reception for the mesh point in-
terface. Packet body and 802.11 header are known here.
Packet can be data as well as management frame.



1) Here mesh interface MAC asks all installed plugins to read
and probably update the packet calling Receive method of
every plugin. Both packet and its 802.11 header are passed
to Receive. Protocol plugins are responsible to detect and
parse own management frames or information elements and
notify corresponding protocol instances about received infor-
mation. All protocol-specific headers, such as Mesh Control
header discussed in section 2.2.1 are removed here. Infor-
mation from these headers, which is used later in the packet
flow (e.g. TTL value from Mesh Control header), is anno-
tated as protocol-specific packet tag(s).

2) Every plugin can discard packet returning false from Re-
ceive. It is recommended for protocol plugins to drop own
management frames after processing. Packet processing con-
tinues only if all plugins return true from Receive.

3) Mesh interface MAC passes packet to mesh interface de-
vice. Packet, source and destination addresses are passed.

4) At this step LLC header is removed. Incoming interface
number, packet, source and destination addresses and pro-
tocol number as said in LLC header are passed further to
mesh point device.

5) Here mesh point device decides whether packet should be
locally delivered or forwarded or both. Packet is locally de-
livered if its destination address is broadcast or multicast or
equals to mesh point address. Packet is forwarded if desti-
nation address is broadcast or multicast or not equal to the
mesh point address.

6) This step is for locally delivered packets only. Before
passing packet to upper layers, mesh point devices removes
all mesh specific annotated information calling RemoveR-
outingStuff by routing protocol. The action of RemoveR-
outingStuff is protocol specific, but it is asserted that no
extra tags will be present after it.

7) This step is for forwarded packets only. Mesh point device
calls its routing protocol RequestRoute method to initiate
packet forwarding. This step corresponds to the Step 1 of
Fig. 5. From this step packet flow is defined by “Sending
packet” diagram.

8) This step is for locally delivered packets only. Packet is
passed to upper layers using preset callback of type Net-
Device::ReceiveCallback. From this step packet flow is the
same for all devices.

3.2 802.11s protocols
In this section we present an overview of 802.11s specific part
of mesh networking model. This set of models located in
src/devices/mesh/dot11s module of NS-3 distribution. All
relevant classes are placed inside mesh::dot11s namespace.
At present, two core protocols of 802.11s draft standard were
implemented: Peering management protocol and HWMP.
This two parts are crucial for the IEEE 802.11s network to
operate. In next two section we overview the corresponding
implementation details.

3.2.1 Peering management

Peering management protocol (PMP) is responsible for main-
taining connections with neighbours and for beacon collision
avoidance, see section 2.2.2 for details. PMP is implemented
by PeerManagementProtocol and PeerManagementProtocol-
Mac classes as described in section 3.1.1.

According to standard, links are opened with all neighbours,
if their beacons contain mesh ID equal to mesh ID of a given
station.

IEEE 802.11s standard does not define the way of closing
peer link, we have implemented two ways of doing this. The
first one is to close link due to beacon loss. Every beacon
contains beacon interval, and beacons are sent strictly pe-
riodically by each station. So, at every moment for every
link we exactly know, how many beacons were lost since
last successfully received one. If beacon loss counter has ex-
ceeded a configurable threshold value MaxBeaconLoss link
shall be closed. We use MaxBeaconLoss = 5 in our simula-
tions. Note, that at least 2.5 s is needed to detect link failure
this way using default beacon interval of 0.5 s. The second
heuristic for link failure detection applies when link is used
for data transmission. If the number of successive frames
were failed to transmit to a given neighbour (transmission
failure is an event, when MAC refuses to transmit frame due
to retry threshold), exceeds a threshold value MaxPacket-
Failure, link shall be closed. It is worth to mention, that
a single transmission failure may occur because station has
many neighbours and frame was failed to transmit due to
collisions. We use MaxPacketFailure = 5 in our simulations.
This heuristics works much faster than the first one, but
requires active data flow.

It worth to mention that values of MaxBeaconLoss and Max-
PacketFailure setup a trade-off between fast link failure de-
tection and link stability. Setting lower thresholds will gen-
erally cause faster failure detection and less stable links.
Also it should be noted, that since link close causes PERR
propagation in HWMP, the efficiency of PMP to detect link
failures is important for routing protocol performance.

As required by 802.11s draft Peer Link Close message is sent
when PMP detects link failure and closes link. Comparing
our model with Linux kernel implementation [7] (formerly
known as open80211s [8]) we have found that it doesn’t send
peer link close messages when closing links. This seems to be
reasonable, because when link is detected as failed by several
successive transmission failures, sending peer link close in
addition may not be useful. In our model we send peer link
close in any case to follow standard.

Implementation of beacon collision avoidance conforms to
802.11s draft.

3.2.2 HWMP
As any other mesh protocol, HWMP is implemented by two
classes: HwmpProtocol and HwmpProtocolMac.

Apart of routing, our implementation of HWMP is respon-
sible for adding/parsing Mesh Control header and filtering
broadcast data frames by sequence number and all data
frames by TTL, this is done by HwmpProtocolMac.



Figure 7: Examples of HWMP proactive path tree
in 9× 9 grid topology. Left: after first PREQ, right:
steady state.

HwmpProtocol class is responsible for route discovery pro-
cedure, routing table management and route request queue
management. Known routing information is the next hop
address in this case and is annotated in dedicated packet
tag. Also packet TTL and sequence number are annotated
by HwmpProtocol and are managed as defined by standard.
HwmpProtocolMac is responsible to remove this tags and fill
local source and destination addresses (receiver and trans-
mitter) of 802.11 header, and adds a Mesh Control header
using sequence number and TTL. Since internetworking is
not supported we don’t use 5- and 6-address extensions of
Mesh Control header.

HwmpProtocol keeps station level routing table. In addition
to 802.11s standard defined information our routing table
keeps also identifiers of outgoing interfaces in addition to
next hop address and precursor address. This allows multi-
ple interfaces HWMP operation.

We have implemented an optional feature of 802.11s to send
PERR as unicast frame to each precursor or as broadcast
frame. The same option exists with broadcast data frames:
one may send it as unicast to all neighbours or to send as
broadcast. In our model this features were implemented
as follows. The configuration of our model has three config-
urable thresholds: UnicastDataThreshold, UnicastPreqThresh-
old and UnicastPerrThreshold. These thresholds define a
maximal number of neighbors when unicast data, PREQ
and PERR delivery for all neighbors is used instead of sin-
gle broadcast delivery. We use UnicastDataThreshold = 1,
UnicastPreqThreshold = 1 and UnicastPerrThreshold = 32
in our simulations.

Current implementation of 802.11s standard in Linux ker-
nel does not support adding multiple destinations to a sin-
gle PREQ or PERR. Since standard requires, that PREQ
generation and PERR generation ratio shall be limited (10
frames per second by default), this drawback may seriously
descend quality of the whole network. We have implemented
this feature in the HWMP model.

4. SIMULATION RESULTS
To show our model “in work” we present simulation results
for two simple scenarios. Both are static grids of 81 (9× 9)
mesh stations, with grid step being 0.6 RX range, so each
station can communicate with maximum eight neighbors by
the grid cell sides and diagonals. The first use case (section

time, ms

0

5000

10000

15000

20000

0 500 1000 1500 2000 2500

0

100

200

300

400

500

600

0 5 10 15 20

Figure 8: Histograms of route discovery time. Y
axis: number of attempt per bin of total 32263 at-
tempts. Main plot: all attempts, bin width 40 ms.
Subplot: first attempt only, bin width 0.1 ms.

4.1) shows an operation of the mesh network in proactive
mode, while the second one (section 4.2) demonstrates the
operating of the on-demand mode. Much more detailed sim-
ulation study is presented in [9].

4.1 Proactive mode
This use case simulates a static mesh network used to create
an Internet access infrastructure. The grid center station is
assumed to have an Internet connection, all the other mesh
stations are clients. This is natural use case for HWMP to
operate in proactive (tree-building) mode. We have selected
central mesh station as a HWMP tree root and initiated
10 TCP streams with a root station as the source of the
stream and 10 stations taken randomly among other stations
as the sink of the stream. An example of built proactive
trees in this scenarios are presented at figure 7. On can see
that in spite of significant PREQ loss probability, the tree is
refined with time and is almost perfect after 100 seconds of
protocol operation (50 proactive PREQ intervals). After 20
independent runs with duration of 100 seconds each we can
estimate that an average total “download” speed to be about
200 KBit/s. This is much less than channel speed (which was
equal to 6 Mbit/s, because the distance between stations
and TX-power did not allow to use higher channel speeds)
because of multiple retransmissions and big overhead due to
proactive paths maintenance.

4.2 On-demand mode
This scenario simulates mesh network used to enable peer-
to-peer communications between mesh stations. This is a
natural use case for HWMP to operate in the reactive (on-
demand) mode. The same grid topology was used and we
initiated 10 CBR streams with random endpoints to simu-
late VoIP traffic. Every stream has an intensity of 50 packets
per second with 20-bytes payload, which is similar to mod-



ern vocoder [10]. Note, that UDP, IP and 802.11 headers
increase the real length of the packet.

To estimate the quality of the voice, we have used E-model
described in [11]. It is believed that if the R-factor is more
than 50 [12], the voice service is available. We define the
voice availability as the total (for all stations and runs) part
of time, when the voice was available. After 100 indepen-
dent runs with duration of 150 seconds each we assume that
voice service is available for 85.4% of time. Also we have
fixed a duration of every route discovery procedure and fig-
ure 8 shows the empirical distribution of route discovery
time. The final peak at main plot is responsible for undis-
covered routes (the total number of successive PREQ for
single destination was limited to 4). Large number of runs
was needed to demonstrate route discovery time histogram.

5. FUTURE WORK
We identify three distinct directions of future work with
IEEE 802.11s NS-3 model.

First, model should be refined to include all draft features as
described in section 2.2.4. This development should concur
with IEEE 802.11s draft standard development.

Second, model should be extensively verified and validated.
For now we have verified the model using a large number of
unit tests for each individual component (such as all infor-
mation elements and headers, routing table, etc.) as well as
a number of trace based system tests (such as two mesh sta-
tions, four mesh stations in the chain, etc.). These tests are
included into NS-3 test system. It is needless to say, that the
number of non-trivial system tests should grow. The fact,
that 802.11s draft is implemented in latest Linux kernels
allows our model to be experimentally validated. Indeed,
comparing simulation routing behaviour with measured one
using some form of wireless testbed (e.g. ORBIT [13] or
CMU Wireless Emulator [14]) one will develop in potential
users the confidence they require to use a model.

Third, mesh station architecture created allows for fast and
easy implementation of other layer 2 meshing solutions, e.g.
Batman [15]. This will allow users to do realistic mesh
networking simulations and compare different meshing solu-
tions using the same usage scenarios, applications and PHY
models. Working along this line, we have developed a model
of FLAME mesh protocol [16] (to be discussed elsewhere).

6. CONCLUSION
We have implemented the IEEE 802.11s mesh networking
model in the open-source Network Simulator 3 environment.
The model includes all core functions of draft standard. It
is shown to be correct and useful for realistic simulation
study of wireless mesh networking. In the course of writ-
ing the model, some changes and heuristics were added to
IEEE 802.11s draft standard to enable its protocols operate
correctly. These changes are highlighted in this paper.

Although described in this paper, we have not implemented
many advanced function of the 802.11s including internet-
working, security, power save, mesh coordination function,
etc. This is a subject of future work.

As the by-product of 802.11s model development, we have
created protocol-independent multi-interfaces mesh station
architecture, suitable for fast modeling of any link layer
meshing solution. It is expected that models of the other
mesh protocols will follow.

7. ACKNOWLEDGMENTS
We are grateful to Alexey Kovalenko and Andrey Mazo who
have contributed to the 802.11s model development on its
early stages, as well as to Faker Moatamri and Mathieu
Lacage who have spend a lot of time reviewing our code
before it official merge into NS-3. Artem Krasilov has made
an important contribution finding a number of implementa-
tion bugs.

8. REFERENCES
[1] IEEE P802.11s/D3.0. Draft STANDARD for

Information Technology – Telecommunications and
information exchange between systems – Local and
metropolitan area networks – Specific requirements –
Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) specifications
Amendment: Mesh Networking [Electronic resource],
2009.

[2] The ns-3 network simulator. http://www.nsnam.org/.

[3] IEEE Standard for Information
technology-Telecommunications and information
exchange between systems-Local and metropolitan area
networks-Specific requirements - Part 11: Wireless
LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications, 2007.

[4] C. Perkins, E. Belding-Royer, and S. Das. Ad hoc
On-Demand Distance Vector (AODV) Routing. RFC
3561 (Experimental), July 2003.

[5] GNU General Public License, version 2.
http://www.gnu.org/licenses/gpl-2.0.html.

[6] T. Clausen and P. Jacquet. Optimized Link State
Routing Protocol (OLSR). RFC 3626 (Experimental),
October 2003.

[7] Linux Wireless. http://linuxwireless.org/.

[8] open80211s Consortium. http://open80211s.com/.

[9] Kirill Andreev and Pavel Boyko. Simulation study of
802.11s mesh networking. In preparation.

[10] ITU-T Recommendation G.729: Coding of speech at 8
kbit/s using conjugate-structure algebraic-code-excited
linear prediction (CS-ACELP). Technical report, 2007.

[11] J. A. Bergstra and C. A. Middelburg. ITU-T
Recommendation G.107 : The E-Model, a
computational model for use in transmission planning.
Technical report, ITU, 2003.

[12] ITU-T Recommendation G.109: Definition of
categories of speech transmission quality. Technical
report, 1999.

[13] Orbit. http://www.orbit-lab.org/.

[14] Carnegie mellon university wireless emulator.
http://www.cs.cmu.edu/~emulator/.

[15] B.a.t.m.a.n. http://www.open-mesh.org/.

[16] Herman Elfrink. Forwarding Layer for Meshing.
Revision 2.0. Technical report, Twente Institute for
Wireless and mobile Communications, 2006.


