8th Annual Workshop on ns-3 (WNS3 2016)

Implementation and Evaluation of Proportional Integral controller Enhanced Algorithm in ns-3

Mohit P. Tahiliani, Shravya K. S., Smriti Murali Wireless Information Networking Group, National Institute of Technology Karnataka, Surathkal, India tahiliani@nitk.ac.in

Outline of the presentation

□ Introduction: *Bufferbloat* and PIE

Motivation

□ Main contributions

□ Implementation details

□ Model evaluation

□ Functional verification

□ Conclusions and the next goals

□ Acknowledgement

Introduction: *Bufferbloat*

□ Inexpensive memory.

□ *Side effect*: Bloated buffers at routers!

□ *Bufferbloat*: large queueing delays

□ *Potential solution*: deploy AQM algorithms to control queue delay

Popular AQM algorithms under research:

□ RED / Adaptive RED [S. Floyd, V. Jacobson, ...]

□ CoDel / Fair Queue CoDel [K. Nichols, V. Jacobson, ...]

DIE [R. Pan, P. Natarajan, ...]

□ COBALT (CoDel + BLUE) [J. Morton, discussions on codel mailing list]

Introduction: PIE

□ PIE = RED + CoDel. Extension of the original PI algorithm [1]

Four major components of PIE:

□ Random dropping

- based on drop probability calculation

□ Drop probability calculation

- happens at a regular interval

□ Average departure rate estimation

- only when there is sufficient amount of data
- □ Burst allowance calculation
 - allows short bursts to pass through successfully

^[1] Hollot, C. V., Misra, V., Towsley, D., & Gong, W. B. (2001). On designing improved controllers for AQM routers supporting TCP flows. In INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE (Vol. 3, pp. 1726-1734). IEEE.

□ Latency of 300ms appears to be "slow" [1]

□ *Bufferbloat* makes the situation worse.

Why implement PIE in ns-3:

□ PIE algorithm: is being studied against ARED, CoDel (e.g.: MADPIE)

□ PIE models: available in Linux and ns-2 (ns-2.36.rc1 only)

□ ns-2 support and maintenance has stopped!

 \Box ns-3: several new features compared to other simulators.

[1] Grigorik, I. (2013). High Performance Browser Networking: What every web developer should know about networking and web performance. "O'Reilly Media, Inc.".

 \Box Developed a new model for PIE in ns-3 (version 3.24) [1].

 \Box It is based on the ns-2 model of PIE, implemented by its authors.

□ Preliminary verification by writing test cases in ns-3.

□ Detailed evaluation by comparing results obtained from ns-2 and ns-3.

 \Box Directions to reproduce the results [2].

[1] https://codereview.appspot.com/277610043

[2] https://github.com/mohittahiliani/reproduce-pie-paper

src/network/utils/pie-queue{.h, .cc}

Figure: Class diagram for PIE model in ns-3

Implementation details

Figure: Interaction between the core methods of PIE

Implementation details

Table	1:	\mathbf{PIE}	parameters	\mathbf{to}	calculate	\boldsymbol{p}
-------	----	----------------	------------	---------------	-----------	------------------

PIE parameter	ns-3 variable
Tupdate	m_tUpdate
cur_del	m_qDelay
old_del	m_qDelayOld
ref_del	m_qDelayRef
α	m_a
β	m_b
avg_drate	m_avqDqRate

Table 2: PIE parameters to estimate avg_drate.

PIE parameter	ns-3 variable	
qlen	$m_packets / m_bytesInQueue$	
$dq_threshold$	$m_dqThreshold$	
dq_count	$m_dqCount$	
start	$m_{-}dqStart$	
dq_int	tmp	
e	fixed to 0.5	

Table 3: PIE parameters to calculate *burst_allow*.

PIE parameter	ns-3 variable
$burst_allow$	m_burstAllowance
max_burst	m_maxBurst
Tupdate	$m_tUpdate$
$cur_{-}del$	m_qDelay
old_del	m_qDelayOld
$ref_{-}del$	m_qDelayRef

□ A test suite for evaluating the working of PIE algorithm

- verifies the attribute settings of PIE parameters
- basic enqueue / dequeue of packets

□ Compare PIE results obtained from ns-2 and ns-3 for same scenarios

□ Performance metrics under observation:

- Queue delay

- Throughput
- Number of packet drops

Functional verification

Table 4: Simulation setup.

Four simulation scenarios:

- 1. Light TCP traffic
- 2. Heavy TCP traffic
- 3. Mix TCP and UDP traffic
- 4. Bursty UDP traffic

Parameter	Value
Topology	Dumbbell
Bottleneck RTT	100ms
Bottleneck buffer size	200KB
Bottleneck bandwidth	10Mbps
Bottleneck queue	PIE
Non-bottleneck RTT	10ms
Non-bottleneck bandwidth	10Mbps
Non-bottleneck queue	DropTail
Mean packet size	1000B
TCP	NewReno
$ref_{-}del$	20ms
Tupdate	30ms
α	0.125 Hz
β	1.25 Hz
$dq_threshold$	10KB
max_burst	100ms
Application start time	0s
Application stop time	99s
Simulation stop time	100s

Functional verification: Light TCP traffic

15th June 2016, Wednesday

Functional verification: Heavy TCP traffic

15th June 2016, Wednesday

Functional verification: Mix TCP and UDP traffic

15th June 2016, Wednesday

Functional verification: Bursty UDP traffic

□ A ns-3 model for PIE has been implemented and evaluated.

 \Box Results obtained from ns-3 have been compared to those of ns-2.

□ Steps to reproduce the results have been provided.

Next goals:

□ A new traffic-control layer has been added since ns-3.25

□ Port the current model to work with traffic-control layer (Completed!)

□ Address the suggestions from the reviewers

□ Merge it into the main line of ns-3

□ Hajime Tazaki and all the reviewers, for the highly effective reviews!

□ Tommaso Pecorella, for reviewing the PIE code and identifying bugs.

□ Tom Henderson, for his excellent support and advice.

□ Stefano Avallone, for reviewing our latest PIE code (works with tc layer).

 \Box The entire ns-3 community.

□ Our research group at NITK Surathkal.

Thank you.