Implementation and Validation of an IEEE 802.11ah Module for ns-3

Le Tian, Sébastien Deronney, Steven Latré, Jeroen Famaey

University of Antwerpen

iMinds, Belgium

https://www.uantwerpen.be/en/rg/mosaic/software/ieee-802-11ah/

Table of content

Comparing 802.11ah to WPAN and LPWAN

802.11ah in numbers

	ZigBee (802.15.4)	Bluetooth Smart (802.15.1)	HaLow (802.11ah)
Frequency band	Sub-1Ghz, 2.4Ghz	2.4Ghz	Sub-1Ghz
Channel bandwidth	0.3 – 2Mhz	2Mhz	1 – 2 Mhz (4, 8, 16 optional)
Data rate	20 – 250 kbps	up to 1Mbps	0.15 –78 Mbps
Range	10 – 100m	300m	100 – 1000m

New 802.11ah MAC features

Fast association

Example of changing value v

"11-12-0112-04-00ah-supporting-of-the-authentication-association-for-large-number-of-stations.pptx"

Restricted Access Window (RAW)

Restricted Access Window (RAW)

1st back off functionDoze state	2nd back off function	Doze state	1st back off function	
------------------------------------	--------------------------	------------	--------------------------	--

Station 1, assigned to RAW slot 1

1st back	Dene etete	1st back
off function	Doze state	off function

Station 2, not belongs to current RAW group

Two stage backoff of RAW

Table of content

PHY and MAC implementation in ns-3

- Physical layer
 - MCS0~10 modulation/coding schemes for bandwidths 1— 16Mhz
- MAC layer
 - Association ID (AID) assignment
 - Fast association mechanism
 - Restricted access window (RAW)

Source code: https://github.com/MOSAIC-UA/802.11ah-ns3

ns-3 wifi model

RAW related modules in AP side

Assign AID to stations

SendAssocResp()

RAW related modules in station side

StaWifiMac::received ()

Fast association related modules in AP side

SendOneBeacon ()

Assign AID to stations

SendAssocResp()

Fast association related modules in station side

StaWifiMac::received ()

Table of content

Simulation setup

- STAs randomly placed around the AP
- Log Distance Propagation Loss Model
- Constant rate model
- Variables
 - Number of STA
 - Traffic load
 - Number of RAW groups(slots)
- Metrics
 - Throughput
 - Latency

Path loss with different range

Date rate model MCS10, 1 MHz need to be implemented

Fast association VS normal association

Fast association scales better as number of stations increase.

Performance of various RAW slots numbers (one RAW group)

For large scale/traffic network, larger number of RAW slots performs better in terms of throughput and latency.

Performance of various RAW groups

L. Tian, J. Famaey, and S. Latre. Evaluation of the ieee 802.11ah restricted access window mechanism for dense iot networks. WoWMoM, June 2016.

Simulation results summary

- Fast association scales better as number of stations increase.
- RAW achieves better performance for large scale/traffic load.
- Optimal RAW groups determined by
 - metric (throughput, latency)
 - traffic load, station number
- RAW optimization algorithm needed !