TCP Evaluation Suite for ns-3

Mohit P. Tahiliani, Dharmendra Kumar Mishra, Pranav Vankar Wireless Information Networking Group, National Institute of Technology Karnataka, Surathkal, India tahiliani@nitk.ac.in

Motivation

- **□** Existing implementations
- □ Design and implementation of tcp-eval in ns-3
- □ User interaction with ns-3 tcp-eval
- □ Comparing TCP extensions in ns-3
- □ Results and discussions
- Validation issues
- □ Conclusions and the next goals

Motivation

- □ Congestion control algorithms continue to evolve . . .
- \Box . . . *and* so do TCP extensions!
- □ *Problem*: not feasible to evaluate every TCP extension *exhaustively*
- □ Potential solution:
 - derive some initial results and study the behaviour
 - consider the promising ones for thorough evaluation
- What is TCP Evaluation Suite?
 - a set of well-defined, standard test cases to compare TCP extensions
 - initially proposed by Transport Modeling Research Group (TMRG)
 - modified by Internet Congestion Control Research Group (ICCRG)
 - widely used today for evaluating new TCP extensions

□ Wang, G., Y. Xia, and D. Harrison. "An NS2 TCP evaluation tool." draftirtf-tmrg-ns2-tcp-tool, IETF Internet Draft (expired) (2007).

- Two versions of code.
- Version 2 source: https://sourceforge.net/projects/tcpeval

□ Shimonishi, Hideyuki, M. Y. Sanadidi, and Tutomu Murase. "Assessing Interactions among Legacy and High-Speed TCPs." PFLDnet 2007 (2007).

- designed for evaluating High-speed TCP extensions using ns-2
- Source: http://nrlweb.cs.ucla.edu/tcpsuite/index.html

□ Li, Yee-Ting, Douglas Leith, and Robert N. Shorten. "Experimental evaluation of TCP protocols for high-speed networks." Networking, IEEE/ ACM Transactions on 15.5 (2007): 1109-1122.

- designed for evaluating High-speed TCP extensions using ns-2
- Source: http://www.hamilton.ie/net/eval/hi2005.htm

□ Hayes, D., Ros, D., Andrew, L. and S. FLoyd, "Common TCP Evaluation Suite" draft-irtf-iccrg-tcpeval-01, IETF Internet Draft (expired) (2015).

- The latest draft on TCP Evaluation Suite
- Source: https://bitbucket.org/hayesd/tcp-evaluation-suite-public

Design and implementation of ns-3 tcp-eval

□ Implemented as a separate model called tcp-eval in ns-3 (~5500 lines)

□ Topologies:

- Dumbbell (single bottleneck topology)
- Parking lot (multiple bottlenecks topology)

□ Traffic types:

- Long lived FTP
- Streaming video
- Interactive voice

□ Performance metrics:

- Aggregate link utilization
- Mean queue length, and Packet drop rate

Design and implementation of ns-3 tcp-eval

Figure: Class diagram of tcp-eval in ns-3

User interaction with ns-3 tcp-eval

Figure: User interaction diagram of tcp-eval for dumbbell scenario

User interaction with ns-3 tcp-eval

Figure: User interaction diagram of tcp-eval for parking-lot scenario

Comparing TCP extensions in ns-3

□ Five TCP extensions: Tahoe, Reno, NewReno, Westwood, Westwood+

□ Three scenarios:

- Varying bottleneck bandwidth
- Varying RTT
- Varying the number of FTP flows
- □ Three Performance metrics:
 - Link utilization
 - Mean queue length
 - Packet drop rate

Output:

Simulation rarameters	values
Bottleneck bandwidth	10 Mbps
Round Trip Time	80 ms
Number of forward FTP flows	5
Number of reverse FTP flows	5
Number of voice flows	5
Number of forward streaming flows	5
Number of reverse streaming flows	5
Simulation time	100 seconds
Streaming rate	640 Kbps
Streaming packet size	840 bytes
Number of forward FTP flows Number of reverse FTP flows Number of voice flows Number of forward streaming flows Number of reverse streaming flows Simulation time	5 5 5 5 100 seconds 640 Kbps

Simulation Parameters

- PDF containing graphs (LaTex must be installed!)

Values

Results and discussions: varying bottleneck bandwidth

Dumbbell topology

Results and discussions: varying bottleneck bandwidth

Dumbbell topology

Results and discussions: varying bottleneck bandwidth

Dumbbell topology

Results and discussions: varying RTT

Dumbbell topology

Results and discussions: varying RTT

Dumbbell topology

Results and discussions: varying RTT

Dumbbell topology

Results and discussions: varying number of FTP flows

Dumbbell topology

Results and discussions: varying number of FTP flows

Dumbbell topology

Results and discussions: varying number of FTP flows

Dumbbell topology

□ Original tcp-eval is implemented in older version of ns-2 (ns-2.31!)

□ ns-2.31 did not have many new TCPs

□ Hence, tcp-eval contained custom implementations of new TCPs

□ Latest tcp-eval implementation in ns-2 is on ns-2.35

□ But there are several bugs identified, and its development has stopped

□ Started aligning our implementation with that of tcp-eval for ns-2.35

□ A ns-3 model for tcp-eval has been implemented, but not validated.

□ Automates the cycle from setting parameters to collecting results

□ Steps to reproduce the results have been provided.

Next goals:

□ Align the model to latest version of tcp-eval (2016 summer project!)

□ Evaluate the model by comparing its results to those obtained from ns-2

□ Include support for more topologies (wireless) and AQM algorithms

□ Provide per-flow analysis to the user.

□ All the reviewers, for the encouraging reviews!

□ Tom Henderson, for guiding us through the validation procedure.

□ All developers of TCP extensions in ns-3.

 \Box The entire ns-3 community.

□ Our research group at NITK Surathkal.

Thank you.