
Link Colorization in SDN Simulation Animation for ns-3
Using NetAnim

Chuanji Zhang, Jared Ivey, George Riley
School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, GA, USA

{Jenny_Zhang, j.ivey, riley}@gatech.edu

1. INTRODUCTION
This work demonstrates a link colorization feature for net-

work simulation animation in ns-3 with NetAnim applied
to a software-defined network (SDN). Animation is an im-
portant tool for network simulation, and this new feature
will improve the animation visualization and help distin-
guish the type of packets that are being transmitted. The
currently available animators providing simulation visualiza-
tion in ns-3 are PyViz and NetAnim. PyViz is a live simu-
lation visualizer using no trace files [1]. It is mostly used for
debugging purposes and cannot work without Python bind-
ings. NetAnim [2] is an offline animator that can be used to
display the topology and animate the packet flow between
nodes. The packets being transmitted are expressed as ar-
rows moving on the link between the nodes. However, the
current version of NetAnim can only indicate the length of
packet by varying the arrow length. There is no way to
readily ascertain the packet types from the animation. It is
difficult to determine which kind of packets are being trans-
mitted during the simulation from the animation. Our work
improves the functionality of NetAnim by enabling the link
colorization based on the packet types.

2. BACKGROUND

2.1 NetAnim
NetAnim is based on the Qt4 GUI toolkit. It was first

introduced to the ns-3 baseline for ns-3.6[2]. Enabling Ne-
tAnim visualization for a given ns-3 simulation script re-
quires instantiation of a NetAnim AnimationInterface ob-
ject as well as setting the position and mobility of the sim-
ulated nodes in the topology. An XML trace file will be
generated when the ns-3 simulation script is executed. This
trace file can be loaded into the NetAnim animator to vi-
sualize the traffic behaviors of the simulated topology. The
simulated nodes are displayed optionally with their various
address information, and their sizes and colors can be mod-
ified manually by the user. Traffic generation can be dis-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WNS3 2016, June 15, 2016, Seattle, Washington, USA
c© 2016 ACM. ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

played in the context of the packets traversing the system.
The user may also examine other tabs in the GUI that de-
scribe statistics and timing diagram analyses for each node
in the simulated topology.

The functionality we added to ns-3 and Netanim is a
link colorization mechanism. The type of packet travers-
ing a particular link will determine which color it should be,
e.g. the link color for ARP request/reply is green while the
OpenFlow protocol message is purple. In order to realize
this feature, we introduce three new tag classes: RColorTag,
GColorTag, and BColorTag, containing the RGB color in-
formation of packets. The different color tags are created
when packets are generated. Each time a node starts to
send a packet, the animation interface will check to see if
color tags are associated with this packet. If so, the color
information will be written in the link description with the
first-bit-transmitting time as its time stamp. NetAnim reads
the XML file and if the color information is in the link de-
scription, it will extract the information and draw the link
with the specified color. The link description containing the
color information will not be displayed textually in the ani-
mation as other types of link description are. After the last
bit of the packet finishes transmitting, the link color will
return to the original black color. If no color information is
associated with this packet, the link color will stay black.

2.2 Software-Defined Network
Software-defined networking (SDN) began as a means to

provide centralized programmable control to the network
and enable the decoupling of network control and the for-
warding functions at the same time. The benefits brought
by SDN, such as configuration enhancement, performance
improvement, and innovation encouragement inspire the de-
velopment of SDN in both academia and industry. The
capabilities of SDN have been expanded beyond its initial
definition. For example, controllers are able to oversee the
whole network and provide a flexible and efficient platform
to implement network applications and services. The logical
centralized control with a global view of the whole network
a feedback control can help with the network performance
optimization problem.

An SDN network enables the network programmability
by allowing some basic switches to examine the character-
istics of the incoming traffic. These switches will perform
actions, such as forward, drop, modify, and etc, based on
the installed rules. These rules are generated, modified, and
installed by a logically centralized controller. The controller
will communicate with the switch using a standard protocol.
The OpenFlow protocol is a popular standard protocol that



Figure 1: SDN Network Topology

enables the controller-switch communication. It is intro-
duced as an attempt to address the issues of analyzing and
testing new protocols realistically and scalably. An Open-
Flow switch integrates a flow table, a secure channel, and the
OpenFlow protocol. The flow table contains a set of flow en-
tries that links different actions to different match qualifiers.
The controller will communicate with the OpenFlow switch
using the OpenFlow protocol in a secure channel to install
and modify these entries based on the applications running
on it. The Direct Code Execution (DCE), a subproject of
ns-3 can be used to allow real-world controller applications
to be introduced into ns-3, such as POX and Ryu. In this
demo, we used a simple layer 2 learning switch controller ap-
plication for testing. The layer 2 learning switch will inspect
each packet it receives and learn the source-port mapping.
Thus, every source MAC address it learns will be associated
with the port from which the packet came in.

3. DEMONSTRATION
We demonstrate the link colorization feature in an SDN

network simulation. The demonstration uses a dumbbell
topology of the SDN network simulation to illustrate the
link colorization functionality in NetAnim, which is depicted

in figure 1. Switches 1 and 2 are controlled by the same
controller and are each connected to one user. User1 will
send packets to User2 through a TCP connection using the
baseline ns-3 OnOffApplication. The link color will indi-
cate the packet types transmitting during the whole process.
Four types of packets are being transmitted during the sim-
ulation, namely messages controlling TCP state transitions,
OpenFlow protocol messages, ARP request/reply, and pack-
ets containing application data. The link color for TCP con-
trol messages is red. For OpenFlow protocol messages, links
will be purple. ARP request/reply messages color the links
green. Payload packets cause the appropriate links to be
colored blue. First, the TCP connections between the con-
troller and switches are established by sending the three-way
handshake packets. Then, the OpenFlow handshakes estab-
lish the connection between the controller and the switches.
Before the TCP connection between User1 and User2 can
be established, User1 and User2 should exchange ARP re-
quest and ARP reply to determine the MAC address of each
other. Once the ARP reply from User2 is received, User1
initiates a three-way TCP handshake process to User2. Af-
ter the TCP connection between User1 and User2 is estab-
lished, the ON_OFF application will start to generate packets.
As various packets are transmitted from User1 and User2,
the OpenFlow switches will determine how to handle them
based on layer 2 learning switch running on the controller.
The TCP connection will be terminated once the applica-
tion is done. The link color will change accordingly based
on the type of packets being transmitted.

4. REFERENCES

[1] Pyviz. Website, 2015.
https://www.nsnam.org/wiki/PyViz.

[2] Netanim. Website, 2016.
https://www.nsnam.org/wiki/NetAnim.


