
Design and Implementation of the Traffic Control
Module in ns-3

Pasquale Imputato and Stefano Avallone

Università degli Studi di Napoli Federico II
Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione

Via Claudio 21, 80125, Napoli

WNS3, June 15-16, 2016, Seattle, WA, USA

P. Imputato, S. Avallone Traffic Control Module WNS3 2016 1 / 19



Table of Contents

1 Introduction

2 Traffic Control Module

3 Results

4 Conclusions and future work

P. Imputato, S. Avallone Traffic Control Module WNS3 2016 2 / 19



Introduction: Linux Traffic Control 1/2

The Traffic Control (TC) is a component of the Linux network subsystem.
TC supports operations needed to provide Quality of Service, including:

shaping

policing

dropping

Figure: Processing of network packets in Linux.

P. Imputato, S. Avallone Traffic Control Module WNS3 2016 3 / 19



Introduction: Linux Traffic Control 2/2

Three fundamental components in Linux TC:

queue discs

classes

filters

Figure: A queue disc with multiple classes in Linux.

P. Imputato, S. Avallone Traffic Control Module WNS3 2016 4 / 19



Introduction: ns-3 has no Traffic Control

In ns-3, packets are not queued at the network layer, but only within
netdevices:

scheduling algorithms (e.g., RED and CoDel) implemented as
subclasses of Queue ⇒ only available on those netdevices using a
Queue subclass to store packets

packets stored in netdevice queues already have the data link header
added ⇒ operations like ECN are difficult

Figure: Queue in ns-3.

P. Imputato, S. Avallone Traffic Control Module WNS3 2016 5 / 19



Introduction: Traffic Control Module in ns-3

The proposed ns-3 Traffic Control module intercepts packets on the
transmission and receive path to enable packet scheduling, filtering and
policing. It is modelled after the Linux Traffic Control.

AQM algorithms are now derived from a new QueueDisc class and
can be tested on any netdevice.

The impact of the additional queueing within netdevice queues on the
effectiveness of the scheduling algorithms can now be evaluated.

Figure: Queues in ns-3 after the introduction of Traffic Control.

P. Imputato, S. Avallone Traffic Control Module WNS3 2016 6 / 19



Traffic Control Module: design 1/3

The traffic control layer keeps a
reference to the root queue discs
installed on the netdevices.
When it receives a packet from the
IP interface, it requests the root
queue disc:

to enqueue the packet

to dequeue a number of
packets, until a predefined
number of packets have been
extracted or until the netdevice
stops its transmission queue

Figure: The transmission path on
Internet enabled nodes with TC
(IPv4 case).

P. Imputato, S. Avallone Traffic Control Module WNS3 2016 7 / 19



Traffic Control Module: design 2/3

For each netdevice queue, it is
necessary to keep a status bit which
indicates if further packets can be
passed for the transmission. The
netdevice can:

stop the passing of further
packets when a resource
becomes unavailable

wake up the upper layer when
the resource becomes available
again

The netdevice wakes the root queue
disc or a child queue disc depending
on the operating mode.

Figure: The transmission path on
Internet enabled nodes with TC
(IPv4 case).

P. Imputato, S. Avallone Traffic Control Module WNS3 2016 8 / 19



Traffic Control Module: design 3/3

The Traffic Control module
intercepts the packets incoming into
the network node.
Currently, no additional operation is
performed on incoming packets.

Figure: The receive path on Internet
enabled nodes with TC (IPv4 case).

P. Imputato, S. Avallone Traffic Control Module WNS3 2016 9 / 19



Traffic Control Module: implementation challenges

The introduction of the Traffic Control layer posed major implementation
challenges:

since packets arrive at the TC layer with the IP header already added,
it is inefficient to manipulate (required by ECN) and access (required
by Internet aware queue discs) L3 and L4 headers ⇒ IP header and IP
payload are now sent separately to TC

the internet module depends on the traffic-control module ⇒ to avoid
a circular dependency, base classes (e.g., QueueDiscItem,
PacketFilter) are defined in the traffic-control module and Internet
specific classes are defined in the internet module

P. Imputato, S. Avallone Traffic Control Module WNS3 2016 10 / 19



Traffic Control Module: helper

The Traffic Control Helper allows to build complex configurations and
install them on netdevices.
A queue disc container allows to store the queue discs associated with the
netdevices.

TrafficControlHelper tch;

uint16_t handle = tch.SetRootQueueDisc

("ns3::PfifoFastQueueDisc");

tch.AddInternalQueues (handle, 3,

"ns3::DropTailQueue", "MaxPackets",

UintegerValue (1000));

tch.AddPacketFilter (handle,

"ns3::PfifoFastIpv4PacketFilter");

QueueDiscContainer qdiscs = tch.Install (devices);

P. Imputato, S. Avallone Traffic Control Module WNS3 2016 11 / 19



Results: simulation settings

Figure: The network topology used for the validation tests.

Network settings for validation tests:

OnOff generator of 100 Mbps TCP flow or 10 Mbps UDP flow on
node A, sink on node C

previous stack evaluated with DropTail, RED or CoDel as types of
Queue

new stack evaluated with PfifoFast, RED or CoDel as types of
QueueDisc and DropTail as type of Queue

AQM strategies are employed on bottleneck netdevices.
Two scenarios have been considered.

P. Imputato, S. Avallone Traffic Control Module WNS3 2016 12 / 19



Results: first scenario settings

Figure: Old and new queue configuration in the first scenario.

The first scenario compares similar configuration of previous and new
stack:

the previous stack is evaluated with a netdevice queue having a size
of 1000 packets

the new stack is evaluated with a netdevice queue having a size of 1
packet and a queue disc having a capacity of 1000 packets

P. Imputato, S. Avallone Traffic Control Module WNS3 2016 13 / 19



Results: first scenario TCP case

Figure: Dropping, RTT and Goodput for the first scenario in case TCP.

Minor and smoother dropping

Netdevice queue of one packet leads to a minor and smoother dropping
activity in AQM.

P. Imputato, S. Avallone Traffic Control Module WNS3 2016 14 / 19



Results: first scenario UDP case

Figure: Dropping, Delay and Goodput for the first scenario in case UDP.

Similar behavior

The new stack in the first scenario behaves very similarly to the previous
one.

P. Imputato, S. Avallone Traffic Control Module WNS3 2016 15 / 19



Results: second scenario settings

Figure: Old and new queue configuration in the first scenario.

The second scenario highlights the impact of netdevice queueing delay:

the previous stack is evaluated with a netdevice queue having a size
of 1000 packets

the new stack is evaluated with a netdevice queue having a size of
100 packets and a queue disc having a capacity of 1000 packets

P. Imputato, S. Avallone Traffic Control Module WNS3 2016 16 / 19



Results: second scenario TCP case

Figure: Dropping, RTT and Goodput for the second scenario in case TCP.

Reduction of AQM dropping

Netdevice queue of one hundred packets reduces AQM dropping activity.

P. Imputato, S. Avallone Traffic Control Module WNS3 2016 17 / 19



Results: second scenario UDP case

Figure: Dropping, Delay and Goodput for the second scenario in case UDP.

Disclosure of other behaviors

The behaviors highlighted by the second scenario cannot be observed with
the previous stack. Such behaviors are encountered in real systems and
require limiting netdevice queueing delay.

P. Imputato, S. Avallone Traffic Control Module WNS3 2016 18 / 19



Conclusions and future work

Our module has been integrated into ns-3 starting from ns-3.25 release:

more realistic simulations to evaluate AQM schemes more accurately

netdevice flow control makes Traffic Control aware of the status and
capabilities of the netdevice

Future work includes:

the addition of FQ-CoDel queue disc, a new Internet aware queue disc

the addition of Byte Queue Limits, to dynamically size netdevice
queue

validation through real systems

P. Imputato, S. Avallone Traffic Control Module WNS3 2016 19 / 19


	Introduction
	Traffic Control Module
	Results
	Conclusions and future work

