IEEE WLANs in 5 vs 6 GHz: A Comparative Study

Hao Yin, Sumit Roy, Sian Jin

Department of Electrical & Computer Engineering, University of Washington

UNIVERSITY of WASHINGTON

6 GHz Unlicensed Bands

Main benefits

- More Spectrum
 Up to 1.2 GHz more Wi-Fi spectrum
 in 6 GHz band
- Low latency
 Less channel contention
 - High Capacity
 No legacy device operation in 6 GHz

[1] Broadcom Wi-Fi 6E, online: <u>https://www.broadcom.com/info/wifi6e</u>

Power Rules

Device type	Frequency	Max power for bandwidth			
		20 MHz	40 MHz	80 MHz	160 MHz
Low power AP Max 30 dBm (1 W)	6 GHz	<mark>18.01</mark> dBm (63.2 mW)	21.02 dBm (126.4 mW)	24.03 dBm (252.8 mW)	27.04 dBm (505.6 mW)
	5 GHz	30 dBm	30 dBm	30 dBm	30 dBm
Low power STA Max 24 dBm (250 mW)	6 GHz	<mark>12.04</mark> dBm (16 mW)	15.05 dBm (32 mW)	18.06 dBm (64 mW)	21.07 dBm (128 mW)
	5 GHz	24 dBm	24 dBm	24 dBm	24 dBm

- Different power rules -> coverage (throughput vs distance)
- Unequal transmission power between AP and STA

Scenario and Assumptions

- A single cell infrastructure network
- All nodes are assumed with single-input single-output (SISO) PHY
- All fixed length PHY packets are sent using a common transmit power P_{TX} over a channel bandwidth B.
- The transmitted packets are passed through a frequency-flat wideband channel with free space path loss and additive Gaussian noise at the receiver – easier to calculate the PHY error based on the distance

Analytical Model - PHY

• RX Chain Processing: Noise floor calculation

$$\begin{split} N_{floor} &= N_{figure} + 10 \log_{10}(N_{thermal}) \\ &= -174 + N_{figure} + 10 \log_{10}(B). \end{split}$$

• Link Budget: The received signal power (*SRX*) at the receiver input corresponding to the transmitter signal power (*STX*) emitted

 $S_{RX} = S_{TX} + G_{TX} + G_{RX} - L_{PL}$

 $L_{PL} = 20\log(d) + 20\log(f) + 20\log(d) + 20\log(\frac{4\pi}{c}),$

• SNR and Packet Error Rate

$$\gamma_{RX} = \frac{S_{RX}}{N_{floor}}$$
 $P_e = 1 - (1 - P_{e,0})^{l/l_0}$

Analytical Model - MAC

• Channel access probability

$$\tau = \frac{2}{W_0 \left(\frac{(1-(2P)^{m+1})(1-P)+2^m \left(P^{m+1}-P^{R+1}\right)(1-2P)}{(1-2P)(1-P^{R+1})}\right) + 1}$$

- At least one node transmitting in a slot $P_{tr} = 1 - (1 - \tau)^n$
- Successful transmission probability

$$P_s = \binom{n}{1} \frac{\tau (1-\tau)^{n-1}}{P_{tr}} = \frac{n\tau (1-\tau)^{n-1}}{P_{tr}}$$

• Normalized throughput

$$Tpt = \frac{P_s P_{tr} E[Pkt]}{(1 - P_{tr})\sigma + P_{tr} P_s (1 - P_e)T_s + P_{tr} (1 - P_s)T_c + P_{tr} P_s P_e T_e},$$

• Probability of failed transmission

$$P = 1 - (1 - P_e)(1 - P_c) = P_e + P_c - P_e P_c$$

Analytical Model – Unequal Power

• Collision probability in can be written for AP and STAs

$$P_c^{AP} = 1 - (1 - \tau^{STA})^{n-1},$$

$$P_c^{STA} = 1 - (1 - \tau^{AP})(1 - \tau^{STA})^{n-2}.$$

• Normalized throughput $Tpt = Tpt^{AP} + Tpt^{STA}$

$$P_{tr}^{AP} = P_{tr}^{STA} = 1 - (1 - \tau^{AP})(1 - \tau^{STA})^{n-1}$$

$$\begin{split} P_{s}^{STA} &= \frac{(n-1)\tau^{STA}(1-\tau^{AP})(1-\tau^{STA})^{n-2}}{P_{tr}^{STA}}, \\ P_{s}^{AP} &= \frac{\tau^{AP}(1-\tau^{STA})^{n-1}}{P_{tr}^{AP}}. \end{split}$$

Algorithm 1: Interactive Algorithm to Obtain the Probability Variables

1. Sample values from (0, 1) for P_c^{STA} uniformly, i.e. $P_c^{STA} = range(0.0, 1.0, 1000);$ 2. Calculate $P^{STA} = P_c^{STA} + P_e^{STA} - P_c^{STA}P_e^{STA};$ 3. Calculate the τ^{STA} using Eq. (6) (τ^{STA} only depends on P^{STA}); 4. Calculate P_c^{AP} using Eq. (15) and then calculate P^{AP} , τ^{AP} sequentially similar as step 2, 3; 5. Obtain \hat{P}_c^{STA} from τ^{AP} and τ^{STA} using Eq. (16); 6. Find the j^{th} sample that has the minimum error: $\tilde{j} = \arg \min | \hat{P}_c^{STA} - P_c^{STA} |$ 7. Finally, get all the variables as the \tilde{j}^{th} value in the

vectors.

Simulation Setup

- Different power rules -> coverage (throughput vs distance)
- Unequal transmission power between AP and STA

 Table 2: Parameters for Simulation (802.11ax)

Slot time σ (μ s)	9		
SIFS (µs)	16		
DIFS (µs)	34		
EIFS (μs)	SIFS + ACK + DIFS		
PHY preamble & header duration(μ s)	20		
Upper Layer Headers (Bytes)	36		
OFDM Guard Interval (µs)	0.8		
CW _{min}	16		
CW _{max}	1024		
m	6		
Aggregation Type	None		
Propagation model	LogDistancePropagationLossModel		
Error model	TableBasedErrorRateModel		

Simulation Results – UL Only

- As the distance increases, the received power and SNR decreases, the packet error rate increases, and the
 aggregated throughput drops.
- As the channel bandwidth increases, the transmission range of the 5 GHz band decreases while the transmission range in the 6 GHz band remains the same

Simulation Results – Unequal Power

- AP and the STAs have the same probability to access the channel.
- Anytime AP transmits, it does so to one of the stations with a higher power.

Simulation Results - Analysis

- 1st Drop: STA PER increases. STA power decreases to margin, and the STA has some packets successfully trasmitted but not to 0 (still 5 nodes, backoff window [Cwmin, CWmax]);
- Increase: All the STAs' tpt drops to 0 (backoff window Cwmax, lower collision probability), only AP sending
 packets successfully
- 2nd Drop: AP power decreases to margin, AP PER increases

Simulation Results – Ring Structure

- Case 1: the stations are uniformly distributed within a ring bounded by the outer radius *d*1 and the inner radius *d*2
- Case 2: the stations are uniformly distributed within a circle with radius d1
- Case 3: the stations are uniformly distributed within a circle with three rings with radius d1, d2 = 0.7d1, and d3 = 0.3d1

- In these cases, the uplink PERs for different stations vary based on their ring location, so the prior equations do not apply.
- We conduct simulations using the ns-3 to verify whether the 'undershoot' still occurs
- The minimum throughput value (at the bottom of 'undershoot') increases as d2/d1 decreases

UNIVERSITY of WASHINGTON

