
Revitalizing ns-3ʼs Direct Code Execution
Parth Pratim Chatterjee, Thomas R. Henderson

WNS3 2022 Virtual Conference
1



What is DCE[1] - Direct Code Execution ?
➔ Helps run real C/C++ applications in an ns-3 

simulation context 

➔ Supports both Linux and native ns-3 as network 

stacks.

➔ Complex protocols like BGP and OSPF supported

➔ Two Modes :  (i) User Mode    (ii) Kernel Mode

[1]  Hajime Tazaki, Frederic Urbani, Emilio Mancini, Mathieu Lacage, Daniel Camara, Thierry Turletti, and Walid Dabbous. Direct code 
execution: Revisiting library os architecture for reproducible network experiments. In Proceedings of the Ninth ACM Conference on 
Emerging Networking Experiments and Technologies, CoNEXT ʼ13, pages 217–228, New York, NY, USA, 2013. Association for 
Computing Machinery.

Excerpt of Figure 1 from [1]

2



Why use DCE?  Canʼt I just use containers/namespaces?

➔ DCE executes simulations in a single ns-3 process.

◆ Multi-process emulations can be complex to debug or to reproduce results

◆ DCE simulations can run in simulation time-- not constrained to run in real-time

➔ However... to do this, DCE must support some sophisticated techniques:

◆ Selected POSIX system calls need to be replaced with ns-3 equivalents

◆ Executables (like ping) must be built in a special way such that they are shared libraries and not 

processes

◆ Resources must be carefully tracked and managed (stack, heap, and global memory, file I/O, etc.)

3



GSoC ʻ21  Project [1]  

➔ DCE relied on some bypassing tricks of the standard library (glibc). Because these bypasses 
could also be exploited by attackers, the glibc developers blocked such bypasses. 

➔ Rapid pace of Linux kernel code change makes upgrading the Linux DCE stack very difficult to 
maintain.

➔ Extended DCE to build a customized glibc preserving previous bypasses.
➔ Evaluated Linux Kernel Library, and later upgraded kernel stack from 4.4 to 5.10.
➔ Improvised Docker based build for DCE, to make it user-friendly and reduce disk usage.

[1] : https://ns-3-dce-linux-upgrade.github.io

Problems Addressed

Results

4



DCE Problems Addressed

1.  LibIO VTable Redirection Limitation

2.  Position Independent Executable    
     Loading & Usage

3. Outdated Linux Networking Stack

4. Not Platform Agnostic

5



LibIO Vtable Hijacking & FILE VTable
1.  LibIO VTable Redirection Limitation

➔ Multiple DCE applications writing to output streams, which might cause cluttered & unordered logs.

➔ DCE hijacks FILE stream operations, to redirect application output to organized log folders.

➔ This was possible by overwriting the FILEʼs VTable with DCEʼs handlers for some of the FILE operations.

➔ DCE took advantage of the contiguous allocation of the FILE vtable, when a FILE stream was created

➔ Till libc-2.25, this hack was possible, but in later libc releases, this security flaw was fixed.

➔ A contributor suggested using fopencookie, but it led to inconsistent logs for certain tests involving execve

FILE FILE VTable

Contiguous Memory Locations
6



LibIO Vtable Hijacking & FILE VTable (cont.)
1.  LibIO VTable Redirection Limitation

DCE FILE Stream Validates if operation handler
lies in libc trusted section

operation() operation()YES

➔ Every FILE stream operation is executed only if the operation handler lies in libcʼs trusted section

➔ We compiled a libc which avoids the process from aborting if the above validation fails.

➔ DCE waf wscript was modified to build DCE libraries with the new patched glibc as the system root.

Solution : Patched Glibc and new build SYSROOT 

7



PIE executables as dynamic libraries
2.  Position Independent Executable Loading & Usage Solution : DF_1_PIE Stripping / Patched Glibc

➔ PIE : Position Independent Executable, compiled with -fPIC  and -pie

➔ DCE requires PIEs to be loaded as dynamic libraries as DCE is single threaded.

➔ libc developers spotted cases where loading a PIE as a library could cause relocation errors, and fixed it.

➔ There were relocation issues when PIEs were loaded as dynamic libraries.

Solutions :

➔ Strip the PIE identifier flag from the dynamic section when DCE copies the files to its local cache.

➔ Alternatively, we can patch the libc to remove the additional check in dlopen

8

https://sourceware.org/bugzilla/show_bug.cgi?id=11754#c15
https://patchwork.ozlabs.org/project/glibc/patch/20190312130235.8E82C89CE49C@oldenburg2.str.redhat.com/


Linux Networking Stack - DCE

➔ DCE lets you use Linux as the networking stack for your simulation scripts.

➔ Two potential Linux-as-a-library frameworks  :     

i. LKL

ii. LibOS

➔ Previous developers of DCE used LibOS.

➔ Hajime Tazaki founded LKL, which had broader applications and delivered to a wider range of use-cases.

➔ Previous DCE maintainer Matthieu suggested that LKL can be looked into, which is still a work in progress

➔ Due to the synchronization & preemption restrictions imposed by LKL, we moved on with LibOS.

3. Outdated Linux Networking Stack

9



Linux-As-A-Library Tools 
3. Outdated Linux Networking Stack

LKL LibOS

Type Full /arch level port Partial Linking 

Kernel Features All features supported 
by base kernel

Selective feature support
 

Synchronization Uniprocessor, CPU Lock based Requires host API for 
yielding & synchronization

Maintenance Easy upstream bug fix merging Uncertainty to identify bug
Irrelevant to  Linux community

Preemption Non-Preemptive Preemptive (LWP)

10



Net-next-nuse-5.10 
3. Outdated Linux Networking Stack

➔ Two development choices:

i. Move from kernel 4.4.0 to 5.10, merging commits incrementally.

ii. Start off with kernel–5.10 and port directly to net-next-nuse.  ✔

➔ Linux-5.10 has features which can be interesting to the community. Ex. BBR V2, TCP Prague

➔ Can be a little difficult to move forward with next releases of Linux.

➔ Elf header manipulation libraries can be used to redirect library symbols to hijack internal kernel 

function calls, and map it to DCEʼs glue code.

Solution : net-next-nuse on Linux Kernel 5.10.0

11



Docker Compose Build for DCE
4. Not Platform Agnostic Solution : Docker based build

Fig 2. from Revitalizing ns-3ʼs DCE Paper

➔ About ~5GB additional disk space was used in native build

➔ DCE Docker image of compressed size 256 MB is 

downloaded, which decompresses to ~800MB

➔ Docker reduces initial build time by ~45%

➔ Docker saves ~4.2 GB of disk usage

➔ Workspace space usage is same as older release i.e dce-1.11

➔ Docker environment has :

i. pre-installed patched libc(only needed libs & headers)

ii. all dependencies

iii. Shared host directory support

iv. Same build steps

v. Highly configurable (env variables & wscript) 12



Performance Evaluation

➔ Impact of different modes on execution time.

➔ Uses linear chain topology, with four hops.

➔ Expected linear relationship between sending 
rate and wall clock time, as number of hops 
per packet is kept constant

13



Performance Evaluation
➔ We can notice the pure ns-3 

simulations to be the fastest.

➔ DCE has overheads

➔ Experiments from the CONext 
paper could not be perfectly 
reproduced due to lack of 
configuration information.

➔ DCE-1.11 (latest available DCE 
release, works on Ubuntu 16.04) 
runs have a lower runtime with 
Elf-Loader. 

14



Performance Evaluation : Figure 6 from Paper

➔ Analysis of each curve has been 
made in next few slides

➔ Dce-1.12 is the next scheduled 
release, which is in review.

➔ Dce-1.12 uses the patched libc 
and is tested on Ubuntu-20.04

15



➔ Linux-5.10 runs on native build 
notice a slight increase in 
runtime when compared with 
Linux-4.4 native runs

➔ Lack of availability of Elf-Loader 
for libc-2.31 can be a reason for 
generally higher DCE 1.12 
runtimes

➔ Requires further optimizations

Performance Evaluation : Linux-5.10.0 Vs Linux-4.4.0

16



➔ Linux-5.10 docker runs nearly 
overlap with the native runs for 
Linux-5.10.

➔ Similar performance, with 
increased availability 

Performance Evaluation : Docker Vs Native (Linux-5.10)

17



Future Work 

➔ IPV6 Support in net-nextt-nuse-5.10

➔ FILE VTable hijack native workaround

➔ Elf-Loader for Libc-2.31

➔ Support 3rd party libraries. Ex. Grpc, Tensorflow for C++

18



GSoC ʻ21  Project [1]  

➔ DCE relied on some bypassing tricks of the standard library (glibc). Because these bypasses 
could also be exploited by attackers, the glibc developers blocked such bypasses. 

➔ Rapid pace of Linux kernel code change makes upgrading the Linux DCE stack very difficult to 
maintain.

➔ Extended DCE to build a customized glibc preserving previous bypasses.
➔ Evaluated Linux Kernel Library, and later upgraded kernel stack from 4.4 to 5.10.
➔ Improvised Docker based build for DCE, to make it user-friendly and reduce disk usage.

[1] : https://ns-3-dce-linux-upgrade.github.io

Problems Addressed

Results

19



Backup

20



FILE VTable & _IO_FILE_plus

Stores callback references to handlers for operations like : 
read, close, seek, write & stat

1.  LibIO VTable Redirection Limitation

21



DCE Hijacking  &  LibIO VTable Protection
1.  LibIO VTable Redirection Limitation Solution : Patched Glibc and new build SYSROOT 

BAKE

GNU C/C++

System Glibc

STD Libraries
STD Headers
Default SYSROOT

Custom Glibc

Patched Libraries
Custom  SYSROOT

DCE
NS-3

NET-NEXT-NUSE
…

<= libc-2.28

Dummy 
FILE DS
pointer

FILE
Pointer

Point

Local 
DCE 
FILE 

operation 
handlers

Overwrite 
VTable, by 
repointing 
_IO_jump_t

> libc-2.28

FILE
Pointer _IO_validate_vtable

read,
write ,etc...

22



PIE Loading in DCE
2.  Position Independent Executable Loading & Usage

Compilation/Link Flags : -fPIC -pie

23



DF_1_PIE removal from ELF Header 
2.  Position Independent Executable Loading & Usage Solution : DF_1_PIE Stripping / Patched Glibc

Dropped DF_1_PIE 
FLAG from Dynamic 
Table 

Alternative : Patch glibc to avoid dynamic section  flag validation

24



Linux Networking Stack - DCE
3. Outdated Linux Networking Stack

  DceManagerHelper dceManager;
  dceManager.SetNetworkStack ("ns3::LinuxSocketFdFactory",
                              "Library", StringValue ("liblinux.so"));

LinuxSocketFdFactory

NotifyNewAggregate()

KernelSocketFdFactory

InitializeStack()
sim_init()

Usage in
DCE Scripts

imported →
← exported

25



Net-Next-Nuse-5.10.0
3. Outdated Linux Networking Stack Solution : net-next-nuse on Linux Kernel 5.10.0

Stages

Li
nu

x-
5.

10
.0

 K
er

ne
l

Add LIB 
Architecture

 to Linux arch/

Kernel Initialization

SLIB Allocator 
API Alignment

kmem Cache Setup

LSM Setup

Kernel Glue Code

LibSim
Library

Link Success  & Tests Pass

Manually 
debug & 

Link required 
Linux module Symbol Lookup Error

DC
E

26



Performance Evaluation : Patched Glibc Vs Hijacked libc 

➔ Curves for patched glibc (dce-1.12 
user) and native libc vtable 
hijacking (dce-1.11 ELF user), 
almost coincide for ns-3ʼs 
network stack.

➔ Patched glibc runs for Linux 
network stack notice high 
runtimes when Elf-Loader is not 
used (dce-1.12 kernel 4.4).

27



Performance Evaluation : Elf-Loader Impact

Without Elf-Loader,  even DCE-1.11 
faced performance degradation

28



Performance Evaluation : Linux-5.10.0 Vs Linux-4.4.0

➔ net-next-nuse-5.10.0 plots were 
seen to have slightly higher 
runtime,  but was very close.

➔ Increased number of context 
switch needs for later kernel 
releases can be a reason

➔ Demands further optimization

29



Performance Evaluation : Linux-5.10.0 on Docker

➔ net-next-nuse-5.10.0 plots on 
native and Docker almost 
coincide.

➔ Similar behaviour was noticed for 
ns-3 network stack runs.

➔ Similar performance, with ease of 
use

30


