

Artificial Intelligence in Vehicular Wireless Networks: A Case Study Using ns-3

<u>Matteo Drago</u>, Tommaso Zugno, Federico Mason, Marco Giordani, Mate Boban, Michele Zorzi

Workshop on ns-3 June 23rd, 2022

Motivations

AI will be a key component of $6G \rightarrow$ Enable efficient and reliable V2X communications

How to train AI algorithms?

Prototypes or real systems yield to accurate results but...

Reference Scenario

Simulation Framework

Available at https://github.com/signetlabdei/ns3-ran-ai

Channel and Mobility Models

Open Street Map yields a representation of the area of interest \Rightarrow in our case, Bologna downtown

generates vehicles' mobility traces

GEMV² calculates the channel components from the OSM map and the SUMO trajectories (pathloss values are used as input and parsed from ns-3)

Key ns-3 class: GemvPropagationLossModel

Network Model

Extended to include sub-6GHz capabilities and to accept the $GEMV^2$ -based propagation model

Key ns-3 methods: InstallSub6GnbDevice() and InstallSub6UeDevice() of the class MmWaveHelper

Application Model

Scenario: Host Vehicle (HV) is controlled by a remote driver through an ad hoc driving application installed on a remote or edge server.

Trace-based application → We implemented a new module to generate this traffic flow based on and as a function of:

- 1. Size of input sensor data (in bytes).
- 2. Update sensor time (typically fixed to 100 ms for LiDARs).
- 3. The level of compression/segmentation for the sensor data, based on Draco and RangeNet++.

For this work we consider a fixed value of compression and three distinct levels of segmentation:

- 1. Raw (R): Raw LiDAR acquisition is considered.
- 2. Segmentation Conservative (SC): Data points associated to road elements are removed.
- **3. Segmentation Aggressive (SA)**: Data points associated to buildings, vegetation, traffic signs, and the background are also removed, keeping only the most critical items in the scene.

Key ns-3 classes: KittiTraceBurstGenerator,BurstyApplication,BurstSink() and BurstyAppStatsCalculator()

Intelligent Network Controller

Vehicle

RAN-AI tasks:

- 1. Collecting metrics from the gNB and end users.
- Running AI algorithms using as inputs the collected metrics
 → AI-agnostic framework.
- **3**. Determining the actions to take in order to maximize the network performance.
- 4. Communicating the actions to the relevant entities so that they can tune their behavior accordingly.

In this work the RAN-AI controls the end users applications, but the framework does not prevent other countermeasures/actions from being considered.

Intelligent Network Controller

Vehicle

KILLER FEATURE:

Easy to adapt to different problems, as the API to exchange the data are scenario-independent.

Developer choices:

How to use the data available at the RAN-AI and how

to disseminate the output.

Key ns-3 classes and methods: ReportMeasures() of the class RanAi, and InstallRanAi(), SendStatusUpdate() of the class MmWaveEnbNetDevice()

Our case study

We focus on **Predictive Quality of Service paradigm**, to provide advanced notifications in case of upcoming QoS changes.

- → Al agent based on Reinforcement Learning and trained according to the Double Q-learning (DQL) algorithm.
- → **GOAL:** identify the optimal application mode for the end users when transmitting sensor data.

Parameter	Description	Value
f_c	Carrier frequency	3.5 GHz
В	Total bandwidth	50 MHz
P_{TX}	Transmission power	23 dBm
Т	RAN-AI update periodicity	100 ms
τ_{s}	Simulation time	80 s
Nu	Number of vehicles	{1, 5}
λ	Discount factor	0.95
ζ	Learning rate	10 ⁻⁴
ϵ	Weight decay	10 ⁻³
α	QoS/QoE weight	1
δ_M	Max. tolerated delay	50 ms
PRR _m	Min. tolerated PRR	1
CD _{sym,m}	Max. tolerated Chamfer Distance	45
Layer size (inputs × outputs)		$8 \times 12 \rightarrow 12 \times 6 \rightarrow 6 \times 3$

Impact of number of users

SIGNET

Impact of actions notification

Ideal notification \rightarrow a callback is fired to change the application mode

GNET

Real notification \Rightarrow a packet with the information is actually sent through the network

Conclusions

New framework to study the performance of AI algorithms in next-generation networks scenarios!

- Future developments will include:
 - more extensive simulation campaign (higher number of vehicles orchestrated by the same RAN-AI)
 - test different learning tools such as federated learning for vehicular networks or QoS prediction based on the vehicles' positions on the map

Our work has been publicly released at https://github.com/signetlabdei/ns3-ran-ai

Further results can be found here: F. Mason, M. Drago, T. Zugno, M. Giordani, M. Boban, and M. Zorzi, "A Reinforcement Learning Framework for PQoS in a Teleoperated Driving Scenario," IEEE WCNC Workshops, 2022.

Artificial Intelligence in Vehicular Wireless Networks: A Case Study Using ns-3

<u>Matteo Drago</u>, Tommaso Zugno, Federico Mason, Marco Giordani, Mate Boban, Michele Zorzi

Workshop on ns-3 June 23rd, 2022