
Evaluating OSPF Convergence with ns-3 DCE

Nicolas Rybowski, Olivier Bonaventure
nicolas.rybowski@uclouvain.be

ICTEAM
UCLouvain

Workshop on ns-3 (WNS3) 2022

Institute for Information
and Communication Technologies,
Electronics and Applied Mathematics



Agenda

Background and Motivation

BIRD Integration with DCE

Network Model

Micro-loops Detection Methods

Sample Simulations

Framework Evaluation

2 / 27



Agenda

Background and Motivation

BIRD Integration with DCE

Network Model

Micro-loops Detection Methods

Sample Simulations

Framework Evaluation

3 / 27



Classical Link-state Routing
Background

Link-state Routing Protocols (LSR)
(i) LSR PDU (LSA/LSP) describing node’s neighborhood

distributed by flooding

(ii) Link State Database (LSDB)
(iii) Shortest Path algorithm (local)

Equal-Cost MultiPath (ECMP)

Load-balancing packets on paths with the same cost

Bidirectional Forwarding Detection (BFD)

Quick link failure detection

4 / 27



Classical Link-state Routing
Background

Link-state Routing Protocols (LSR)
(i) LSR PDU (LSA/LSP) describing node’s neighborhood

distributed by flooding

(ii) Link State Database (LSDB)
(iii) Shortest Path algorithm (local)

Equal-Cost MultiPath (ECMP)

Load-balancing packets on paths with the same cost

Bidirectional Forwarding Detection (BFD)

Quick link failure detection

4 / 27



Classical Link-state Routing
Background

Link-state Routing Protocols (LSR)
(i) LSR PDU (LSA/LSP) describing node’s neighborhood

distributed by flooding

(ii) Link State Database (LSDB)
(iii) Shortest Path algorithm (local)

Equal-Cost MultiPath (ECMP)

Load-balancing packets on paths with the same cost

Bidirectional Forwarding Detection (BFD)

Quick link failure detection

4 / 27



Evaluating Routing Protocols Performances
Motivation

How to measure IGP convergence duration after a failure?

Control plane is known to have slow reactions to failures

5 / 27



Routing Protocols Evaluation
Motivation

Physical testbeds

! Real world measurements
% Timing measurement not reproducible
% Costly for large topologies

Emulation

! Cheap to setup on commodity hardware
% Each node competes for resources
% Timing measurement not reproducible

Simulation

! Cheap to set up on commodity hardware
! No competition for resources since no real-time
! Reproducible timing measurement

6 / 27



Routing Protocols Evaluation
Motivation

Physical testbeds

! Real world measurements
% Timing measurement not reproducible
% Costly for large topologies

Emulation

! Cheap to setup on commodity hardware
% Each node competes for resources
% Timing measurement not reproducible

Simulation

! Cheap to set up on commodity hardware
! No competition for resources since no real-time
! Reproducible timing measurement

6 / 27



Routing Protocols Evaluation
Motivation

Physical testbeds

! Real world measurements
% Timing measurement not reproducible
% Costly for large topologies

Emulation

! Cheap to setup on commodity hardware
% Each node competes for resources
% Timing measurement not reproducible

Simulation

! Cheap to set up on commodity hardware
! No competition for resources since no real-time
! Reproducible timing measurement

6 / 27



Agenda

Background and Motivation

BIRD Integration with DCE

Network Model

Micro-loops Detection Methods

Sample Simulations

Framework Evaluation

7 / 27



Syscalls Interception in DCE
BIRD Integration with DCE

Native

ffs

localtime r

longjmp

Custom Handling in DCE

dce mmap64

� Support for private anonymous
memory mapping

8 / 27



Toolchain I
BIRD Integration with DCE

Topology Specification: Network Topology Format (NTF)

(head, end, metric, delay)

um ul 1 5

um ur 10 5

ul um 1 5

ul ur 1 5

ul bl 1 5

ul bm 10 5

bl ul 1 5

bl br 1 5

br bl 1 5

br ur 1 5

ur br 1 5

ur ul 1 5

ur um 10 5

ur bm 1 5

bm ul 10 5

bm ur 1 5

ul ur

um

bm

bl br

10

10

BIRD Module in ns-3: dce-bird

NTF Parser DCE setup Topology Generation BIRD Configuration ns-3 Simulation Start

9 / 27



Toolchain I
BIRD Integration with DCE

Topology Specification: Network Topology Format (NTF)

(head, end, metric, delay)

um ul 1 5

um ur 10 5

ul um 1 5

ul ur 1 5

ul bl 1 5

ul bm 10 5

bl ul 1 5

bl br 1 5

br bl 1 5

br ur 1 5

ur br 1 5

ur ul 1 5

ur um 10 5

ur bm 1 5

bm ul 10 5

bm ur 1 5

ul ur

um

bm

bl br

10

10

BIRD Module in ns-3: dce-bird

NTF Parser DCE setup Topology Generation BIRD Configuration ns-3 Simulation Start

9 / 27



Toolchain II
BIRD Integration with DCE

Full Toolchain

Wrapper

Container
./setup.sh ./dce-birdNPF Logs Parsing

Container

...

� Workload parallelization: each container simulates a specific scenario

10 / 27



Toolchain II
BIRD Integration with DCE

Full Toolchain

Wrapper
Container

./setup.sh ./dce-bird

NPF Logs Parsing

Container

...

� Workload parallelization: each container simulates a specific scenario

10 / 27



Toolchain II
BIRD Integration with DCE

Full Toolchain

Wrapper
Container

./setup.sh ./dce-birdNPF Logs Parsing

Container

...

� Workload parallelization: each container simulates a specific scenario

10 / 27



Toolchain II
BIRD Integration with DCE

Full Toolchain

Wrapper
Container

./setup.sh ./dce-birdNPF Logs Parsing

Container

...

� Workload parallelization: each container simulates a specific scenario

10 / 27



Agenda

Background and Motivation

BIRD Integration with DCE

Network Model

Micro-loops Detection Methods

Sample Simulations

Framework Evaluation

11 / 27



Router Model
Network Model

Convergence components

D + O + F + SPT + FIB + DD

D Failure Detection

O LSP Origination

F LSP Flooding

SPT SPT Computation

FIB FIB Update

DD Linecard Update

Internal Node’s Delays Parameters

Delay source Value

LSP processing [2,4]ms
Maintenance timer {10,25,50,100}ms
SPT computation [2,4]ms
FIB prefix update [100, 110]µs/prefix

12 / 27



Router Model
Network Model

Convergence components

D + O + F + SPT + FIB + DD

D Failure Detection

O LSP Origination

F LSP Flooding

SPT SPT Computation

FIB FIB Update

DD Linecard Update

Internal Node’s Delays Parameters

Delay source Value

LSP processing [2,4]ms
Maintenance timer {10,25,50,100}ms
SPT computation [2,4]ms
FIB prefix update [100, 110]µs/prefix

12 / 27



Router Model
Network Model

Convergence components

D + O + F + SPT + FIB + DD

D Failure Detection

O LSP Origination

F LSP Flooding

SPT SPT Computation

FIB FIB Update

DD Linecard Update

Internal Node’s Delays Parameters

Delay source Value

LSP processing [2,4]ms
Maintenance timer {10,25,50,100}ms
SPT computation [2,4]ms
FIB prefix update [100, 110]µs/prefix

12 / 27



Network Failures Model
Network Model

Single Link Failure

D ∈ {15, 18}ms Node 1
TF + 15ms

Node 2
TF + 18msTF

� Extended NTF: (head, end, metric, delay, TF)

TF : the delay since the start of the simulation (T0) in seconds

Parallel links not supported yet

Cannot differentiate links with the same characteristics

Node Failure

The Single Link Failure model is applied on each node’s link

13 / 27



Network Failures Model
Network Model

Single Link Failure

D ∈ {15, 18}ms Node 1
TF + 15ms

Node 2
TF + 18msTF

� Extended NTF: (head, end, metric, delay, TF)

TF : the delay since the start of the simulation (T0) in seconds

Parallel links not supported yet

Cannot differentiate links with the same characteristics

Node Failure

The Single Link Failure model is applied on each node’s link

13 / 27



Network Failures Model
Network Model

Single Link Failure

D ∈ {15, 18}ms Node 1
TF + 15ms

Node 2
TF + 18msTF

� Extended NTF: (head, end, metric, delay, TF)

TF : the delay since the start of the simulation (T0) in seconds

Parallel links not supported yet

Cannot differentiate links with the same characteristics

Node Failure

The Single Link Failure model is applied on each node’s link

13 / 27



Agenda

Background and Motivation

BIRD Integration with DCE

Network Model

Micro-loops Detection Methods

Sample Simulations

Framework Evaluation

14 / 27



UDP Flows
Micro-loops Detection Methods

Constant bit-rate UDP flows

Time

P

Tx1 Tx2 Tx3 Tx4 Tx5 Tx6 Tx7 Tx8 Tx9

P = 5ms

UDP payload = packet generation
timestamp

Full mesh of UDP flows

Txi = Txi−1 + P

Reordering

{Tx1; Tx2; Tx5; Tx3; Tx4; Tx6; Tx7; Tx8; Tx9; ...}
� Estimated loop duration: 15ms

Black-hole

{Tx1; Tx2; Tx6; Tx7; Tx8; Tx9; ...}
� Estimated loop duration: 15ms

No route to host

TTL reached 0

15 / 27



UDP Flows
Micro-loops Detection Methods

Constant bit-rate UDP flows

Time

P

Tx1 Tx2 Tx3 Tx4 Tx5 Tx6 Tx7 Tx8 Tx9

P = 5ms

UDP payload = packet generation
timestamp

Full mesh of UDP flows

Txi = Txi−1 + P

Reordering

{Tx1; Tx2; Tx5; Tx3; Tx4; Tx6; Tx7; Tx8; Tx9; ...}
� Estimated loop duration: 15ms

Black-hole

{Tx1; Tx2; Tx6; Tx7; Tx8; Tx9; ...}
� Estimated loop duration: 15ms

No route to host

TTL reached 0

15 / 27



UDP Flows
Micro-loops Detection Methods

Constant bit-rate UDP flows

Time

P

Tx1 Tx2 Tx3 Tx4 Tx5 Tx6 Tx7 Tx8 Tx9

P = 5ms

UDP payload = packet generation
timestamp

Full mesh of UDP flows

Txi = Txi−1 + P

Reordering

{Tx1; Tx2; Tx5; Tx3; Tx4; Tx6; Tx7; Tx8; Tx9; ...}
� Estimated loop duration: 15ms

Black-hole

{Tx1; Tx2; Tx6; Tx7; Tx8; Tx9; ...}
� Estimated loop duration: 15ms

No route to host

TTL reached 0

15 / 27



UDP Flows Limitations I
Micro-loops Detection Methods

Timing Overestimation

TimeP
Tx1 Tx2TC

∆t

Node converged at TC

Tx1 is lost

Next timestamp sent at Tx2

� Convergence overestimated by ∆t

Solution?

Increasing the granularity (flow rate) by lowering P?

� No: highly increases simulation duration

� Trade-off: Timing accuracy vs simulation overhead

16 / 27



UDP Flows Limitations I
Micro-loops Detection Methods

Timing Overestimation

TimeP
Tx1 Tx2TC

∆t

Node converged at TC

Tx1 is lost

Next timestamp sent at Tx2

� Convergence overestimated by ∆t

Solution?

Increasing the granularity (flow rate) by lowering P?

� No: highly increases simulation duration

� Trade-off: Timing accuracy vs simulation overhead

16 / 27



UDP Flows Limitations II
Micro-loops Detection Methods

ECMP Reordering

IGP metrics are dimensionless

They may reflect the link latency
If not, ECMP load-balancing could provoke packet reordering

� False positive for micro-loop detection

17 / 27



FIB Traversal
Micro-loops Detection Methods

FIB Snapshots

Capture FIB of each node upon FIB update of a single node

For each snapshot, rebuild routes for each (source, destination)

Micro-loop

1 2

0

4

3 5

0 via 1
1 via 1
3 via 1,5
4 via 4
5 via 5

0 via 1
1 via 2,3
2 via 2
3 via 3
4 via 2

Tx

10

10

0 via 5
1 via 5
3 via 1
4 via 4
5 via 5

0 via 1
1 via 2,3
2 via 2
3 via 3
4 via 2

Tx1

0 via 5
1 via 5
3 via 1
4 via 4
5 via 5

0 via 1
1 via 2,3
2 via 2
3 via 3
4 via 2

Black-hole

1 2

0

4

3 5

0 via 0
2 via 2
3 via 3
4 via 2
5 via 2,3

Tx

10

10

0 via 0
3 via 3
4 via 2
5 via 2,3

Tx1

18 / 27



FIB Traversal
Micro-loops Detection Methods

FIB Snapshots

Capture FIB of each node upon FIB update of a single node

For each snapshot, rebuild routes for each (source, destination)

Micro-loop

1 2

0

4

3 5

0 via 1
1 via 1
3 via 1,5
4 via 4
5 via 5

0 via 1
1 via 2,3
2 via 2
3 via 3
4 via 2

Tx

10

10

0 via 5
1 via 5
3 via 1
4 via 4
5 via 5

0 via 1
1 via 2,3
2 via 2
3 via 3
4 via 2

Tx1

0 via 5
1 via 5
3 via 1
4 via 4
5 via 5

0 via 1
1 via 2,3
2 via 2
3 via 3
4 via 2

Black-hole

1 2

0

4

3 5

0 via 0
2 via 2
3 via 3
4 via 2
5 via 2,3

Tx

10

10

0 via 0
3 via 3
4 via 2
5 via 2,3

Tx1

18 / 27



FIB Traversal
Micro-loops Detection Methods

FIB Snapshots

Capture FIB of each node upon FIB update of a single node

For each snapshot, rebuild routes for each (source, destination)

Micro-loop

1 2

0

4

3 5

0 via 1
1 via 1
3 via 1,5
4 via 4
5 via 5

0 via 1
1 via 2,3
2 via 2
3 via 3
4 via 2

Tx

10

10

0 via 5
1 via 5
3 via 1
4 via 4
5 via 5

0 via 1
1 via 2,3
2 via 2
3 via 3
4 via 2

Tx1

0 via 5
1 via 5
3 via 1
4 via 4
5 via 5

0 via 1
1 via 2,3
2 via 2
3 via 3
4 via 2

Black-hole

1 2

0

4

3 5

0 via 0
2 via 2
3 via 3
4 via 2
5 via 2,3

Tx

10

10

0 via 0
3 via 3
4 via 2
5 via 2,3

Tx1

18 / 27



FIB Traversal
Micro-loops Detection Methods

FIB Snapshots

Capture FIB of each node upon FIB update of a single node

For each snapshot, rebuild routes for each (source, destination)

Micro-loop

1 2

0

4

3 5

0 via 1
1 via 1
3 via 1,5
4 via 4
5 via 5

0 via 1
1 via 2,3
2 via 2
3 via 3
4 via 2

Tx

10

10

0 via 5
1 via 5
3 via 1
4 via 4
5 via 5

0 via 1
1 via 2,3
2 via 2
3 via 3
4 via 2

Tx1

0 via 5
1 via 5
3 via 1
4 via 4
5 via 5

0 via 1
1 via 2,3
2 via 2
3 via 3
4 via 2

Black-hole

1 2

0

4

3 5

0 via 0
2 via 2
3 via 3
4 via 2
5 via 2,3

Tx

10

10

0 via 0
3 via 3
4 via 2
5 via 2,3

Tx1

18 / 27



FIB Traversal
Micro-loops Detection Methods

FIB Snapshots

Capture FIB of each node upon FIB update of a single node

For each snapshot, rebuild routes for each (source, destination)

Micro-loop

1 2

0

4

3 5

0 via 1
1 via 1
3 via 1,5
4 via 4
5 via 5

0 via 1
1 via 2,3
2 via 2
3 via 3
4 via 2

Tx

10

10

0 via 5
1 via 5
3 via 1
4 via 4
5 via 5

0 via 1
1 via 2,3
2 via 2
3 via 3
4 via 2

Tx1

0 via 5
1 via 5
3 via 1
4 via 4
5 via 5

0 via 1
1 via 2,3
2 via 2
3 via 3
4 via 2

Black-hole

1 2

0

4

3 5

0 via 0
2 via 2
3 via 3
4 via 2
5 via 2,3

Tx

10

10

0 via 0
3 via 3
4 via 2
5 via 2,3

Tx1

18 / 27



FIB Traversal
Micro-loops Detection Methods

FIB Snapshots

Capture FIB of each node upon FIB update of a single node

For each snapshot, rebuild routes for each (source, destination)

Micro-loop

1 2

0

4

3 5

0 via 1
1 via 1
3 via 1,5
4 via 4
5 via 5

0 via 1
1 via 2,3
2 via 2
3 via 3
4 via 2

Tx

10

10

0 via 5
1 via 5
3 via 1
4 via 4
5 via 5

0 via 1
1 via 2,3
2 via 2
3 via 3
4 via 2

Tx1

0 via 5
1 via 5
3 via 1
4 via 4
5 via 5

0 via 1
1 via 2,3
2 via 2
3 via 3
4 via 2

Black-hole

1 2

0

4

3 5

0 via 0
2 via 2
3 via 3
4 via 2
5 via 2,3

Tx

10

10

0 via 0
3 via 3
4 via 2
5 via 2,3

Tx1

18 / 27



FIB Traversal
Micro-loops Detection Methods

FIB Snapshots

Capture FIB of each node upon FIB update of a single node

For each snapshot, rebuild routes for each (source, destination)

Micro-loop

1 2

0

4

3 5

0 via 1
1 via 1
3 via 1,5
4 via 4
5 via 5

0 via 1
1 via 2,3
2 via 2
3 via 3
4 via 2

Tx

10

10

0 via 5
1 via 5
3 via 1
4 via 4
5 via 5

0 via 1
1 via 2,3
2 via 2
3 via 3
4 via 2

Tx1

0 via 5
1 via 5
3 via 1
4 via 4
5 via 5

0 via 1
1 via 2,3
2 via 2
3 via 3
4 via 2

Black-hole

1 2

0

4

3 5

0 via 0
2 via 2
3 via 3
4 via 2
5 via 2,3

Tx

10

100 via 0
3 via 3
4 via 2
5 via 2,3

Tx1

18 / 27



Agenda

Background and Motivation

BIRD Integration with DCE

Network Model

Micro-loops Detection Methods

Sample Simulations

Framework Evaluation

19 / 27



House Topology: Toy Example I
Sample Simulations

0 1 2 3 4 5 6 7
 Link Failure

0

100

200

300

400

500

Co
nv

er
ge

nc
e 

Ti
m

e 
[m

s]

Convergence time for house links
MEASURE = fib - SPT = 10ms - ECMP = off
MEASURE = fib - SPT = 100ms - ECMP = off
MEASURE = udp - SPT = 10ms - ECMP = off
MEASURE = udp - SPT = 100ms - ECMP = off

Figure: Link failures - ECMP off

0 1 2 3 4 5 6 7
 Link Failure

0

100

200

300

400

500

Co
nv

er
ge

nc
e 

Ti
m

e 
[m

s]

Convergence time for house links
MEASURE = fib - SPT = 10ms - ECMP = on
MEASURE = fib - SPT = 100ms - ECMP = on
MEASURE = udp - SPT = 10ms - ECMP = on
MEASURE = udp - SPT = 100ms - ECMP = on

Figure: Link failures - ECMP on

20 / 27



House Topology: Toy Example II
Sample Simulations

0 1 2 3 4 5
Node Failure

0

100

200

300

400

500

Co
nv

er
ge

nc
e 

Ti
m

e 
[m

s]

Convergence time for house nodes
SPT = 10ms - ECMP = on
SPT = 50ms - ECMP = on
SPT = 100ms - ECMP = on

Figure: Node failures - ECMP on

21 / 27



GEANT Topology: Real World Network
Sample Simulations

0 5 10 15 20 25 30 35
 Link Failure

0

100

200

300

400

500

Co
nv

er
ge

nc
e 

Ti
m

e 
[m

s]

SPT = 10ms
SPT = 100ms

Figure: Link failures - ECMP on

0 5 10 15 20
Node Failure

0

100

200

300

400

500

Co
nv

er
ge

nc
e 

Ti
m

e 
[m

s]

Convergence time for geant nodes
SPT = 10ms - ECMP = on
SPT = 25ms - ECMP = on
SPT = 50ms - ECMP = on
SPT = 100ms - ECMP = on

Figure: Node failures - ECMP on

22 / 27



Agenda

Background and Motivation

BIRD Integration with DCE

Network Model

Micro-loops Detection Methods

Sample Simulations

Framework Evaluation

23 / 27



Scalability I
Framework Evaluation

Does BIRD over DCE scale?

Tested on small topologies

Search lower and upper bounds for

Memory consumption
CPU time consumption

How?

What?

Initial convergence (5 simulated minutes)

Which topology?

Simplest topology for LSR: Ring
Worst topology for LSR: Full Mesh

Which size?

Number of nodes (n) linearly increased by 10 up to 100

24 / 27



Scalability I
Framework Evaluation

Does BIRD over DCE scale?

Tested on small topologies

Search lower and upper bounds for

Memory consumption
CPU time consumption

How?

What?

Initial convergence (5 simulated minutes)

Which topology?

Simplest topology for LSR: Ring
Worst topology for LSR: Full Mesh

Which size?

Number of nodes (n) linearly increased by 10 up to 100

24 / 27



Scalability II
Framework Evaluation

20 40 60 80 100
Nodes [#]

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

M
em

or
y 

Pe
ak

 [K
b]

1e6 Peak memory measurement for simple topologies.
TOPOLOGY

ring
full mesh

Figure: Peak memory usage

20 40 60 80 100

Nodes [# ]

0

250

500

750

1000

1250

1500

1750

T
o

ta
l 

ru
n

 t
im

e
 [

s
]

Total runtime measurement for simple topologies.

TOPOLOGY

ring

full m esh

Figure: Total runtime

25 / 27



Code is available

https://github.com/nrybowski/ns3-sim/tree/wns3-22

C++ ns-3 modules

NTF Toplogy generator
BIRD daemon configurator

Dockerfiles with patched ns-3

RUST wrapper to launch the simulations

NPF scripts to reproduce the figures

26 / 27

https://github.com/nrybowski/ns3-sim/tree/wns3-22


Questions?

Background and Motivation

BIRD Integration with DCE

Network Model

Micro-loops Detection Methods

Sample Simulations

Framework Evaluation

27 / 27



Why BIRD?
Backup Slide

Requirements

Implement ISIS and/or OSPF

Open-Source

Must recompile with DCE flags
Must be able to modify the code

Internal delays model
Implement new LSR extensions (Future Work)

C/C++ code to run in DCE

Actively maintained

Implement recent extensions
Community Support
Used in real-world deployments

1 / 2



Why BIRD?
Backup Slide

FRRouting

! Implement ISIS and OSPF

! Open-Source

! C code

! Actively maintained: last
update from June 2022

% Many DCE modifications

Quagga

! Implement ISIS and OSPF

! Open-Source

! C code

% Actively maintained: last
update from 2018

XORP

! Implement ISIS or OSPF

! Open-Source

! C++ code

% Actively maintained: last
update from 2012

FreeRtr

! Implement ISIS and OSPF

! Open-Source

% Java code

! Actively maintained: last
update from June 2022

2 / 2



Why BIRD?
Backup Slide

FRRouting

! Implement ISIS and OSPF

! Open-Source

! C code

! Actively maintained: last
update from June 2022

% Many DCE modifications

Quagga

! Implement ISIS and OSPF

! Open-Source

! C code

% Actively maintained: last
update from 2018

XORP

! Implement ISIS or OSPF

! Open-Source

! C++ code

% Actively maintained: last
update from 2012

FreeRtr

! Implement ISIS and OSPF

! Open-Source

% Java code

! Actively maintained: last
update from June 2022

2 / 2



Why BIRD?
Backup Slide

FRRouting

! Implement ISIS and OSPF

! Open-Source

! C code

! Actively maintained: last
update from June 2022

% Many DCE modifications

Quagga

! Implement ISIS and OSPF

! Open-Source

! C code

% Actively maintained: last
update from 2018

XORP

! Implement ISIS or OSPF

! Open-Source

! C++ code

% Actively maintained: last
update from 2012

FreeRtr

! Implement ISIS and OSPF

! Open-Source

% Java code

! Actively maintained: last
update from June 2022

2 / 2



Why BIRD?
Backup Slide

FRRouting

! Implement ISIS and OSPF

! Open-Source

! C code

! Actively maintained: last
update from June 2022

% Many DCE modifications

Quagga

! Implement ISIS and OSPF

! Open-Source

! C code

% Actively maintained: last
update from 2018

XORP

! Implement ISIS or OSPF

! Open-Source

! C++ code

% Actively maintained: last
update from 2012

FreeRtr

! Implement ISIS and OSPF

! Open-Source

% Java code

! Actively maintained: last
update from June 2022

2 / 2



Why BIRD?
Backup Slide

FRRouting

! Implement ISIS and OSPF

! Open-Source

! C code

! Actively maintained: last
update from June 2022

% Many DCE modifications

Quagga

! Implement ISIS and OSPF

! Open-Source

! C code

% Actively maintained: last
update from 2018

XORP

! Implement ISIS or OSPF

! Open-Source

! C++ code

% Actively maintained: last
update from 2012

FreeRtr

! Implement ISIS and OSPF

! Open-Source

% Java code

! Actively maintained: last
update from June 2022

2 / 2


	Backup Slides
	Appendix

