

Università degli Studi di Padova

Implementation of a Channel Model for Non-Terrestrial Networks in ns-3

Mattia Sandri, Matteo Pagin, Marco Giordani, and Michele Zorzi Department of Information Engineering, University of Padova, Italy

University of Padua - Department of Information Engineering

SIGNET Research Group

Outline

- Non-Terrestrial Networks
- ns-3 implementation
- Results and performance evaluation
- Conclusions and future work

Non-Terrestrial Networks (NTNs)

- In 2018, 55% of the global population lived in urban areas.
- 67% of the world's population had a mobile subscription, but...
- …only 3.9 billion people used the Internet → 3.7 billion people unconnected [1]!

U.S. LTE coverage (~areas where users can expect 5 Mbps DL, 1 Mbps UL) of AT&T, T-Mobile, UScellular, and Verizon, Source: <u>FCC</u>

Non-Terrestrial Networks (NTNs)

- NTNs ~ use of aerial vehicles and satellites to provide cellular coverage.
- Comprises:
 - Satellites (focus of this work)...
 - ...and also High Altitude Platform Stations (HAPS) and
 - Unmanned Aerial Vehicles (UAV).
- Satellites have been used in the past to offer services such as phone, television broadcasting.
- In the early 2010s the cost of satellite deployments has decreased, enabling a new set of satellite-offered services and giving rise to a renewed research interest.

UAVs 200 - 1000 m

Non-Terrestrial Networks (NTNs)

Satellite orbits:

- Geostationary Equatorial Orbit (GEO)
 - Rotates synchronously with the Earth.
 - Vast coverage area on the ground.
 - Long propagation distances.
- Medium Earth Orbit (MEO)
- Low Earth Orbit (LEO)
 - Shorter propagation distances.
 - Orbits around the Earth multiple times per day.
 - Relatively small coverage area on the ground.

State of the art and contributions

- NTNs are considered one of the key technology enablers for 6G...
- ...however, most NTN simulators, e.g., *5G K-Simulator*, *5GVienna*, and *Simu5G*, are proprietary, and/or require some type of commercial license to be used.
- Open-source options exist, but they tend to sacrifice higher layers accuracy for the sake of reducing computational complexity, e.g., 5G-air-simulator.
- → this work aims at filling these gaps, implementing in ns-3 the 3GPP TR 38.811 channel model → paving the way towards a 5G NR/6G NTN simulator.

Channel model implementation

- The **baseline model is the 3GPP TR 38.901**, implemented in [1] and which the 3GPP TR 38.811 [6] extends to model non-terrestrial wireless links.
- Notably, TR 38.811 considers also:
 - The impact of longer propagation distances (modified doppler shift, non-negligible propagation delay).
 - Atmospheric absorption, ionospheric and tropospheric scintillation.
- Our implementation extends [1] by both modifying the existing code and creating new classes.

NTN Channel Model Implementation

- A new mobility model, i.e.,
 GeocentriConstantPositionMobilityModel:
 - Accounts for the Earth spherical shape and the satellite orbits.
 - Estimate and accounts for the elevation angle.
 - Supports Earth Centered Earth Fixed (ECEF) and geographic coordinates, and provide conversion methods between them.
 - Compatible with the ns-3 planar Cartesian coordinates, i.e., conversion to/from the former to achieve compatibility with the rest of the existing code.

Cartesian coordinate system

Earth Centered Earth Fixed coordinate system

NTN Channel Model Implementation

- A new antenna model, i.e., CircularApertureAntennaModel
 - Antenna field pattern based on the Bessel function of the first kind.
 - Conversely from the currently implemented models (CosineAntennaModel, ParabolicAntennaModel), CircularApertureAntennaModel implements the exact pattern with no approximations.
 - Leverages the efficient Bessel functions implementation introduced with C++17.

NTN Channel model implementation

Additions:

- Atmospheric absorption
 - Based on the International Telecommunication Union (ITU) model P.676 [2].
 - Relevant for frequencies above 10 GHz, or when dealing with small elevation angles (< 10°).
- Scintillation
 - Ionospheric scintillation: based on the Gigahertz scintillation model from ITU model P.531 [3]. Relevant only for frequencies < 6 GHZ.
 - Tropospheric scintillation: non-negligible only for frequencies > 6 GHz, and based on data given in ITU model P.618 [4].

NTN Channel Model Implementation

Class: ThreeGppPropagationLossModel

- Support for all NTN propagation scenarios: Dense Urban, Urban, Suburban and Rural.
- Path loss modeling for NTN scenarios.
- Shadow fading and clutter loss parameters for NTN scenarios.

Class: ThreeGppChannelModel

- Support for all NTN propagation scenarios.
- Support for NTN-small scale fading, via the corresponding 3GPP parameters tables [6].
 - Each parameter depends on: frequency band, scenario, line of sight conditions, and *elevation angle*.

Simulation setup

- First, we perform link-level simulations to validate our implementation.
- We deploy two nodes:
 - "UE" on the ground.
 - "gNB" in orbit.
- We inspect the SNR, by computing the PSD of the received signal after the channel between the nodes.
- We average over 100 channel realizations to account for the statistical nature of the channel.

	Ground	Orbit			
Antennas	Uniform Planar Array (UPA) - Circular Aperture	Array (UPA) - Aperture Circular Aperture			
TX power, gain, noise figure	Set according to Table 6.1.1.1-1[5]				
Frequency	S band (2 GHz) - Ka band (20 - 30 GHz)				
Bandwidth	400 KHz				
Altitude	1 m	600 km (LEO) 1200 km (LEO) 35'786 km (GEO)			
Simulation duration	1 s				

Channel model calibration

- We first calibrate our implementation, by comparing link-level results with the reference ones provided by 3GPP in Tab. 6.1.3.3-1, TR 38.811 [5].
- We consider eight of the scenarios outlined by 3GPP in [5], which comprise all types of orbits and frequency bands combinations.
- The obtained average SNR values deviate at most of 0.4 dB from the reference ones, thus validating our implementation.

3GPP scenario	Mode	Source	FSPL [dB]	Atmospheric Loss [dB]	Scintillation Loss [dB]	SNR [dB]
1	DL	3GPP	210.6	1.2	1.1	11.6
		Obtained	210.6	1.4	1.1	11.3
1	UL	3GPP	214.1	1.1	1.1	0.5
1		Obtained	214.2	1.4	1.1	0.1
6	DL	3GPP	179.1	0.5	0.3	8.5
0		Obtained	179.9	0.5	0.3	8.6
6	UL	3GPP	182.6	0.5	0.3	18.4
0		Obtained	182.6	0.5	0.3	18.4
0	DL	3GPP	159.1	0.1	2.2	6.6
,		Obtained	159.1	0.0	2.2	6.7
٥	UL	3GPP	159.1	0.1	2.2	2.8
,		Obtained	159.1	0.0	2.2	2.4
14	DL	3GPP	164.5	0.1	2.2	7.2
14		Obtained	164.5	0.0	2.2	7.3
14	UL	3GPP	164.5	0.1	2.2	-2.6
14		Obtained	164.5	0.0	2.2	-3

Link-level simulations

- Then, we analyze the impact of the carrier frequency (0.5 GHz 100 GHz) on the SNR.
- We deploy a GEO satellite, transmitting a downlink signal towards a parabolic antenna on the ground.
 - The TX power is 37.5 dBm, with a 90° elevation angle.
- Attenuation peak ~60 GHz caused by oxygen absorption.

Link-level simulations

- We complete our link-level analysis by performing a mobility test.
- We deploy a satellite which transmits downlink signals towards a parabolic antenna on the ground.
 - The TX power is 37.5 dBm.
 - Satellite varies its altitude in [300, 1600] km (top) and its longitude in [8.8, 14.8]° (bottom).
 - In the longitude test, the receiver is perpendicular to the satellite at 11.8°, while the elevation angle is fixed to 90° for the altitude test.

End-to-end simulations

- Preliminary 5G NR end-to-end simulations using the mmWave module [7].
- Satellite gNB exchanges 10 Mbps constant bitrate UDP application data with a UE on the ground.

Scenario:	1 GEO	6 LEO600	9 LEO600	14 LEO1200
Tx Power:	37.52 dBm	21.52 dBm	48.77 dBm	54.77 dBm
Tput:	3.811 Mbit/s	3.286 Mbit/s	4.101 Mbit/s	5.161 Mbit/s
Drop ratio	0.61	0.67	0.45	0.36
Frequency band:	Ka-band	Ka-band	S-band	S-band
UE terminal:	VSAT	VSAT	Handheld	Handheld

Comparison between 4 of the scenarios (1, 6, 9, 14) outlined by 3GPP in Sec. 6, TR 38.821 [5].

- Increasing satellite altitude 600 km \rightarrow 1200 km requires an increase in the TX power 75 W \rightarrow 300 W.
- Up to 67% packet loss in Scenario 6.
- Communication is possible even with a GEO orbit, from an SNR standpoint... however, one-way
 propagation delay > 119.2 ms!

16

Conclusions and future work

TLDR:

- We implemented the TR 38.811 channel model in ns-3, extending the mainline ns-3, and thus enabling full stack end-to-end performance evaluation of NTN scenarios.
- We calibrated our implementation using 3GPP reference values.

As part of our future work, we plan to:

- Account for the non-negligible propagation delay.
- Extend proposed mobility model with the support for realistic orbits.
- Support more complex simulations, such as:
 - Simulations with moving UEs and satellites.
 - HAP and UAV scenarios.

Thank you for your attention.

Questions, suggestions...?

18

Università degli Studi di Padova

Implementation of a Channel Model for Non-Terrestrial Networks in ns-3

Mattia Sandri, Matteo Pagin, Marco Giordani, and Michele Zorzi Department of Information Engineering, University of Padova, Italy

University of Padua - Department of Information Engineering

SIGNET Research Group

Backup slides

University of Padua - Department of Information Engineering

Link-level simulations

S-band 2 GHz BW: 30MHz UE antenna: UPA 2x2

- The use of handheld devices limits UL capabilities.
- High TX power (75W) required for DL.

Satellite Altitude [km]

- More energy efficient thanks to the use of VSAT antennas.
- SNR > 0dB in UL.

Ka-band 20-30 GHz BW: 40MHz UE terminal: VSAT 39.7 dB

References

- [1] Chaoub, Abdelaali, et al. "6G for bridging the digital divide: Wireless connectivity to remote areas." IEEE Wireless Communications 29.1 (2021): 160-168.
- [2] Tommaso Zugno, Michele Polese, Natale Patriciello, Biljana Bojović, Sandra Lagen, and Michele Zorzi. 2020. Implementation of a Spatial Channel Model for ns-3. In Proceedings of the 2020 Workshop on ns-3 (WNS3 '20), ACM
- [3] ITU-R P.676: Attenuation by atmospheric gases in the frequency range 1-350 GHz
- [4] ITU-R P.531: Ionospheric propagation data and prediction methods required for the design of satellite networks and systems
- [5] ITU-R P.618: Propagation data and prediction methods required for the design of Earth-space telecommunications systems
- [6] 3GPP TR 38.821: Solutions for NR to support Non-Terrestrial Networks (NTN)
- [7] 3GPP TR 38.811: Study on New Radio (NR) to support non-terrestrial networks
- [8] M. Mezzavilla et al., "End-to-End Simulation of 5G mmWave Networks"

NTN: Channel Model Implementation

- Bold: newly implemented code
- Dotted: modifications to the existing code

