From Traces to Transformation: Leveraging ns-3 as a Digital Twin for Next-generation Networks

WNS3 2023 Invited Talk

Helder Fontes – <u>helder.m.fontes@inesctec.pt</u>

Manager of the Wireless Networks Research Area at CTM, INESC TEC Invited Assistant Professor at University of Porto

June 28th, 2023

INSTITUTE FOR SYSTEMS AND COMPUTER ENGINEERING, TECHNOLOGY AND SCIENCE

- Context and Motivation
- Trace-based Simulation Approach
- ns-3 as a Network Digital Twin: new Data-driven Models
- Example of Ongoing Projects for Next-generation Networks
 - HE CONVERGE https://converge-project.eu/
 - HE SuperIoT https://superiot.eu/

CONTEXT AND MOTIVATION

Context Main research lines and topics

- On-demand Communications for Extreme Environments
 - Location, Traffic, QoS, Slicing and Energy-aware
- Network Simulation, Digital Twins
- Mesh Networks, Multi-technology Gateways, Overlay Networks
- Wi-Fi, 5G/6G, Satellite, IoT
- Machine Learning for Networking

DE ENGENHARIA

CULDADE JIVERSIDA

Context On-demand Airborne Networks

Context Maritime Multimodal Long-range Communications

Context Examples of the platforms

NHARIA

Problem and Objective

Problem

- Emerging Testbeds experiments are difficult to repeat and reproduce
 - Unstable physical conditions
 - Cost and operational constraints
 - Simulation is too optimistic

Objective

- Enable repeatable and reproducible experiments without access to the testbed
 - Accurately reproduce Real-World Experimental conditions in ns-3

Limited Performance Evaluation and Validation

Trace-based Simulation Approach

(since 2017)

U. PORTO EUP FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO

Trace-based Simulation Approach

- Capture Traces of Real Experiments
 - Position of Nodes
 - GPS or cartesian coordinates
 - Radio link quality
 - Signal-to-Noise Ratio (SNR)
 - Other metrics

FACULDADE DE ENGENHARIA JNIVERSIDADE DO PORTO

Trace-based Simulation Approach

- Reproduce Traces in ns-3
 - Configuration of Wi-Fi Cards \rightarrow Channel, BW, standard, etc.
 - Positions of Nodes → WaypointMobilityModel
 - Link Quality \rightarrow <u>Trace-based Simulation Models</u>

U. PORTO FUP FACULDADE DE ENCENHARIA UNIVERSIDADE DO PORTO

Trace-based Simulation Approach

Overview on the TS models

Trace Type	Trace files and its variables	Trace-based ns-3 model	
Link Quality	Signal-to-noise ratio (SNR)	TraceBasedPropagationLoss → Validated in SIMBED	Real SNR
	PHY rate/MCS Number of radio streams	TraceBasedWiFiRateAdaptation → Validated in SIMBED+	MIMO and Rate Adaptation
	Channel occupancy	TraceBasedWiFiChannelOccupancy - "Sender" Model - "Receiver" Model → Validated in SIMBED+	Shared radio spectrum
Position of nodes	Cartesian coordinates	WaypointMobilityModel	

NHARIA

Trace-based Propagation Loss Concept

- Reproduces the **asymmetric SNR** between neighboring nodes
 - Each received successfully received frame is a valid **RSSI** sample
 - The reported **noise floor** is also considered
- ErrorRateModel
 - *Input:* PHY rate, Frame size, SNR (from real node)
 - *Output:* FER
- FER causes frame retransmissions → closer to real **throughput and delay**
 - ns-3 Minstrel **auto-rate** adaptation is used

L. PORTO UP FACULDADE DE ENCENHARIA UNIVERSIDADE DO PORTO

Trace-based Propagation Loss Low *vs.* High SNR Sampling Rate

ł		Average UDP Throughput (Mbit/s)				Relative Error		
Exp.#	Flow	Real Exp.	Trace Sim. HSSR	Trace Sim.	Pure Sim.	Trace Sim. HSSR	Trace Sim.	Pure Sim.
5 (second run)	C->A	5.4	5.3	8.3	28.2		53.9%	426.2%

GENHARIA

Trace-based Wi-Fi Rate Adaptation

Concept

- SNR trace alone is not enough for MIMO scenarios
 - The number of radio streams depends on CSI, influenced by multipath environment
- Captures and Reproduces the MCS and number of radio streams used to transmit frames to each of the neighboring nodes
 - Each successfully received frame is a valid sample
 - A modified Wi-Fi Station Manager is used to reproduce the traces
- Resulting auto-rate adaptation is now deterministic, based on the real traces
- Frame losses remain based on the ns-3 ErrorRateModel
 - MCS is, however, not affected by MAC layer retransmissions

NHARIA

Trace-based Wi-Fi Channel Occupancy

Concept

- Channel occupancy traces
 - Wi-Fi interfaces report **TX-time**, **RX-time** and **total busy time** in *ms*
 - Busy time caused by other nodes from concurrent networks can be calculated
- Sender Model
 - If channel is "sensed" busy, frame is not transmitted
- Receiver Model
 - Causes frame losses on purpose, acting as collisions from hidden nodes
 - Only used if "busy other" at RX node is higher than the TX node (simplification)

U. PORTO EUP FACULDADE DE ENCENHARIA UNIVERSIDADE DO PORTO

Main Conclusions

- TS approach enable ns-3 to be used as a Digital Twin for Wireless Testbeds
 - Saves resources
 - Perpetuates experiments, even if the original testbeds cease to exist
 - Allows Traces to be referenced in **scientific publications (Reproducibility)**

• Limitation: only reproduces the same conditions (number of nodes, duration of experiments, trajectories, etc.)

ns-3 as a Network Digital Twin: new Data-driven Models

(Since 2021)

19

Objectives

- Develop Data-driven models for specialized/accurate ns-3 Digital Twins
 - Use traces to train **ML-based models** and create new **stochastic models**
 - Enable accurate simulations with different number of nodes, mobility and duration

U. PORTO EUP FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO

Recent Data-driven Models

- ML-based Propagation Loss Model (MLPL)
 - Composed of Path Loss (supervised learning) and Fast Fading Models (stochastic)
 - **Specialized** for a specific scenario/environment
- ML-based Traffic Generation Model
 - Based on GANs and Time Series
 - **Specialized** for specific (type of) user, application, etc.

Eases the generation of real-like IP traffic in Physical and Digital Twins (ns-3)

Patent app.

submitted

- Allows for **data-augmentation** to train traffic classifier (Anomaly detection, App identification, QoS, Traffic Forensics, etc.)
- Stochastic Computational Delay Model
 - Reproduces **computational delays** (e.g., State, Action and Reward) in ns-3
 - Specialized for specific model implementation and hardware profile
 - Tested for Rate-Adaptation ML-based models, but applicable to other applications

U. PORTO EUP FACULDADE DE ENCENHARIA UNIVERSIDADE DO PORTO

Main Conclusions

- Data-driven models represent a transformation leveraging ns-3 as a Digital Twin
 - Allows flexible, but specialized and accurate Digital Twins
 - Saves resources can be used as a realistic Sandbox for real testbeds
 - Perpetuates experimental conditions, even if the original testbeds cease to exist
 - Interpolation and extrapolation is possible
 - **Reproducibility**/Independent Validation is possible
 - Allows Model Checkpoints to be referenced in scientific publications
 - In complement or in substitution of the original datasets (e.g. because of data privacy)
- Limitation: Non-real-time interaction between Digital and Physical Twin

HE CONVERGE - https://converge-project.eu/

HE SuperIoT - https://superiot.eu/

ENGENHARIA DO PORTO

CONVERGE (2023–2026)

Telecommunications and Computer Vision Convergence Tools for Research Infrastructures

Goal: develop innovative toolset combining radio and vision-based communications and sensing technologies under motto "view-to-communicate & communicate-to-view"

- Communications solutions that dynamically and in • real-time take advantage of vision and sensing information
- Vision solutions that take advantage of networks of ٠ cameras, sensing and radio information
- Future integration in European SLICES-RI

- Research Infrastructures (Porto, Oulu, Sophia-Antipolis) 3
- Vertical markets: Telecommunications, Automotive, Health, Media, Industry

Fixed

DE ENGENHARIA DE DO PORTO

CONVERGE (2023–2026)

Telecommunications and Computer Vision Convergence Tools for Research Infrastructures

Participants from the US

the European Union

SuperIoT (2023–2026)

Truly Sustainable Printed Electronics-based IoT Combining Optical and Radio Wireless Technologies

Goal: developing a truly sustainable and highly flexible IoT system based on the use o optical and radio communications, and the exploitation of printed electronics technolog for the implementation of sustainable IoT nodes.

- Energy-autonomous nodes
- Reconfigurable networks
- Use of printed electronics

Co-funded by

Dual-mode energy harvesting and positioning

NOVA SCHOOL OF SCIENCE & TECHNOLOG

GGSNS

SUPER

NHARIA

Thank you!

Questions?

From Traces to Transformation: Leveraging ns-3 as a Digital Twin for Next-generation Networks

WNS3 2023 Invited Talk

Helder Fontes – helder.m.fontes@inesctec.pt