Peter Detzner, Jana Gödeke, Lars Tönning, Patrick Laskowski, Maximilian Hörstrup, Oliver Stolz, Marius Brehler, Sören Kerner

SOLA: A Decentralized Communication Middleware Developed with ns-3

WNS3 2023, June 28–29, 2023, Arlington, VA, USA
Motivation
The world is changing...

Supply Bottlenecks

Pandemic

Mass Production

Customized Products

Flexibility
Transparency
Functionality
Robustness
Scalability
(Re-)Configuration

[Btv14], [LDE22], [Sta20]

Motivation
The world is changing...

Supply Bottlenecks

Pandemic

Mass Production

Customized Products

Flexibility
Transparency
Functionality
Robustness
Scalability
(Re-)Configuration

[Btv14], [LDE22], [Sta20]

Motivation
The world is changing...

Supply Bottlenecks

Pandemic

Mass Production

Customized Products

Flexibility
Transparency
Functionality
Robustness
Scalability
(Re-)Configuration

[Btv14], [LDE22], [Sta20]
Paradigm Shift
From centralized towards decentralized control
Autonomous Mobile Robots

Example Fraunhofer evoBOT™

Robotic System are becoming more and more versatile

Robot-Robot-Collaboration is coming more into focus
Organization of Communication
Publish-Subscribe [SMD19]

Central organized Communication

Decentral organized Communication

Number of Connection Links:
- Participant: $O(1)$
- Broker: $O(N)$

Number of Connection Links:
- Worst-Case: $O(N)$

Star-Topology: Either the broker or the sender has $O(N)$ connection links

No approach just works on a subset, e.g., $O(n)$ mit $n \ll N$
SOLA: A decentralized communication framework

Overview

Decentralization on application layer

Management Overlay
- Logical network overlay connecting peers
- Enables lookup for other peers

Event Dissemination
- Topic-based Publish-Subscribe
- \((m:n)\)-Broadcast on application layer
A closer look

Simple API

Modular components

SOLA

Application

start/stop
set_cb_recv_data

add/update/remove/find services

send_data

publish/subscribe to/unsubscribe from event

event updates/recv_data/search results

Management Overlay
(Structured Peer-to-Peer Network and Service/Peer Discovery)

SOLA

Event Dissemination
(Publish-Subscribe)

SOLA Network Interface
SOLA: Management Overlay

Management Overlay:

- Minimal height tree overlay network (MINHTON) [LDB23]
- Tree overlay network with fixed fanout m
- Allows searching for other peers with predicate/ query like $\phi_1 > 42$ [DGB22]

Join (Hops): $O(m \cdot \log_m N)$

Leave (Hops): $O(m \cdot \log_m N)$

Peer Discovery (Hops):
Insert/Update/Delete: $O(1)$
Search: $O_{BC}(2 \cdot |DSN|)$

Other structures and protocols could be used as well

[LDB23] Laskowski, Patrick; Detzner, Peter; Bondorf, Steffen: Tree-structured Overlays with Minimal Height: Construction, Maintenance and Operation. In: 17th ACM International Conference on Distributed and Event-based Systems, 2023 (will be presented tomorrow :)

SOLA: Event Dissemination

Costs to subscribe/unsubscribe related to MINHTONs costs

Not sending duplicates (in theory assuming no node failures :-)

Event Dissemination:

- Deterministic message distribution with Unicasts (Application Layer Multicast)
- Uses MINHTON structure for each topic
- Creates spanning trees for every initial sender

Other structures and protocols could be used as well

Subscribing to a topic

1. **Peers View**
 - **subscribe Topic A**
 - search for peer having key topicA
 - result: None
 - **insert data into own node topicA=<IP from A>**

2. **Global View**
 - **Topic A**

Management Overlay
Event Dissemination
SOLA
Development with ns-3

Key requirements/features:

- Reproducibility and easy debuggability
- Easy configurable application setup
- Testing scalability
- Validating results
- Allow running in simulation or in real-world (using abstractions)
SOLA
Implementation and Integration with ns-3

Key requirements/features:

- Reproducibility and easy debuggability
- Easy configurable application setup
- Testing scalability
- Validating results
- Allow running in simulation or in real-world (using abstractions)
SOLA
Validation and Verification

Logging

- Data is scattered around the network
- Using SQLite in ns-3 simulation
- Using deferred logging
- Abstraction to use other logger mechanisms as well
- Logging for all parts (MO, ED) and on different layers (application, networking)

Scenario Configuration

- Using YAML configuration file
- Passing application and simulation specific configurations
- Automatic parallel execution of different setups
Validation and Verification

<table>
<thead>
<tr>
<th>Logging</th>
<th>Scenario Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100.0% 33</td>
</tr>
<tr>
<td>2</td>
<td>100.0% 34</td>
</tr>
<tr>
<td>3</td>
<td>100.0% 35</td>
</tr>
<tr>
<td>4</td>
<td>100.0% 36</td>
</tr>
<tr>
<td>5</td>
<td>99.4% 37</td>
</tr>
<tr>
<td>6</td>
<td>100.0% 38</td>
</tr>
<tr>
<td>7</td>
<td>100.0% 39</td>
</tr>
<tr>
<td>8</td>
<td>100.0% 40</td>
</tr>
<tr>
<td>9</td>
<td>100.0% 41</td>
</tr>
<tr>
<td>10</td>
<td>100.0% 42</td>
</tr>
<tr>
<td>11</td>
<td>100.0% 43</td>
</tr>
<tr>
<td>12</td>
<td>100.0% 44</td>
</tr>
<tr>
<td>13</td>
<td>100.0% 45</td>
</tr>
<tr>
<td>14</td>
<td>99.4% 46</td>
</tr>
<tr>
<td>15</td>
<td>100.0% 47</td>
</tr>
<tr>
<td>16</td>
<td>100.0% 48</td>
</tr>
<tr>
<td>17</td>
<td>100.0% 49</td>
</tr>
<tr>
<td>18</td>
<td>100.0% 50</td>
</tr>
<tr>
<td>19</td>
<td>100.0% 51</td>
</tr>
<tr>
<td>20</td>
<td>100.0% 52</td>
</tr>
<tr>
<td>21</td>
<td>100.0% 53</td>
</tr>
<tr>
<td>22</td>
<td>100.0% 54</td>
</tr>
<tr>
<td>23</td>
<td>100.0% 55</td>
</tr>
<tr>
<td>24</td>
<td>100.0% 56</td>
</tr>
<tr>
<td>25</td>
<td>99.4% 57</td>
</tr>
<tr>
<td>26</td>
<td>100.0% 58</td>
</tr>
<tr>
<td>27</td>
<td>100.0% 59</td>
</tr>
<tr>
<td>28</td>
<td>100.0% 60</td>
</tr>
<tr>
<td>29</td>
<td>98.8% 61</td>
</tr>
<tr>
<td>30</td>
<td>99.4% 62</td>
</tr>
<tr>
<td>31</td>
<td>100.0% 63</td>
</tr>
<tr>
<td>32</td>
<td>100.0% 64</td>
</tr>
</tbody>
</table>
SOLA
ns-3 network structure

Layer

Transport
- UDP
- No node failure and package loss

Internet
- Separate IP subnets
- Static IP routing

Link
- ns-3 CSMA model
- ns-3 wireless model
- Using pre-filled ARP tables [MAD19]

Communication topology:
- Application layer: decentralized
- Link layer: star-topology (centralized)

Use Case: Self-Organized Material Flow

Initial Setup

Precedence Graph with 9 Transport Orders

Temporal Constraints (Deadlines)

Heterogenous AMRs
Use Case: Self-Organized Material Flow

System Design

Icons and Figures: Fraunhofer IML
Use Case: Self-Organized Material Flow
Visualization with NetSimulyzer [BGR21]

Use Case: Self-Organized Material Flow

Solution Space

Icons and Figures: Fraunhofer IML
Use Case: Self-Organized Material Flow
Messages sent and received

Management Overlay

(m:n) Event Dissemination

(1:1)-Communication

Icons: Fraunhofer IML, Figures: own work
Conclusion

Decentral organized communication SOLA

Fully developed and integrated with ns-3

Proof-Of-Concept with Self-Organized Material Flow
Future Work

Tested and verified protocols and layers

Wi-Fi Handover

More Layer-7 applications and evaluations

Simplified documentation

Deployment in real-world

SOLA
(Cost reduction: Peer Discovery, exploiting local view, …)

Connecting to other simulations, e.g., ROS2, NVIDIA, …

Optimization

Image: Adobe, ns-3 Logo: www.nsnam.org
Thank you for your attention!
Questions?

https://github.com/iml130/sola