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Please bear with me

• I’m a TCP insider … but an
ns-3 outsider  L

• As announced, this is a newbie’s
experience report

• Please don’t get mad, as I will criticize your tool….
– Instead, take it as: “aha, to make it idiot-proof, even for fools like 

him, we should…”

… and feel free to ask me TCP questions instead  J

Image by daniel alonso from Pixabay
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Outline

1. There are some problems with ns-3 and TCP…
– Hello world

2. ... but when it works, it's impressive!
– An example: something cool that we could do with ns-3 + TCP

3. And now what?
– The role of ns-3 in TCP (and related) research
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Part 1: Hello world
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“Hello world” in TCP land

No, this is not it:

./ns3 run hello-simulator

Hello Simulator

The point of “hello world” is to confirm that the 
necessary things are in place and working, such 
that we can take the next steps (in coding)

– I can write to the console; probably, I can now write 
various programs with input and output
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Instead…

Capacity limit

1 BDP queue limit

Queue drains, and 
begins to grow again
(RTT grows)

Packet loss; 
RTT doubles 
at this point

Time

cwnd

ssthresh
(initially 
normally 
larger)

IW
(usually 10 
packets  
nowadays)

A simple cwnd plot with TCP Reno
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Hello world in ns-2
set ns [new Simulator]
set cwndf [open cwnd.tr w]

set n0 [$ns node]
set n1 [$ns node]

$ns duplex-link $n0 $n1 5Mb 30ms DropTail
$ns queue-limit $n0 $n1 25

set tcp0 [new Agent/TCP/Linux]
$tcp0 set window_ 1000
$tcp0 set packetSize_ 1460
$ns attach-agent $n0 $tcp0

set sink0 [new Agent/TCPSink/Sack1]
$ns attach-agent $n1 $sink0

$ns connect $tcp0 $sink0

set ftp0 [new Application/FTP]
$ftp0 attach-agent $tcp0

proc plotcwnd {tcpSource outfile} {
global ns

set now [$ns now]
set cwnd [$tcpSource set cwnd_]
puts $outfile "$now $cwnd"
$ns at [expr $now+0.01] "plotcwnd $tcpSource $outfile"

}

#Define a 'finish' procedure
proc finish {} {

global cwndf
close $cwndf
exit 0

}

$ns at 0.0 "plotcwnd $tcp0 $cwndf"
$ns at 0.0 "$ftp0 start"
$ns at 60.0 "finish"

$ns run

BDP:  5 Mbit * 60 ms, in packets:
5 000 000 * 0.06 / 8 / 1500 = 25
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Gnuplot output
set grid; set nokey; plot "cwnd.tr" w l
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A TCP "hello world" in ns-3

• ... begins with: looking for TCP related code in 
the tutorial
– fifth.cc

There's even a nice
cwnd plot right there!

... Not quite like the
previous page: this uses
an error model

Side note about the tutorial: with fifth.cc and tutorial-app.cc, I get a linker error.
(trouble finding the .o file)
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Removing the error model...
em->SetAttribute("ErrorRate", DoubleValue(0.0));
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This must be: a huge capacity or queue

• How to fix this?

– Tutorial chapter "Building Topologies"
PointToPointHelper pointToPoint;
pointToPoint.SetDeviceAttribute("DataRate", StringValue("5Mbps"));
pointToPoint.SetChannelAttribute("Delay", StringValue("2ms"));

• No effect. So, it must be the queue...
– Subsection "Queues in ns-3"
p2p.SetQueue("ns3::DropTailQueue", "MaxSize", StringValue("50p"));

• No effect either.
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~ 6 years ago, Google helped me...
https://stackoverflow.com/questions/38951115/tcp-congestion-window-graph-ns-3 

• For me, this was ns-3.27

• We two were not the 
only ones - see:
https://groups.google.com/g/n
s-3-users/c/M7YqWnvrFJg

"You have, somewhere, an infinite 
(or very large) buffer. No drops, and 
the cwnd grows like a young whale 
in the first 6 months of life."

This tutorial shows 
cwnd plots... so it 
was once easier!

https://stackoverflow.com/questions/38951115/tcp-congestion-window-graph-ns-3
https://groups.google.com/g/ns-3-users/c/M7YqWnvrFJg
https://groups.google.com/g/ns-3-users/c/M7YqWnvrFJg
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... and this solution worked for me, then:
• IPv4AddressHelper?

• Not exactly where I'd 
expect "tc" related 
code...

• But now, with ns-3.38, 
this no longer seems 
to work !
– IPv4AddressHelper 

code block is still there, 
and has evolved

– Removing it: no effect
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Proceeding with ns-3.38...
• The culprit was this line, no need for changes in 

IPv4AddressHelper:
 app->Setup(ns3TcpSocket, sinkAddress, 1040, 10000, 

DataRate("1Mbps"));

• 1 Mbps is less than my bottleneck's capacity
– so, the transfer was application-limited.

• But, is the ever-growing cwnd in the app-limited case "real”
(in ns-3)??
– If so, that's not good
– It would mean: an application, after sending too little for many seconds, 

could immediately “jump” to a large cwnd value
– Else, it’s still a little confusing, as an output…
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No, this cwnd growth is not “real”. Phew.

Changing the 
application rate 
1=>10 Mbps at 30s
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About TCP's default segment size
• Next trouble: Wireshark shows me a packet size of 590, irrespective of how 

I set the MTU on my pointToPoint interface
– A bit of digging yields:  

https://www.nsnam.org/docs/doxygen/d3/dea/classns3_1_1_tcp_socket.html 

• RFC 9293 (TCP standard): “TCP endpoints MUST implement both sending 
and receiving the MSS Option (MUST-14).”

– …but I see no MSS option in the SYN packet.
– "The MSS value to be sent in an MSS Option should be equal to the effective MTU minus 

the fixed IP and TCP headers.”
– “RFC 1191 discusses this implication of many older TCP implementations setting the TCP 

MSS to 536 (corresponding to the IPv4 576 byte default MTU) for non-local destinations, 
rather than deriving it from the MTUs of connected interfaces as recommended.”

https://www.nsnam.org/docs/doxygen/d3/dea/classns3_1_1_tcp_socket.html
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We're slowly getting there...
set grid; plot "ns-3.txt" u 1:($2/1446) w l title “ns-3”, "ns-2.txt" u 1:2 w l title “ns-2”

• Half the sawteeth: this must be delayed ACKs
• But, also, and more concerning: ns-3 goes higher...

I configured InitialCwnd to 2, to be equal to 
ns-2. ns-3’s 10 is a better default though.

The segment size that I configured, 
to reach a packet size of 1500.
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Let's try commenting the tc-related 
IPv4AddresHelper code block again...

A much better result without it!

The code block comment 
says: “Install the default 
traffic control 
configuration if (..) “

My guess:
=> This appears to create 
a queue that should be 
empty, but isn’t…
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Now, without Delayed ACKs  
Config::SetDefault("ns3::TcpSocket::DelAckCount", UintegerValue(1));

Let’s call 
this a

success!
Approximately 
equal at the top!

Different recovery 
in ns-3, that’s ok!

Phase shift seems to be due to cwnd 
getting a little too large… let’s 
investigate.

Hmmm… some 
extra queuing?
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More details on the phase shift

• ns-2’s cwnd values at backoff
– 51.8679, 51.945, 51.9834, 25.5
– 51 was too much. Then, it took an RTT to learn about it… so we kept 

going… hence we got close to 52.
– Either ns-2 rounds down before halving, or it (incorrectly?) uses FlightSize

• ns-3’s cwnd values at backoff
– 76538, 76565, 76592, 36150
– Divided by 1446 (segment size): 52.9308, 52.9495, 52.9682, 25
– Getting close to 52, I can understand, but close to 53?
– Getting from this to 25 is 100% correct, and interesting…
– In tcp-congestion-ops.cc, ssthresh is based on bytesInFlight - Correct!
– We can trace this variable too; it reaches exactly 73746 / 1446 = 50 !

There should probably be 
51-1=50 packets in flight
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ns-3’s BytesInFlight vs. ns-2’s cwnd

Now, the phase shift is due to ns-2’s 
plotted cwnd not dropping far 
enough (25.5).

I don’t understand why cwnd grows close 
to 53… but the outcome (bytes in flight) 
is now really precise.
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REALLY precise!

We left Linux’ IW at 10:
it doesn’t really matter 
here…

Linux reaches 
exactly 50 at 
the top.

Linux goes down 
to exactly 25
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… as long as we keep the queue small.
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Let’s try “TCP Linux Reno”

• About increase behavior, the ns-3 docs say:
https://www.nsnam.org/docs/models/html/tcp.html
– "Linux follows Appropriate Byte Counting while ns-3 NewReno does not.”
– "cwnd is incremented by a full-sized segment (SMSS). In contrast, in ns-3 

NewReno, cwnd is increased by (1/cwnd) with a rounding off due to type 
casting into int."

– ns-2 seems to have the same increase:
the lines were parallel. That’s ok.

• But, this plot in the documentation
is strange... 3 sawteeth?
That's too slow!
– ... and it's not what we just saw.

https://www.nsnam.org/docs/models/html/tcp.html
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Testing TCP Linux Reno: pretty similar

This looks a 
little odd
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….but I discovered something weird
...By accident, in loss recovery

– This is with 5 Mbps, 2ms (i.e. 4ms RTT), 50 packet queue (3 BDPs)

Yes, this really looks 
a little odd

More ACKs, worse 
behavior? Unusual.

Q: What about 4 
BDPs?

A: The same ever-
growing cwnd as 
with “NewReno”
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Loss recovery: perhaps okay with 2 nodes
BDP: 15Mbps, 20ms RTT => 25 packets

Queue: 25 packets
Classic Recovery

SACK enabled
TCPNewReno

100 ms: a little long...
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Loss recovery: perhaps okay with 2 nodes  /2
BDP: 15Mbps, 20ms RTT => 25 packets

Queue: 11 packets
Classic Recovery

SACK enabled
TCPNewReno

I see no increase,
yet halving... Hmmm....

Gradually getting
smoother... Hmmm....
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Next:
3 nodes

WHAT have 
I done 
wrong?

How can 
this "ruin" 
the cwnd?

Again: BDP = 25 packets
Now: 5Mbps, 60ms RTT
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Beware of the following diagrams

– Not suitable for children
– Not suitable for TCP researchers
– Not a pretty sight

Look away, close your eyes, ...

Common parameters: IW10, no delayed ACKs
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Loss recovery, 3 nodes
BDP: 5Mbps, 60ms RTT => 25 packets

Queue: 11 packets
Classic Recovery

SACK enabled
TCPNewReno

RTO, followed by
Slow Start. Not entirely wrong...
But: alone, from Slow Start
into a FIFO queue?
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Loss recovery, 3 nodes   /2
BDP: 5Mbps, 60ms RTT => 25 packets

Queue: 11 packets
Classic Recovery
SACK disabled

TCPNewReno
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Loss recovery, 3 nodes   /3
BDP: 5Mbps, 60ms RTT => 25 packets

Queue: 11 packets
Default Recovery

SACK disabled
TCPNewReno
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Loss recovery, 3 nodes   /4
BDP: 5Mbps, 60ms RTT => 25 packets

Queue: 11 packets
Default Recovery

SACK disabled
TCPLinuxReno
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Let me ease the pain a little…

It is possible for heavy queuing to cause quite strange effects
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Linux TCP newreno

Queue = 25 packets
(1 BDP)

• Linux tests with 3 nodes

• newreno CC.

• “PFIFO” queue

• packet size 1500
• 15 Mbps * 20 ms = 25 pkt BDP

Doesn’t look great?!
They’re still changing it…
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Linux TCP newreno, FIFO queue 4 BDPs

RTO

But it was spurious!

Packet lost, again

Can’t fix? So, RTO again?

It was spurious J

Just guesswork!
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Linux TCP newreno, FIFO queue 20 BDPs

Now, I refuse to make guesses!
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Tracing drops

AsciiTraceHelper ascii;
pointToPoint.EnableAsciiAll(ascii.CreateFileStream("out.tr"));

… shows me no drops.

• I also tried this whole exercise with three nodes (sender – p2p –
router – p2p receiver), and tried tracing on the two p2p links
– The exact same result – and also no traced drops anywhere.

• Maybe the drops happened in a “higher” queue… but then, what’s 
the point of this trace?
– In ns-2, this ascii trace file showed such drops
– Maybe it’s my bad. Or maybe we need a simpler “trace-all”.
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Summary of issues
• Code

– Non-greedy sender: cwnd keeps growing
• Not very harmful but confusing as output

– Large queue: cwnd keeps growing
– TCP segment size: send the MSS option, make the choice depend on the MTU
– tc related code in IPv4AddressHelper: detrimental behavior – seems like an extra 

queue of a few packets?
– Maximum cwnd seems to large… though the outcome (bytes in flight) is right
– TCPLinuxReno shows something odd in cwnd growth, but it may not matter
– More serious: TCPLinuxReno recovery failure without delayed ACKs. Yes, 

recovery is complex, but it cannot be worse with more ACKs.
– Generally, recovery rather slow with 2 nodes, and weird with 3 nodes
– Perhaps not very practical that drops are not visible in ascii trace files

• Tutorial / Documentation
– Didn’t know how to run fifth.cc (linker problem)
– Dubious TCPLinuxReno vs. TCPNewReno diagram
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Generally, the tutorial could
be easier...

• Why do I need to write a new
application just to access cwnd?

• Cool to learn about writing apps,
but this should be an extra

The final 
"hello world".
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Part 2:
Only ns-3 could do this for us

Work published in:

• Giuseppe Bianchi, Michael Welzl, Angelo Tulumello, Giacomo Belocchi, Marco Faltelli, Salvatore Pontarelli: "A 
Fully Portable TCP Implementation Using XFSMs", demo, ACM SIGCOMM 2018, Budapest, Hungary.
3rd place in Undergraduate Student Research Competition (SRC) awarded to Angelo Tulumello

• Giuseppe Bianchi, Michael Welzl, Angelo Tulumello, Francesco Gringoli, Giacomo Belocchi, Marco Faltelli, 
Salvatore Pontarelli: "XTRA: Towards Portable Transport Layer Functions", in IEEE Transactions on Network 
and Service Management, On page(s): 1-15, Print ISSN: 1932-4537, Online ISSN: 1932-4537, October 2019.

Code:  https://github.com/angelotulumello/xtra

https://github.com/angelotulumello/xtra
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Research idea: make TCP portable

• Also to hardware
– using XFSMs  (eXtended Finite State Machines)

• Seemed feasible for Slow Start, Congestion 
Avoidance…  but: Loss Recovery???

• TCP loss recovery is quite complex!
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TCP loss recovery in a nutshell
• Timeout or DupACKs (Fast Retransmit / Fast Recovery)

– But also parse “partial ACKs” (NewReno, RFC 6582)

• We absolutely need to stay in FR: need enough information from ACKs
– So, transmit in response to DupACKs #1, #2: Limited Transmit, RFC 3042
– … so, retransmit if there’s no new data: Early Retransmit, RFC 5827

• Let’s do even better, using SACK information
– What to send when, and how much?

• “Conservative Loss Recovery Algorithm”, RFC 6675
• Well known related variant, not standardized: FACK

– Get a good (almost “paced”) traffic pattern
• Originally, only in Linux: “Rate Halving”
• Later: Proportional Rate Reduction (PRR), RFC 6937  (now being updated)

Matt Mathis, Jamshid Mahdavi: 
“Forward acknowledgement: 
refining TCP congestion control”, 
SIGCOMM’96.
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TCP loss recovery in a nutshell

• Tail loss: the end of a short flow
– Try an extra timer: Tail Loss Probe (TLP)
– No, better, use timestamps for everything!
– Combination: Recent Acknowledgement (RACK) + TLP

algorithm in RFC 8985

• What if we get it wrong?
– Spurious Loss Recovery, using Timestamps (Eifel algorithm, RFCs 3522, 4015)
– … using Duplicate SACK (DSACK) information: RFC 3708
– … using intelligent probing (new data instead of rexmit): F-RTO, RFC 5682

• … and the RTO calculation can go wrong, too
– RTO Restart: RFC 7765
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Idea: replace all of loss recovery

• It gets much simpler with a timer

• Not a “pluggable congestion control”
– Not much fun to implement in an OS kernel

• Needed to compare against real Linux and FreeBSD … 
so, real-life tests
– ns-3’s emulation capabilities to the rescue!
– ns-3 as a sender, ncat as a receiver
– Starting ns-3 from “TEACUP” scripting environment

(TCP Experiment Automation Controlled Using Python 
(TEACUP) ) - http://caia.swin.edu.au/tools/teacup/

http://caia.swin.edu.au/tools/teacup/
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Outcome: suitable indeed!
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S. Zander, G. Armitage, "Minimally-Intrusive Frequent Round Trip Time Measurements 
Using Synthetic Packet-Pairs", (short paper) 38th IEEE Conference on Local Computer 
Networks (LCN), Sydney, Australia, October 2013.
http://caia.swin.edu.au/tools/spp/

We could even use SPP !
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However, multiple flows…

• Up to 3 flows send SYN at the same time
– The next flows only start after the first SYN-ACK arrives

Caused by this code in "src/internet/model/arp-cache.cc”:

.AddAttribute("PendingQueueSize",
 "The size of the queue for packets pending an arp reply.",
 UintegerValue(3),
 MakeUintegerAccessor(&ArpCache::m_pendingQueueSize),
 MakeUintegerChecker<uint32_t>())

This default setting can be changed by using the
following line (to be used before installing the Internet stack on the nodes):
Config::SetDefault("ns3::ArpCache::PendingQueueSize", UintegerValue(10));

Thank you, Mohit P. Tahiliani 
& Tommaso Pecorella !

ArpCache… how 
could anyone guess?
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… and yes, also multiple flows!
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Part 3: The role of ns-3 in TCP 
(and related) research
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ns and TCP

• Let's face it: people hardly ever use ns-3 for TCP
– (Real!) conversation with a colleague:

• Me: "I'm preparing these keynote slides... and I find many strange things 
related to TCP."

• Colleague: "That's not surprising: ns-3 isn't really meant for TCP, right?"

– Definitely not the first time I hear this !

• ns-2 was the de facto standard for TCP development
– Significant overlap between people writing...
 1. ns-2 code 2. FreeBSD code 3. RFCs

Q1: Why has this changed?  (What can we do?)
Q2: Do we even want to go back to this?  (If so, why?)
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Q1: Why has this changed?

(What can we do about it?)
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6 reasons to use a simulator for TCP
(and related) research

1. Trustworthy reference code

2. Easier than changing an OS kernel

3. Faster (simulation time != real time)

4. Able to simulate richer scenarios

5. Very consistent behavior: without randomness, the same 
input always yields the same output

6. Availability of others' code
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ns-2 (once upon a time, not now!) vs. ns-3

ns-2 ns-3

1. Trustworthy reference code 👍 👎

2. Easier than changing an OS kernel 👍 👎

3. Faster (simulation time != real time) 👍 👍

4. Able to simulate richer scenarios 👍 👍

5. Consistency (without randomness) 👍 👍

6. Availability of others' code 👍 👍

My own example was 
case 2...  but focusing on 
recovery is a bit special.

Case 5 is not a big deal: 
testbed behavior can be 
quite consistent.

Case 4 may well be the 
primary reason for some 
people to use ns-3+TCP!
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What's needed for "thumbs up"?

• Trustworthy reference code
– That could be written...  also needs some validation results, some 

community convincing… perhaps a paper showing it?

• Easier than changing an OS kernel
– Fix errors, make the tutorial easier!
– Also, ease of use: e.g., accessing cwnd
– Add a TCP chapter? E.g., on “hello world” without artificial loss!

• Faster (simulation time != real time)
– I don’t know... maybe an unfounded complaint??

• Availability of others' code
– This should happen as a consequence.
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Q2: Do we even want to go 
back to this?

(If so, why?)
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TCP is a mess today…
Some guesswork – discrepancy examples (really only my belief):

• Proposed Standard RFCs that are not implemented in open code
– HyStart++ (RFC 9406), Congestion Manager (RFC 3124),

User Timeout Option (UTO) (RFC 5482)

• Experimental / Informational RFCs that are widely used
– IW10 (RFC 6928), RACK-TLP (RFC 8985), Cubic (RFC 8312),

PRR (RFC 6937), Early Retransmit (RFC 5827), DSACK (RFC 3708), 
parts of TCB sharing (RFC 9040)

• Things that are widely used but no RFCs
– HyStart (not HyStart++)
– Pacing
– BBR

Some of these are on their way 
towards Proposed Standard.
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TCP is a mess today…   /2

• Can the IETF even keep track?
– Open code: Linux ( = Google) vs. FreeBSD
– Closed code: Microsoft vs. Apple
– ... vs. IETF standards!

• Most researchers work with the Linux code

• ML-based congestion control: how could we even standardize?

• BBR moves ahead, in various ways...  will they update the draft? 
When?
– draft describes BBRv2, but Linux code is BBRv1
– Still the old BBRv1? Probably not? Rather, BBRv1 ½?

• Perhaps we need a new "authority" code base !
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TCP evaluation

Wireshark trace
Time-sequence
diagram
cwnd plot
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TCP evaluation

Multiple test 
runs, varying 
parameters

• TCP Evaluation Suite: a long set of tests, many outputs
– ns-2 code exists, Internet-draft and paper exists
– Never standardized, and will never be...
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Pantheon  https://pantheon.stanford.edu

On each path, Pantheon runs multiple 
benchmarks per week. Each benchmark 
follows a software-defined scripted workload 
(e.g., a single flow for 30 seconds; or multiple 
flows of cross traffic, arriving and departing at 
staggered times), and for each benchmark, 
Pantheon chooses a random ordering of 
congestion-control schemes, then tests each 
scheme in round-robin fashion, repeating 
until every scheme has been tested 10 times 
(or 3 for partly-cellular paths).

Spread across the 
world, cellular, WiFi 
mesh, ..

https://pantheon.stanford.edu/
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Typical Pantheon output  (per scenario)

Francis Y. Yan, Jestin Ma, Greg D. Hill, Deepti Raghavan, Riad S. Wahby, Philip Levis, 
and Keith Winstein. 2018. Pantheon: the training ground for internet congestion-control 
research. In Proceedings of the 2018 USENIX Conference on Usenix Annual Technical 
Conference (USENIX ATC '18). USENIX Association, USA, 731–743.
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Many mechanisms available

From the Pantheon webpage
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However...

• Wouldn't it be cool if I could run:
ns3 testmytcp protocol_list scenario_choice
... and get such outputs?
With more cc's, and the newest?
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Thank you!

Questions?

Thank you: Mohit P. Tahiliani, Tommaso Pecorella, Safiqul Islam


