
A TCP person’s ns-3 experience report
Michael Welzl

WNS3 2023
28. June 2023

2

Please bear with me

• I’m a TCP insider … but an
ns-3 outsider L

• As announced, this is a newbie’s
experience report

• Please don’t get mad, as I will criticize your tool….
– Instead, take it as: “aha, to make it idiot-proof, even for fools like

him, we should…”

… and feel free to ask me TCP questions instead J

Image by daniel alonso from Pixabay

3

Outline

1. There are some problems with ns-3 and TCP…
– Hello world

2. ... but when it works, it's impressive!
– An example: something cool that we could do with ns-3 + TCP

3. And now what?
– The role of ns-3 in TCP (and related) research

4

Part 1: Hello world

5

“Hello world” in TCP land

No, this is not it:

./ns3 run hello-simulator

Hello Simulator

The point of “hello world” is to confirm that the
necessary things are in place and working, such
that we can take the next steps (in coding)

– I can write to the console; probably, I can now write
various programs with input and output

6

Instead…

Capacity limit

1 BDP queue limit

Queue drains, and
begins to grow again
(RTT grows)

Packet loss;
RTT doubles
at this point

Time

cwnd

ssthresh
(initially
normally
larger)

IW
(usually 10
packets
nowadays)

A simple cwnd plot with TCP Reno

7

Hello world in ns-2
set ns [new Simulator]
set cwndf [open cwnd.tr w]

set n0 [$ns node]
set n1 [$ns node]

$ns duplex-link $n0 $n1 5Mb 30ms DropTail
$ns queue-limit $n0 $n1 25

set tcp0 [new Agent/TCP/Linux]
$tcp0 set window_ 1000
$tcp0 set packetSize_ 1460
$ns attach-agent $n0 $tcp0

set sink0 [new Agent/TCPSink/Sack1]
$ns attach-agent $n1 $sink0

$ns connect $tcp0 $sink0

set ftp0 [new Application/FTP]
$ftp0 attach-agent $tcp0

proc plotcwnd {tcpSource outfile} {
global ns

set now [$ns now]
set cwnd [$tcpSource set cwnd_]
puts $outfile "$now $cwnd"
$ns at [expr $now+0.01] "plotcwnd $tcpSource $outfile"

}

#Define a 'finish' procedure
proc finish {} {

global cwndf
close $cwndf
exit 0

}

$ns at 0.0 "plotcwnd $tcp0 $cwndf"
$ns at 0.0 "$ftp0 start"
$ns at 60.0 "finish"

$ns run

BDP: 5 Mbit * 60 ms, in packets:
5 000 000 * 0.06 / 8 / 1500 = 25

8

Gnuplot output
set grid; set nokey; plot "cwnd.tr" w l

	0

	10

	20

	30

	40

	50

	60

	70

	80

	90

	100

	110

	0 	10 	20 	30 	40 	50 	60

Slow start doubles
cwnd before learning
about the loss.

BDP + queue (BDP) =
50 packets. TCP
exceeds that by a tiny
bit, then reacts.

Backing off by half
means going down to
approx. 25. Close!

The lines are slightly bent because we
take a value per second, not per RTT,
and queue growth affects the update.

ns-2’s default IW: 2 segments

9

A TCP "hello world" in ns-3

• ... begins with: looking for TCP related code in
the tutorial
– fifth.cc

There's even a nice
cwnd plot right there!

... Not quite like the
previous page: this uses
an error model

Side note about the tutorial: with fifth.cc and tutorial-app.cc, I get a linker error.
(trouble finding the .o file)

10

Removing the error model...
em->SetAttribute("ErrorRate", DoubleValue(0.0));

11

This must be: a huge capacity or queue

• How to fix this?

– Tutorial chapter "Building Topologies"
PointToPointHelper pointToPoint;
pointToPoint.SetDeviceAttribute("DataRate", StringValue("5Mbps"));
pointToPoint.SetChannelAttribute("Delay", StringValue("2ms"));

• No effect. So, it must be the queue...
– Subsection "Queues in ns-3"
p2p.SetQueue("ns3::DropTailQueue", "MaxSize", StringValue("50p"));

• No effect either.

12

~ 6 years ago, Google helped me...
https://stackoverflow.com/questions/38951115/tcp-congestion-window-graph-ns-3

• For me, this was ns-3.27

• We two were not the
only ones - see:
https://groups.google.com/g/n
s-3-users/c/M7YqWnvrFJg

"You have, somewhere, an infinite
(or very large) buffer. No drops, and
the cwnd grows like a young whale
in the first 6 months of life."

This tutorial shows
cwnd plots... so it
was once easier!

https://stackoverflow.com/questions/38951115/tcp-congestion-window-graph-ns-3
https://groups.google.com/g/ns-3-users/c/M7YqWnvrFJg
https://groups.google.com/g/ns-3-users/c/M7YqWnvrFJg

13

... and this solution worked for me, then:
• IPv4AddressHelper?

• Not exactly where I'd
expect "tc" related
code...

• But now, with ns-3.38,
this no longer seems
to work !
– IPv4AddressHelper

code block is still there,
and has evolved

– Removing it: no effect

14

Proceeding with ns-3.38...
• The culprit was this line, no need for changes in

IPv4AddressHelper:
 app->Setup(ns3TcpSocket, sinkAddress, 1040, 10000,

DataRate("1Mbps"));

• 1 Mbps is less than my bottleneck's capacity
– so, the transfer was application-limited.

• But, is the ever-growing cwnd in the app-limited case "real”
(in ns-3)??
– If so, that's not good
– It would mean: an application, after sending too little for many seconds,

could immediately “jump” to a large cwnd value
– Else, it’s still a little confusing, as an output…

15

No, this cwnd growth is not “real”. Phew.

Changing the
application rate
1=>10 Mbps at 30s

16

About TCP's default segment size
• Next trouble: Wireshark shows me a packet size of 590, irrespective of how

I set the MTU on my pointToPoint interface
– A bit of digging yields:

https://www.nsnam.org/docs/doxygen/d3/dea/classns3_1_1_tcp_socket.html

• RFC 9293 (TCP standard): “TCP endpoints MUST implement both sending
and receiving the MSS Option (MUST-14).”

– …but I see no MSS option in the SYN packet.
– "The MSS value to be sent in an MSS Option should be equal to the effective MTU minus

the fixed IP and TCP headers.”
– “RFC 1191 discusses this implication of many older TCP implementations setting the TCP

MSS to 536 (corresponding to the IPv4 576 byte default MTU) for non-local destinations,
rather than deriving it from the MTUs of connected interfaces as recommended.”

https://www.nsnam.org/docs/doxygen/d3/dea/classns3_1_1_tcp_socket.html

17

We're slowly getting there...
set grid; plot "ns-3.txt" u 1:($2/1446) w l title “ns-3”, "ns-2.txt" u 1:2 w l title “ns-2”

• Half the sawteeth: this must be delayed ACKs
• But, also, and more concerning: ns-3 goes higher...

I configured InitialCwnd to 2, to be equal to
ns-2. ns-3’s 10 is a better default though.

The segment size that I configured,
to reach a packet size of 1500.

18

Let's try commenting the tc-related
IPv4AddresHelper code block again...

A much better result without it!

The code block comment
says: “Install the default
traffic control
configuration if (..) “

My guess:
=> This appears to create
a queue that should be
empty, but isn’t…

19

Now, without Delayed ACKs
Config::SetDefault("ns3::TcpSocket::DelAckCount", UintegerValue(1));

Let’s call
this a

success!
Approximately
equal at the top!

Different recovery
in ns-3, that’s ok!

Phase shift seems to be due to cwnd
getting a little too large… let’s
investigate.

Hmmm… some
extra queuing?

20

More details on the phase shift

• ns-2’s cwnd values at backoff
– 51.8679, 51.945, 51.9834, 25.5
– 51 was too much. Then, it took an RTT to learn about it… so we kept

going… hence we got close to 52.
– Either ns-2 rounds down before halving, or it (incorrectly?) uses FlightSize

• ns-3’s cwnd values at backoff
– 76538, 76565, 76592, 36150
– Divided by 1446 (segment size): 52.9308, 52.9495, 52.9682, 25
– Getting close to 52, I can understand, but close to 53?
– Getting from this to 25 is 100% correct, and interesting…
– In tcp-congestion-ops.cc, ssthresh is based on bytesInFlight - Correct!
– We can trace this variable too; it reaches exactly 73746 / 1446 = 50 !

There should probably be
51-1=50 packets in flight

21

ns-3’s BytesInFlight vs. ns-2’s cwnd

Now, the phase shift is due to ns-2’s
plotted cwnd not dropping far
enough (25.5).

I don’t understand why cwnd grows close
to 53… but the outcome (bytes in flight)
is now really precise.

22

REALLY precise!

We left Linux’ IW at 10:
it doesn’t really matter
here…

Linux reaches
exactly 50 at
the top.

Linux goes down
to exactly 25

23

… as long as we keep the queue small.

	0

	20

	40

	60

	80

	100

	120

	0 	10 	20 	30 	40 	50 	60

1 BDP

	0

	20

	40

	60

	80

	100

	120

	140

	160

	0 	10 	20 	30 	40 	50 	60

2 BDP

	0

	20

	40

	60

	80

	100

	120

	140

	160

	180

	200

	220

	0 	10 	20 	30 	40 	50 	60

3 BDP

	0

	5000

	10000

	15000

	20000

	25000

	0 	10 	20 	30 	40 	50 	60

4 BDP

24

Let’s try “TCP Linux Reno”

• About increase behavior, the ns-3 docs say:
https://www.nsnam.org/docs/models/html/tcp.html
– "Linux follows Appropriate Byte Counting while ns-3 NewReno does not.”
– "cwnd is incremented by a full-sized segment (SMSS). In contrast, in ns-3

NewReno, cwnd is increased by (1/cwnd) with a rounding off due to type
casting into int."

– ns-2 seems to have the same increase:
the lines were parallel. That’s ok.

• But, this plot in the documentation
is strange... 3 sawteeth?
That's too slow!
– ... and it's not what we just saw.

https://www.nsnam.org/docs/models/html/tcp.html

25

Testing TCP Linux Reno: pretty similar

This looks a
little odd

26

….but I discovered something weird
...By accident, in loss recovery

– This is with 5 Mbps, 2ms (i.e. 4ms RTT), 50 packet queue (3 BDPs)

Yes, this really looks
a little odd

More ACKs, worse
behavior? Unusual.

Q: What about 4
BDPs?

A: The same ever-
growing cwnd as
with “NewReno”

27

Loss recovery: perhaps okay with 2 nodes
BDP: 15Mbps, 20ms RTT => 25 packets

Queue: 25 packets
Classic Recovery

SACK enabled
TCPNewReno

100 ms: a little long...

28

Loss recovery: perhaps okay with 2 nodes /2
BDP: 15Mbps, 20ms RTT => 25 packets

Queue: 11 packets
Classic Recovery

SACK enabled
TCPNewReno

I see no increase,
yet halving... Hmmm....

Gradually getting
smoother... Hmmm....

29

Next:
3 nodes

WHAT have
I done
wrong?

How can
this "ruin"
the cwnd?

Again: BDP = 25 packets
Now: 5Mbps, 60ms RTT

30

Beware of the following diagrams

– Not suitable for children
– Not suitable for TCP researchers
– Not a pretty sight

Look away, close your eyes, ...

Common parameters: IW10, no delayed ACKs

31

Loss recovery, 3 nodes
BDP: 5Mbps, 60ms RTT => 25 packets

Queue: 11 packets
Classic Recovery

SACK enabled
TCPNewReno

RTO, followed by
Slow Start. Not entirely wrong...
But: alone, from Slow Start
into a FIFO queue?

32

Loss recovery, 3 nodes /2
BDP: 5Mbps, 60ms RTT => 25 packets

Queue: 11 packets
Classic Recovery
SACK disabled

TCPNewReno

33

Loss recovery, 3 nodes /3
BDP: 5Mbps, 60ms RTT => 25 packets

Queue: 11 packets
Default Recovery

SACK disabled
TCPNewReno

34

Loss recovery, 3 nodes /4
BDP: 5Mbps, 60ms RTT => 25 packets

Queue: 11 packets
Default Recovery

SACK disabled
TCPLinuxReno

35

Let me ease the pain a little…

It is possible for heavy queuing to cause quite strange effects

36

Linux TCP newreno

Queue = 25 packets
(1 BDP)

• Linux tests with 3 nodes

• newreno CC.

• “PFIFO” queue

• packet size 1500
• 15 Mbps * 20 ms = 25 pkt BDP

Doesn’t look great?!
They’re still changing it…

37

Linux TCP newreno, FIFO queue 4 BDPs

RTO

But it was spurious!

Packet lost, again

Can’t fix? So, RTO again?

It was spurious J

Just guesswork!

38

Linux TCP newreno, FIFO queue 20 BDPs

Now, I refuse to make guesses!

39

Tracing drops

AsciiTraceHelper ascii;
pointToPoint.EnableAsciiAll(ascii.CreateFileStream("out.tr"));

… shows me no drops.

• I also tried this whole exercise with three nodes (sender – p2p –
router – p2p receiver), and tried tracing on the two p2p links
– The exact same result – and also no traced drops anywhere.

• Maybe the drops happened in a “higher” queue… but then, what’s
the point of this trace?
– In ns-2, this ascii trace file showed such drops
– Maybe it’s my bad. Or maybe we need a simpler “trace-all”.

40

Summary of issues
• Code

– Non-greedy sender: cwnd keeps growing
• Not very harmful but confusing as output

– Large queue: cwnd keeps growing
– TCP segment size: send the MSS option, make the choice depend on the MTU
– tc related code in IPv4AddressHelper: detrimental behavior – seems like an extra

queue of a few packets?
– Maximum cwnd seems to large… though the outcome (bytes in flight) is right
– TCPLinuxReno shows something odd in cwnd growth, but it may not matter
– More serious: TCPLinuxReno recovery failure without delayed ACKs. Yes,

recovery is complex, but it cannot be worse with more ACKs.
– Generally, recovery rather slow with 2 nodes, and weird with 3 nodes
– Perhaps not very practical that drops are not visible in ascii trace files

• Tutorial / Documentation
– Didn’t know how to run fifth.cc (linker problem)
– Dubious TCPLinuxReno vs. TCPNewReno diagram

41

Generally, the tutorial could
be easier...

• Why do I need to write a new
application just to access cwnd?

• Cool to learn about writing apps,
but this should be an extra

The final
"hello world".

42

Part 2:
Only ns-3 could do this for us

Work published in:

• Giuseppe Bianchi, Michael Welzl, Angelo Tulumello, Giacomo Belocchi, Marco Faltelli, Salvatore Pontarelli: "A
Fully Portable TCP Implementation Using XFSMs", demo, ACM SIGCOMM 2018, Budapest, Hungary.
3rd place in Undergraduate Student Research Competition (SRC) awarded to Angelo Tulumello

• Giuseppe Bianchi, Michael Welzl, Angelo Tulumello, Francesco Gringoli, Giacomo Belocchi, Marco Faltelli,
Salvatore Pontarelli: "XTRA: Towards Portable Transport Layer Functions", in IEEE Transactions on Network
and Service Management, On page(s): 1-15, Print ISSN: 1932-4537, Online ISSN: 1932-4537, October 2019.

Code: https://github.com/angelotulumello/xtra

https://github.com/angelotulumello/xtra

43

Research idea: make TCP portable

• Also to hardware
– using XFSMs (eXtended Finite State Machines)

• Seemed feasible for Slow Start, Congestion
Avoidance… but: Loss Recovery???

• TCP loss recovery is quite complex!

44

TCP loss recovery in a nutshell
• Timeout or DupACKs (Fast Retransmit / Fast Recovery)

– But also parse “partial ACKs” (NewReno, RFC 6582)

• We absolutely need to stay in FR: need enough information from ACKs
– So, transmit in response to DupACKs #1, #2: Limited Transmit, RFC 3042
– … so, retransmit if there’s no new data: Early Retransmit, RFC 5827

• Let’s do even better, using SACK information
– What to send when, and how much?

• “Conservative Loss Recovery Algorithm”, RFC 6675
• Well known related variant, not standardized: FACK

– Get a good (almost “paced”) traffic pattern
• Originally, only in Linux: “Rate Halving”
• Later: Proportional Rate Reduction (PRR), RFC 6937 (now being updated)

Matt Mathis, Jamshid Mahdavi:
“Forward acknowledgement:
refining TCP congestion control”,
SIGCOMM’96.

45

TCP loss recovery in a nutshell

• Tail loss: the end of a short flow
– Try an extra timer: Tail Loss Probe (TLP)
– No, better, use timestamps for everything!
– Combination: Recent Acknowledgement (RACK) + TLP

algorithm in RFC 8985

• What if we get it wrong?
– Spurious Loss Recovery, using Timestamps (Eifel algorithm, RFCs 3522, 4015)
– … using Duplicate SACK (DSACK) information: RFC 3708
– … using intelligent probing (new data instead of rexmit): F-RTO, RFC 5682

• … and the RTO calculation can go wrong, too
– RTO Restart: RFC 7765

46

Idea: replace all of loss recovery

• It gets much simpler with a timer

• Not a “pluggable congestion control”
– Not much fun to implement in an OS kernel

• Needed to compare against real Linux and FreeBSD …
so, real-life tests
– ns-3’s emulation capabilities to the rescue!
– ns-3 as a sender, ncat as a receiver
– Starting ns-3 from “TEACUP” scripting environment

(TCP Experiment Automation Controlled Using Python
(TEACUP)) - http://caia.swin.edu.au/tools/teacup/

http://caia.swin.edu.au/tools/teacup/

47

Outcome: suitable indeed!

 0

 5

 10

 15

 20

 25

 30

 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

Linux

Segment #

ACK #

TB-TCP
ACK #

Segment #

Se
qu

en
ce

 n
um

be
r X

 1
04

Time (sec)

48

S. Zander, G. Armitage, "Minimally-Intrusive Frequent Round Trip Time Measurements
Using Synthetic Packet-Pairs", (short paper) 38th IEEE Conference on Local Computer
Networks (LCN), Sydney, Australia, October 2013.
http://caia.swin.edu.au/tools/spp/

We could even use SPP !

 20
 22
 24
 26
 28
 30
 32
 34

 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

R
R

T
(m

s)

Time (sec)

TB-TCP RTT
Linux RTT

http://caia.swin.edu.au/tools/spp/

49

However, multiple flows…

• Up to 3 flows send SYN at the same time
– The next flows only start after the first SYN-ACK arrives

Caused by this code in "src/internet/model/arp-cache.cc”:

.AddAttribute("PendingQueueSize",
 "The size of the queue for packets pending an arp reply.",
 UintegerValue(3),
 MakeUintegerAccessor(&ArpCache::m_pendingQueueSize),
 MakeUintegerChecker<uint32_t>())

This default setting can be changed by using the
following line (to be used before installing the Internet stack on the nodes):
Config::SetDefault("ns3::ArpCache::PendingQueueSize", UintegerValue(10));

Thank you, Mohit P. Tahiliani
& Tommaso Pecorella !

ArpCache… how
could anyone guess?

50
	0

	20

	40

	60

	80

	100

	120

	140

	160

	180

	0 	0.05 	0.1 	0.15 	0.2 	0.25 	0.3

P
a
c
k
e
t	
N
u
m
b
e
r

Time	[s]

ODP

NS3

FPGA

What we were able to pull off
Conversion of TCP to XFSM: exact same code runs on..
1. XFSM execution engine in ns-3
2. OpenDataPlane + DPDK
3. FPGA

51

… and yes, also multiple flows!

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 10 100 1000

Flow length:
50 packets

Flow length:
500 packets

C
D

F

RTTs

TB-TCP
Linux

FreeBSD

Varied parameters:
Bottleneck capacity (1-5, 10 and 15 Mbit/s), RTT (10, 20, 40, 80, 100, 150, 200
ms), length of the bottleneck queue (5, 10, 50, 100, 200 packets). Filtered out
cases where flows did not reach the considered length during the
measurement period => 168 (50 packets) and 227 (500 packets) experiments

Flow
Completion
Time (FCT) of
the slowest of
6 flows

52

Part 3: The role of ns-3 in TCP
(and related) research

53

ns and TCP

• Let's face it: people hardly ever use ns-3 for TCP
– (Real!) conversation with a colleague:

• Me: "I'm preparing these keynote slides... and I find many strange things
related to TCP."

• Colleague: "That's not surprising: ns-3 isn't really meant for TCP, right?"

– Definitely not the first time I hear this !

• ns-2 was the de facto standard for TCP development
– Significant overlap between people writing...
 1. ns-2 code 2. FreeBSD code 3. RFCs

Q1: Why has this changed? (What can we do?)
Q2: Do we even want to go back to this? (If so, why?)

54

Q1: Why has this changed?

(What can we do about it?)

55

6 reasons to use a simulator for TCP
(and related) research

1. Trustworthy reference code

2. Easier than changing an OS kernel

3. Faster (simulation time != real time)

4. Able to simulate richer scenarios

5. Very consistent behavior: without randomness, the same
input always yields the same output

6. Availability of others' code

56

ns-2 (once upon a time, not now!) vs. ns-3

ns-2 ns-3

1. Trustworthy reference code 👍 👎

2. Easier than changing an OS kernel 👍 👎

3. Faster (simulation time != real time) 👍 👍

4. Able to simulate richer scenarios 👍 👍

5. Consistency (without randomness) 👍 👍

6. Availability of others' code 👍 👍

My own example was
case 2... but focusing on
recovery is a bit special.

Case 5 is not a big deal:
testbed behavior can be
quite consistent.

Case 4 may well be the
primary reason for some
people to use ns-3+TCP!

57

What's needed for "thumbs up"?

• Trustworthy reference code
– That could be written... also needs some validation results, some

community convincing… perhaps a paper showing it?

• Easier than changing an OS kernel
– Fix errors, make the tutorial easier!
– Also, ease of use: e.g., accessing cwnd
– Add a TCP chapter? E.g., on “hello world” without artificial loss!

• Faster (simulation time != real time)
– I don’t know... maybe an unfounded complaint??

• Availability of others' code
– This should happen as a consequence.

58

Q2: Do we even want to go
back to this?

(If so, why?)

59

TCP is a mess today…
Some guesswork – discrepancy examples (really only my belief):

• Proposed Standard RFCs that are not implemented in open code
– HyStart++ (RFC 9406), Congestion Manager (RFC 3124),

User Timeout Option (UTO) (RFC 5482)

• Experimental / Informational RFCs that are widely used
– IW10 (RFC 6928), RACK-TLP (RFC 8985), Cubic (RFC 8312),

PRR (RFC 6937), Early Retransmit (RFC 5827), DSACK (RFC 3708),
parts of TCB sharing (RFC 9040)

• Things that are widely used but no RFCs
– HyStart (not HyStart++)
– Pacing
– BBR

Some of these are on their way
towards Proposed Standard.

60

TCP is a mess today… /2

• Can the IETF even keep track?
– Open code: Linux (= Google) vs. FreeBSD
– Closed code: Microsoft vs. Apple
– ... vs. IETF standards!

• Most researchers work with the Linux code

• ML-based congestion control: how could we even standardize?

• BBR moves ahead, in various ways... will they update the draft?
When?
– draft describes BBRv2, but Linux code is BBRv1
– Still the old BBRv1? Probably not? Rather, BBRv1 ½?

• Perhaps we need a new "authority" code base !

61

TCP evaluation

Wireshark trace
Time-sequence
diagram
cwnd plot

62

TCP evaluation

Multiple test
runs, varying
parameters

• TCP Evaluation Suite: a long set of tests, many outputs
– ns-2 code exists, Internet-draft and paper exists
– Never standardized, and will never be...

63

Pantheon https://pantheon.stanford.edu

On each path, Pantheon runs multiple
benchmarks per week. Each benchmark
follows a software-defined scripted workload
(e.g., a single flow for 30 seconds; or multiple
flows of cross traffic, arriving and departing at
staggered times), and for each benchmark,
Pantheon chooses a random ordering of
congestion-control schemes, then tests each
scheme in round-robin fashion, repeating
until every scheme has been tested 10 times
(or 3 for partly-cellular paths).

Spread across the
world, cellular, WiFi
mesh, ..

https://pantheon.stanford.edu/

64

R
es

ul
ts

65

Typical Pantheon output (per scenario)

Francis Y. Yan, Jestin Ma, Greg D. Hill, Deepti Raghavan, Riad S. Wahby, Philip Levis,
and Keith Winstein. 2018. Pantheon: the training ground for internet congestion-control
research. In Proceedings of the 2018 USENIX Conference on Usenix Annual Technical
Conference (USENIX ATC '18). USENIX Association, USA, 731–743.

66

Many mechanisms available

From the Pantheon webpage

67

However...

• Wouldn't it be cool if I could run:
ns3 testmytcp protocol_list scenario_choice
... and get such outputs?
With more cc's, and the newest?

68

Thank you!

Questions?

Thank you: Mohit P. Tahiliani, Tommaso Pecorella, Safiqul Islam

