A Performance and Scalability Evaluation of the NS-3 Distributed Scheduler

Ken Renard, Charles Peri, Jerry Clarke
• US Army seeks the capability to analyze their mobile, *ad-hoc* networks at a scale and fidelity necessary to support research, mission planning, and procurement decision making

• Complex military radio systems are modeled in commercial simulators (OpNet, QualNet) which do not scale well
 – Desire to model Brigade (3000-5000) to Division (10000-15000) sized networks
 – Significant CPU loading for high fidelity modeling

• Requirement for realistic RF propagation effects

• Bring capabilities of Department of Defense High Performance Computing Modernization Program to network modeling
DoD High Performance Computing Modernization Program

DoD Supercomputing Resource Centers

- Army Participation
 - ARL & ERDC DSRCs
 - 1,343 Users/24 Organizations/
 - 108 Projects
 - 56 DREN Sites
 - 15 Challenge Projects/2 DHPIs
 - 5 Institutes

- Navy Participation
 - Navy DSRC
 - 942 Users/16 Organizations/
 - 197 Projects
 - 38 DREN Sites
 - 13 Challenge Projects/2 DHPIs
 - 1 Institute

- Air Force Participation
 - AFRL & MHPCC DSRCs
 - 1,330 Users/25 Organizations/
 - 199 Projects
 - 24 DREN Sites
 - 11 Challenge Projects/3 DHPIs
 - 3 Institutes

- Defense Agencies Participation
 - DARPA, DTRA, JNIG, JFCOM, MDA, PA&E & OTE
 - 537 Users/4 Organizations/
 - 29 Projects
 - 28 DREN Sites
 - 2 Challenge Projects/2 DHPIs

Other
- ARSC DSRC
- 68 DREN Sites

Software Applications Support

- Institutes/Portfolios
- Education & Outreach
- CREATE
- SPI

Networking

Defense Research & Engineering Network

Resource Management Requirements & Allocations

- DHPIs
- Challenge Projects
Goal is to determine how NS-3 performs and scales on HPC platforms and what factors influence performance and scalability

- Build a partially realistic, partially performance-driven scenario and run on various core counts

NS-3 Distributed Scheduler available as of version 3.8 (May 2010)

- Implements conservative Parallel Discrete Event Simulator (PDES)
- Special Point-To-Point links connect network across Logical Processes (LPs)
 - LP-to-LP communications via the Message Passing Interface (MPI)
- Larger look-ahead times improve performance
 - Each LP can compute a series of events independently up until a synchronization point in time
NS3 Distributed Scheduler

- PTP links can be inserted somewhat transparently into scenario
- Minimize inter-federate communication
- MPI (Message Passing Interface) used to negotiate minimum time step in future where each federate will not send message to another federate
 - `MPI_AllGather()` – all ranks publish their value, and wait to receive values from all other ranks
- Maximize “Look-ahead” value based on inter-federate link latency
 - Gives larger time slices of independent computation
- Careful decomposition of network topology into federates is currently manual and static throughout simulation

Hardware Platforms

“Harold”

- SGI Altix ICE 8200
- 1344 8-core compute nodes (2.8GHz Intel Xeon X5560)
 - 10752 total compute cores
- 24G memory per node
- 4X DDR Infiniband interconnect
- Max. theoretical: 109.3 Teraflops

“MJM”

- Linux Networx Advanced Technology Cluster
- 1100 quad-core compute nodes (3.0GHz each)
 - 4400 total compute cores
- 8G memory per node
- 4x DDR Infiniband interconnect
- Max. theoretical: 52.8 Teraflops
- Balance of realism and performance
 - “Reality is complex and dynamic” vs. “High Performance can be unrealistic”
- Split network into federates (1 federate per core)
 - Optimizing inter-federate latency and limiting inter-federate communication
- A “Subnet” is a collection of nodes on the same channel (802.11/CSMA)
 - Typically a team or squad that has similar mobility profile
 - Most communications happen within subnet
 - Single router in subnet that connects to WAN
- “Router-in-the-sky” that connects subnets via Point-to-Point links
• Ad-hoc 802.11 networks use OLSR routing
 – Significant processing and traffic overhead
• Situational Awareness (SA) reported by each node to subnet router
 – Subnet router collects SA, then multicasts report to other subnets
 – 10s period for end node unicast to subnet router
 – 60s period for subnet router multicast to other subnet routers
• Each subnet has ‘sand-box’ to move around (100m x 100m)
 – Friis propagation for 802.11
 – Larger areas yield more loss, less OLSR
Each NS-3 Federate only instantiates its own subnets, a “mesh” node, and stubs for external mesh nodes
- Number of PTP links: $N^2 \rightarrow N$
- Requires interface re-numbering
- Static routing for unicast & multicast
- Inter-federate latency maximized
 - Time from uplink and downlink latencies and moved into satellite switching latency
 - Intra-federate latency between subnets matches inter-federate latency
- Scenario run for 20 minutes of simulated time

Network path latencies from ground station up to satellite, through satellite switch, and back down to ground station

$$T_i = T_{LA} + T_M + T_M$$
- OLSR dominates scenario (N^2)
 - Significant processing vs. look-ahead
 - Static routing shows lower run times
- OLSR is representative of complex ad-hoc routing protocols
- Wifi processing scales similarly, but is insignificant compared to OLSR
Simulator Performance with OLSR

- Packet event rate (per wall-clock time) shows linear scaling versus number of cores
- Promising results assuming that wireless networks can be broken into independent federates
- Each federate has enough work to do per grant time (compute time dominates versus MPI)

Distributed NS-3 Packet Transmissions per wallclock time (10 nodes per subnet)
100m x 100m grids, 802.11, OLSR

Distributed NS-3 Packet Transmissions per wallclock time (20 nodes per subnet)
100m x 100m grids, 802.11, OLSR
Simulator Performance without OLSR

- Drop-off observed in scaling of CSMA/static routing
 - Each federate has minimal work to do per grant time
 - Workload not enough to offset increasing time for federate synchronization [MPI_AllGather()]
- Expect to see this for large enough core counts with larger workloads (OLSR)
- CSMA with OLSR showed this behavior at slightly higher core counts
NS-3 Scaling Scenario

- Goal to enable scaling of MANET simulations on the order of 10^5 nodes while maintaining high fidelity protocol, traffic, and propagation models.
- Simple scaling tests with NS-3 were conducted to understand effects of distributed scheduler and MPI interconnect latencies.
 - Simple Point-to-Point and CSMA “campus” networks

- UDP packet transfer within and among campuses (campus = federate)
- Only 40% of hosts were communicating during simulation
 - 1% of those were communicating across federate boundaries
- IPv6 with static routing
NS-3 Scaling Results

- Achieved best results limiting each compute node to a single federate
 - Each compute node has 8 cores and 18G of usable memory
- Largest run:
 - Each federate used 1 core and 17.5G on a compute node
 - 176 federates (176 compute nodes)
 - \(360,448,000\) simulated nodes
 - \(413,704.52\) packet receive events per second [wall-clock]
- Only create nodes that exist in the federate
 - Exception is that nodes on remote end of distributed PTP link
 - Interface renumbering may be necessary
- Static routing saves significant time over GlobalRouteManager or Nix vector routing when possible
- IPv6 addressing useful when scaling
- Ability to “move” latency within simulated network
Future Work with NS3 and Distributed Scheduler

• Combination of Distributed and Real-Time schedulers
 – Conduct similar performance and scaling tests
• Direct configuration of remote point-to-point link parameters
 – NodeId and interface
 – Such that “ghost” nodes are not necessary
• Automating and optimizing federation of network on to computing platform
 – Graph partitioning with METIS
 – Partitioning of network before and during simulation run
Future Work with NS3 and Distributed Scheduler

- Coupling of simulation components via Distributed Shared Memory
 - Allows independent decompositions of problem
 - Mobility / Forces Modeling: decompose organizationally
 - RF Propagation: decompose geographically
 - Network Simulation: decompose topologically
C4ISR-Network Modernization holds annual events to test emerging tactical network technologies and their suitability for Army deployment:

- Live and virtual entities deployed at Ft. Dix, NJ conducting missions
- Live vehicles and dismounted soldiers have access to range facilities
- Infrastructure provided to measure network performance and connectivity
- Brigade-sized exercises
 - Platoons or squads of live entities
- Virtual assets constructed in OneSAF environment interact with live assets
- Gateways connect [and optionally translate] operational messaging between live and virtual entities
- Brigade and Battalion TOCs with live C2 systems
Acknowledgements

- DoD High Performance Computing Modernization Program (HPCMP)
- Josh Pelkey, Dr. George Riley
- NS-3 community