A Position-based Routing Module for Simulation of VANETs in NS-3

K. Katsaros1, M. Dianati1, K. Roscher2

1Centre for Communication System Research
University of Surrey, United Kingdom

2Fraunhofer ESK
Munich, Germany

Workshop on NS-3, 2012
Outline

1. Introduction
 - VANETs Vs. MANETs
 - Routing Protocols

2. CLWPR Protocol
 - Introduction
 - Neighbor Discovery
 - Repositories
 - Forwarding
 - Enhancements

3. Evaluation
 - Using CLWPR
 - Performance Evaluation
Differences between VANETs and MANETs

- Lack of strict energy constraints
- High but predictable mobility, constraint by the road topology
- Relatively short lived communication links
- Unique characteristics of communication channel
Routing protocols for VANETs

- NS-3 has currently ONLY routing protocols for MANETs (OLSR, AODV, DSDV)
- Position-based routing protocols perform better in VANET environments\(^1\)
- Enhance performance of the protocol with the use of mobility and cross-layer information

Routing protocols for VANETs

- NS-3 has currently ONLY routing protocols for MANETs (OLSR, AODV, DSDV)
- Position-based routing protocols perform better in VANET environments\(^1\)
- Enhance performance of the protocol with the use of mobility and cross-layer information

Routing protocols for VANETs

- NS-3 has currently ONLY routing protocols for MANETs (OLSR, AODV, DSDV)
- Position-based routing protocols perform better in VANET environments
- Enhance performance of the protocol with the use of mobility and cross-layer information

Position-based routing protocols

- Select the next hop among the neighbors using a metric based on the position of that node.

- Problem faced when current node lays closer to destination than any other neighbor; known as *local maximum* problem.

- Use additional information, such as map information, to minimize the effect of local maximum. Use a recovery strategy to cope with this problem (e.g., perimeter forwarding, carry-n-forward)

Katsaros et al. CLWPR module for NS-3
Position-based routing protocols

- Select the next hop among the neighbors using a metric based on the position of that node.
- Problem faced when current node lays closer to destination than any other neighbor; known as *local maximum* problem.

![Diagram showing a network with nodes and a void area]

- Use additional information, such as map information, to minimize the effect of local maximum. Use a recovery strategy to cope with this problem (e.g., perimeter forwarding, carry-n-forward).
Position-based routing protocols

- Select the next hop among the neighbors using a metric based on the position of that node.
- Problem faced when current node lays closer to destination than any other neighbor; known as *local maximum* problem.
- Use additional information, such as map information, to minimize the effect of local maximum. Use a recovery strategy to cope with this problem (e.g., perimeter forwarding, carry-n-forward)
Cross-Layer, Weighted, Position-based Routing Module

- A module for realizing position-based routing in VANETs
- Enhances routing decisions with navigation information
- Exploits cross-layer information to make more effective routing decisions
- Supports *carry-n-forward* mechanism
Cross-Layer, Weighted, Position-based Routing Module

- A module for realizing position-based routing in VANETs
- Enhances routing decisions with navigation information
- Exploits cross-layer information to make more effective routing decisions
- Supports carry-n-forward mechanism
Cross-Layer, Weighted, Position-based Routing Module

- A module for realizing position-based routing in VANETs
- Enhances routing decisions with navigation information
- Exploits cross-layer information to make more effective routing decisions
- Supports carry-n-forward mechanism
Cross-Layer, Weighted, Position-based Routing Module

- A module for realizing position-based routing in VANETs
- Enhances routing decisions with navigation information
- Exploits cross-layer information to make more effective routing decisions
- Supports carry-n-forward mechanism
Neighbor Discovery Mechanism

Is based on 1-hop periodic “HELLO” messages carrying mobility, link and utilization information

```
+----------+----------+----------+
| 0 bit    | 15 bit   | 31 bit   |
+----------+----------+----------+
|          |          |          |
|***********|***********|***********|
|          |          |          |
|          |          |          |
| ORIGINATOR POSITION (X,Y) |          |          |
|          |          |          |
| ORIGINATOR VELOCITY (X,Y) |          |          |
|          |          |          |
| ORIGINATOR HEADING |          |          |
| Orig.RoadID | Htime   | Utilization |
| Utilization | MAC INFO |          |
| MAC INFO   | Carry-n-Forward |          |
+----------+----------+----------+
```
Repositories

Neighbor Set is the list of directly accessible (1-hop) nodes. Includes mobility, link and utilization related information of the node.

Position Association Set is the list of destination nodes. Includes mobility related information of destination node.
Repositories

Neighbor Set is the list of directly accessible (1-hop) nodes. Includes mobility, link and utilization related information of the node.

Position Association Set is the list of destination nodes. Includes mobility related information of destination node.
Forwarding Mechanism

- Forwarding metric in CLWPR is the result of joint weighting function:

\[
\text{Weight} = f_1 \text{Distance} + f_2 \text{NormAngle} + \\
 f_3 \text{NormRoad} + f_4 \text{Utilization} + \\
 f_5 \text{MAC}_\text{info} + f_6 \text{CnF}_\text{info} + \\
 f_7 \text{SNIR}_\text{info}
\]

- The node with the least weight will be selected as next hop.
- If current node has least weight (*local maximum* problem), then the packet is cached.
- Currently \(f_i \) parameters are fixed, no optimizations.
Forwarding Mechanism

- Forwarding metric in CLWPR is the result of joint weighting function:

 \[
 \text{Weight} = f_1 \text{Distance} + f_2 \text{NormAngle} +
 f_3 \text{NormRoad} + f_4 \text{Utilization} +
 f_5 \text{MAC}_{\text{info}} + f_6 \text{CnF}_{\text{info}} +
 f_7 \text{SNIR}_{\text{info}}
 \]

- The node with the least weight will be selected as next hop.
- If current node has least weight (local maximum problem), then the packet is cached.
- Currently, \(f_i \) parameters are fixed, no optimizations.

Katsaros et al. CLWPR module for NS-3
Forwarding Mechanism

- Forwarding metric in CLWPR is the result of joint weighting function:

\[
\text{Weight} = f_1 \text{Distance} + f_2 \text{NormAngle} + \\
\quad f_3 \text{NormRoad} + f_4 \text{Utilization} + \\
\quad f_5 \text{MAC}_{\text{info}} + f_6 \text{CnF}_{\text{info}} + \\
\quad f_7 \text{SNIR}_{\text{info}}
\]

- The node with the least weight will be selected as next hop
- If current node has least weight (local maximum problem), then the packet is cached
- Currently f_i parameters are fixed, no optimizations

Katsaros et al. CLWPR module for NS-3
Forwarding Mechanism

- Forwarding metric in CLWPR is the result of joint weighting function:

\[
\text{Weight} = f_1 \text{Distance} + f_2 \text{NormAngle} + \\
 f_3 \text{NormRoad} + f_4 \text{Utilization} + \\
 f_5 \text{MAC}_{\text{info}} + f_6 \text{CnF}_{\text{info}} + \\
 f_7 \text{SNIR}_{\text{info}}
\]

- The node with the least weight will be selected as next hop
- If current node has least weight (local maximum problem), then the packet is cached
- Currently \(f_i \) parameters are fixed, no optimizations
How packets flow through the Protocol Stack in NS-3

Application
 ↓ Socket::send()
 ↓ [Tcp/Udp]::SocketImpl
 ↓ ::RouteOutput()
 ↓ [Ipv4L3]::RoutingProtocol
 ↓ ::Send()
 ↓ [Tcp/Udp]::L4Protocol
 ↓ ::Send()
 ↓ Ipv4L3::Protocol
 ↓ ::Send()
 ↓ Arp::Arp4Interface
 ↓ ::Lookup()
 ↓ Arp::L3Protocol
 ↓ ::Send()
 ↓ NetDevice

Application
 ↓ ::m_rxCallback -> ForwardUp()
 ↓ [Tcp/Udp]::SocketImpl
 ↓ ::ForwardUp()
 ↓ [Tcp/Udp]::L4Protocol
 ↓ ::Receive()
 ↓ Ipv4L3::Protocol
 ↓ ::LocalDeliver()
 ↓ Ipv4::RoutingProtocol
 ↓ Protocol Handlers
 ↓ NetDevice

Katsaros et al. CLWPR module for NS-3
RouteOutput

- RouteOutput
- Query to Location Service
 - Lookup Routing Table for min weight
- Local Maximum
 - YES: Carry-n-Forward
 - NO: Create route for the selected node
 - Add DeferredRouteOutput Tag
 - Create Route for Local Delivery
- Return route
RouteInput

- `RouteInput`
 - `DeferredRouteOutputTag` (YES) → `Create QueueEntry and queue packet`
 - `Return`
 - `Local Delivery` (YES) → `LocalDeliverCallback`
- `Lookup Routing Table for min weight`
 - `Local Maximun` (YES) → `Carry-n-Forward`
 - `NO` → `Create route for the selected node`
 - `Add DeferredRouteOutputTag`
 - `UnicastForwardCallback`
 - `Create Route for Local Delivery`
 - `Return`
- `Query to Location Service`
- `Return`
Other Enhancements Used in CLWPR Module

- `ns3::GridMap` is a class that provides information related to navigation, such as road id and `courvemetric` distance.
- Use of packet Tags to get SINR values from PHY for “HELLO” messages.
- Use the `DeferredRouteTag` as per AODV implementation to cache packets in `local maximum`.
How to use CLWPR

- CLWPR comes with a helper class in order to be installed to the nodes
- Multiple attributes for configuration and optimization
- Current Limitations
 - GridMap is the only “navigation system"
 - Only IPv4 compatible
 - Works with single interface
Comparison with AODV, OLSR and DSDV

PDR Vs. Node Speed

- AODV
- OLSR
- DSDV
- CLWPR

Average Packet Delivery Ratio (%) vs. Average Node Speed (m/s)

Katsaros et al.
CLWPR module for NS-3
Comparison with AODV, OLSR and DSDV

E2ED Vs. Node Speed

- AODV
- OLSR
- DSDV
- CLWPR

Average End-to-End Delay (sec) vs. Average Node Speed (m/s)
Comparison with AODV, OLSR and DSDV

![Graph showing Elapsed Time Vs. Node Speed for AODV, OLSR, DSDV, and CLWPR](image-url)
Summary

- We have introduced a novel cross-layer, position-based routing protocol for VANETs.
- The performance evaluation results suggest it can provide higher PDR than the protocols already implemented in NS-3, without compromising end-to-end delay.

Outlook

- Optimization of f_i parameters.
- Extend navigation class to real scenarios
- Extent support for IPv6 and multiple interfaces
The work was done within the joint research project DRIVE-C2X, which is funded by the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement nº 270410.

www.drive-c2x.eu

- The source code is available for review at http://codereview.appspot.com/5343044