
Automating ns-3
Experimentation in
Multi-Host Scenarios

Alina Quereilhac 
Damien Saucez 
Thierry Turletti
Walid Dabbous

ns-3 is a modular discrete-event network simulator
that provides

application and protocol emulation with DCE,

special devices (e.g., FD and Tap NetDevice),

real-time scheduler,

interactive mode.

ns-3 features for advanced
simulations

2

ns-3 is a modular discrete-event network simulator
that provides

application and protocol emulation with DCE,

special devices (e.g., FD and Tap NetDevice),

real-time scheduler,

interactive mode.

ns-3 features for advanced
simulations

2

Why is that interesting?

ns-3 is modular

3

scenario, and to automate interconnection and synchroniza-
tion of remote simulation instances. In the third and final
case, we use NEPI to automate deployment of hybrid exper-
iments, taking advantage of ns-3 special devices to exchange
tra�c between simulated and live networks.

This paper is organized as follows: Section 2 presents the
related work, Section 3 describes the ns-3 simulator and its
support for realistic and scalable experimentation, Section 4
introduces the NEPI automation framework, and Section 5
details the usage of NEPI to automate multi-host experi-
mentation with ns-3 for the three described use cases. Fi-
nally, Section 6 concludes by providing perspectives on the
automation of ns-3 experiments using NEPI.

2. RELATED WORK
Several projects developed around the ns-3 simulator pro-

vide enhancements for basic simulator features. Some of
them focus on automating operational aspects of ns-3 us-
age, such as installation and data collection. An example
of this is the Bake tool [?] that was created to complement
the native build system of ns-3 based on waf [?]. Bake is an
integration tool that simplifies building ns-3 projects with
complex dependencies in a reproducible way, allowing users
to configure which modules to include in the ns-3 build, and
automatically resolving installation dependencies. Another
example is the Flow Monitor project [?] that provides auto-
mated collection and storage of network performance data.
Flow Monitor is integrated into ns-3 as a module and pro-
vides a syntax to define flow probes, to automatically classify
simulated tra�c into flows, and to collect flow statistics.

While addressing basic usage di�culties is essential to sup-
port the user community around ns-3, one of the aspects that
distinguishes ns-3 from other simulators is its flexibility to
evolve and support beyond-basic simulation scenarios. De-
velopments that aim at improving realism and scalability of
ns-3 have been of interest of the ns-3 community for a long
time. Examples of this are e↵orts to take advantage of live
hosts to support hybrid experimentation, mixing simulated
and live networks, or to parallelize and distribute simula-
tions across multiple hosts. ns-3 frameworks founded by the
NSF [?] attest for the existing interest to extend ns-3 to
automate parallel, distributed, and hybrid experimentation.

The SAFE [?] project makes several advances in this di-
rection. It provides a framework and a dedicated infrastruc-
ture to automate parallel execution of ns-3 simulations using
parametrizable models and experiment termination detec-
tors for steady-state simulations. The parametrizable mod-
els simplify the description of simulations, making ns-3 more
accessible to non-experienced users. SAFE also provides au-
tomated data processing, data storage, and data visualiza-
tion functionalities that are complemented by the ns-3 data
collection framework (DCF) [?]. The DCF framework ex-
tends ns-3 with primitives to instrument simulations, and to
collect, process, and aggregate simulated data across hosts.

Other projects take advantage of special features of ns-3,
such as the DCE emulation extension [?] and the special ns-3
devices for simulated and live network integration [?], to sup-
port parallel, distributed, and hybrid simulations. These so-
lutions go from ad-hoc scripts to interconnect ns-3 instances
with virtual machines [?], to full fledged frameworks to dis-
tribute simulations over multiple CPUs and hosts. Exam-
ples of these solutions are the Distributed Client Extension
architecture for hybrid experimentation [?], the MPI ns-3

module [?] to distribute ns-3 simulations over multiple cores
and hosts using the Message Passing Interface (MPI), and
the DNEmu [?] project that builds on top of MPI and DCE
to create distributed simulations with live network tra�c
integration.
Nevertheless, these tools and frameworks to support ex-

tended multi-host simulation scenarios in ns-3 target specific
cases, e.g., either distributed simulation or parallel simula-
tion, and often require manual installation and configuration
of the hosts prior to experimentation.

3. NS-3 BACKGROUND
ns-3 is a discrete-event network simulator that models In-

ternet systems using a modular approach. Simulated net-
works are described at the application, protocol, and phys-
ical layers by interconnecting modules that represent net-
work components. The central component in a simulation
scenario is the node. Nodes are attached to other compo-
nents, such as applications, protocols, devices, and links,
to describe the network and customize simulation behavior.
Figure 1 depicts the modular abstraction used to describe
simulations in ns-3.
The components used to model a simulation can be in-

dependently replaced by others, allowing to easily modify
scenarios. For instance, the physical network model used in
a scenario can be replaced by substituting the modules that
represent network devices and links, without a↵ecting the
application or protocol layer components.

Applications Simu

Protocols Simu

Devices Simu

Node 1

Applications Simu

Protocols Simu

Devices SimuLink Simu

Node 2

ns-3 instance

Host

Figure 1: ns-3 simulations are constructed by inter-
connecting modular components that model nodes,
applications, protocols, devices, and links.

The basic usage of ns-3 consists on running a simulation
instance as a program in a host, usually the experimenter
laptop. ns-3 simulation programs are written in C++, using
modules provided by the ns-3 libraries to describe network
scenarios. Simulation programs usually run until termina-
tion, without interaction with the experimenter or with ex-
ternal programs, and results are stored in local files. Addi-
tionally, ns-3 provides extended usage possibilities involving
emulation and multiple simulation instances.

3.1 Emulation Support in ns-3
ns-3 can run as emulator by adding adequate modules at

di↵erent layers of the network. Support for emulation in
ns-3 is provided by two mechanisms, software-based emula-
tion for application and protocol level emulation, and hybrid
emulation by interconnecting ns-3 simulated networks to live
networks at the device layer, for device layer emulation.

3.1.1 Application and Protocol Layer Emulation
Application and protocol layer emulation can be added

to ns-3 using the Direct Code Execution (DCE) [?] exten-
sion. DCE allows to execute unmodified Linux applications

Parallelisation

run independent simulations.

Hybrid emulation

connect simulations with a real
system.

Distributed simulations

span the simulation over
multiple hosts.

ns-3 is more than a simulator

4

and protocols inside ns-3 nodes, making it possible to test
the same software used for real networks inside a controlled
simulation environment. DCE also supports executing the
network stack of the Linux kernel on ns-3 nodes, instead of a
simulated stack. Emulation at the application and protocol
layers can be added independently from one another. Fig-
ure 2 shows the use of DCE at different layers of the network
to provide software emulation in ns-3.

Applications DCE

Protocols DCE

Devices Simu

Node 1

Applications DCE

Protocols DCE

Devices SimuLink Simu

Node 2

ns-3 Instance

Host

Figure 2: Application and Protocol Layer Emula-
tion: DCE executes unmodified Linux applications
and the Linux protocol stack in the simulator.

3.1.2 Hybrid Emulation
To support interconnection between simulated and live

networks, ns-3 provides special devices [3], such as the Tap-
Bridge and the FdNetDevice. These devices are capable
of sending simulated traffic into a real network device and
receiving real traffic from it. By connecting these special
device components to ns-3 nodes and attaching them to real
devices in the local host, using a local connection, ns-3 is able
to exchange traffic between a simulation and the real world.
What makes it possible for ns-3 to exchange traffic with live
networks is its ability to process events in real time, using
the host system’s clock, and to generate and consume real
Ethernet traffic. Figure 3 depicts the integration between
ns-3 and a live host at the ns-3 device layer.

Applications Simu

Protocols Simu

Devices Simu

Node

ns-3 instance

Applications Live

Linux Resources

Linux Stack Live

TAP ETH LiveLocal
connector

Host

Figure 3: Hybrid Simulation: ns-3 nodes are inter-
connected at the device level with live devices in the
local host.

3.2 Using Multiple Instances of ns-3
Experimental studies might require running multiple vari-

ations of a same scenario or running simulations composed
of thousands of hosts. Time constraints and resource limita-
tions might impact the possibility of conducting such stud-
ies. Solutions to reduce the duration and increase the scale
of ns-3 experiments consist on parallelizing and distributing
ns-3 simulations using multiple ns-3 instances.

3.2.1 Parallel Simulation
ns-3 simulations run as independent system processes with-

out requiring interaction with the experimenter or other pro-
cesses. This allows multiple instances of a same simulation

scenario to be executed simultaneously in batch and without
interference in a same or different hosts. Executing simula-
tions in parallel is useful to quickly scan ranges of network
parameters in a study by assigning a value in the range to
each instance. Parallelization can be an efficient approach if
the simulation is not greedy on system resources. For greedy
simulations, parallelization can be more efficient if multiple
hosts are used. Figure 4 shows the execution of multiple
parallel instances of ns-3 in a same host.

Applications Simu

Protocols Simu

Devices Simu

Node 1

Applications Simu

Protocols Simu

Devices Simu

Node 2

Link Simu

ns-3 instance 1

Applications Simu

Protocols Simu

Devices Simu

Node 1

Applications Simu

Protocols Simu

Devices Simu

Node 2

Link Simu

ns-3 instance 2

Host

Figure 4: Parallel Simulation: independent ns-3 in-
stances executed in parallel in the same host to eval-
uate different parameter values for a same scenario.

3.2.2 Distributed Simulation
Using a single host limits the scale of simulations to the

resources available on that host. Distributing a simulation
over several CPUs or hosts provides a work-around for scal-
ability limitations. Multiple instances of ns-3 can be inter-
connected, using a distributed connection mechanism, and
synchronized thanks to ns-3 support for distributed simu-
lations. Two alternatives for distributing ns-3 simulations
are available: using the MPI module [14] or interconnecting
ns-3 instances at the device layer through tunnels or other
distributed connectors. Figure 5 shows a simulation divided
into two ns-3 instances.

Applications Simu

Protocols Simu

Devices Simu

Node 1

ns-3 Instance 1

Applications Simu

Protocols Simu

Devices Simu

Node 2

ns-3 Instance 2

Distributed
connector

Host

Figure 5: Distributed Simulation: ns-3 instances in-
terconnected to scale the simulation size.

3.3 Difficulties of Multi-Hosts Scenarios
Using multiple hosts allows to take better advantage of

parallelization and distribution of ns-3 instances. Neverthe-
less, running multiple ns-3 instances across many hosts re-
quires considerable effort since ns-3 by itself does not provide
a way to automate configuration and deployment of ns-3 on
remote hosts. This means that in order to use multiple hosts,
users must manually configure, deploy, and synchronize ns-3
simulations.

In order to simplify the exploitation of ns-3 capabilities for
multi-host scenarios, in this paper we propose the use of the
NEPI framework to describe experiment scenarios that mix
simulated, emulated, and live components and to automate
their deployment and execution across multiple hosts.

and protocols inside ns-3 nodes, making it possible to test
the same software used for real networks inside a controlled
simulation environment. DCE also supports executing the
network stack of the Linux kernel on ns-3 nodes, instead of a
simulated stack. Emulation at the application and protocol
layers can be added independently from one another. Fig-
ure 2 shows the use of DCE at different layers of the network
to provide software emulation in ns-3.

Applications DCE

Protocols DCE

Devices Simu

Node 1

Applications DCE

Protocols DCE

Devices SimuLink Simu

Node 2

ns-3 Instance

Host

Figure 2: Application and Protocol Layer Emula-
tion: DCE executes unmodified Linux applications
and the Linux protocol stack in the simulator.

3.1.2 Hybrid Emulation
To support interconnection between simulated and live

networks, ns-3 provides special devices [3], such as the Tap-
Bridge and the FdNetDevice. These devices are capable
of sending simulated traffic into a real network device and
receiving real traffic from it. By connecting these special
device components to ns-3 nodes and attaching them to real
devices in the local host, using a local connection, ns-3 is able
to exchange traffic between a simulation and the real world.
What makes it possible for ns-3 to exchange traffic with live
networks is its ability to process events in real time, using
the host system’s clock, and to generate and consume real
Ethernet traffic. Figure 3 depicts the integration between
ns-3 and a live host at the ns-3 device layer.

Applications Simu

Protocols Simu

Devices Simu

Node

ns-3 instance

Applications Live

Linux Resources

Linux Stack Live

TAP ETH LiveLocal
connector

Host

Figure 3: Hybrid Simulation: ns-3 nodes are inter-
connected at the device level with live devices in the
local host.

3.2 Using Multiple Instances of ns-3
Experimental studies might require running multiple vari-

ations of a same scenario or running simulations composed
of thousands of hosts. Time constraints and resource limita-
tions might impact the possibility of conducting such stud-
ies. Solutions to reduce the duration and increase the scale
of ns-3 experiments consist on parallelizing and distributing
ns-3 simulations using multiple ns-3 instances.

3.2.1 Parallel Simulation
ns-3 simulations run as independent system processes with-

out requiring interaction with the experimenter or other pro-
cesses. This allows multiple instances of a same simulation

scenario to be executed simultaneously in batch and without
interference in a same or different hosts. Executing simula-
tions in parallel is useful to quickly scan ranges of network
parameters in a study by assigning a value in the range to
each instance. Parallelization can be an efficient approach if
the simulation is not greedy on system resources. For greedy
simulations, parallelization can be more efficient if multiple
hosts are used. Figure 4 shows the execution of multiple
parallel instances of ns-3 in a same host.

Applications Simu

Protocols Simu

Devices Simu

Node 1

Applications Simu

Protocols Simu

Devices Simu

Node 2

Link Simu

ns-3 instance 1

Applications Simu

Protocols Simu

Devices Simu

Node 1

Applications Simu

Protocols Simu

Devices Simu

Node 2

Link Simu

ns-3 instance 2

Host

Figure 4: Parallel Simulation: independent ns-3 in-
stances executed in parallel in the same host to eval-
uate different parameter values for a same scenario.

3.2.2 Distributed Simulation
Using a single host limits the scale of simulations to the

resources available on that host. Distributing a simulation
over several CPUs or hosts provides a work-around for scal-
ability limitations. Multiple instances of ns-3 can be inter-
connected, using a distributed connection mechanism, and
synchronized thanks to ns-3 support for distributed simu-
lations. Two alternatives for distributing ns-3 simulations
are available: using the MPI module [14] or interconnecting
ns-3 instances at the device layer through tunnels or other
distributed connectors. Figure 5 shows a simulation divided
into two ns-3 instances.

Applications Simu

Protocols Simu

Devices Simu

Node 1

ns-3 Instance 1

Applications Simu

Protocols Simu

Devices Simu

Node 2

ns-3 Instance 2

Distributed
connector

Host

Figure 5: Distributed Simulation: ns-3 instances in-
terconnected to scale the simulation size.

3.3 Difficulties of Multi-Hosts Scenarios
Using multiple hosts allows to take better advantage of

parallelization and distribution of ns-3 instances. Neverthe-
less, running multiple ns-3 instances across many hosts re-
quires considerable effort since ns-3 by itself does not provide
a way to automate configuration and deployment of ns-3 on
remote hosts. This means that in order to use multiple hosts,
users must manually configure, deploy, and synchronize ns-3
simulations.

In order to simplify the exploitation of ns-3 capabilities for
multi-host scenarios, in this paper we propose the use of the
NEPI framework to describe experiment scenarios that mix
simulated, emulated, and live components and to automate
their deployment and execution across multiple hosts.

with the other resources in the experiment.

4.2 Parallel, Distributed, and Hybrid ns-3 Ex-
periments

Each linux::ns3::Simulation RM added to the Experiment-
Controller manages an independent ns-3 instance. By adding
many RMs of this type, and connecting them to a same
linux::Node RM, it is possible to automatically deploy mul-
tiple ns-3 instances on a same Linux host. Multiple hosts,
with multiple ns-3 instances, can be managed from a single
NEPI script running on the controller host.

ns3::V4Ping

ns3::Nodens3::P2PDevice

ns3::Ipv4

ns3::P2PChannel

ns3::P2PDevice ns3::Node

ns3::Ipv4

linux::ns3::Simulator

linux::Node

NEPI Script

Controller host

Socket

ns-3 models

ns-3 bindings

ns-3 wrapper

ns-3 server

ns-3 instance

Host

ns-3 server
messages

Figure 6: Communication between NEPI and ns-3
instances.

To control independent, and possibly remote, ns-3 in-
stances from NEPI, we implemented a ns-3 server program.
The ns-3 server is a standalone process in a local or remote
host, and receives messages from NEPI. These messages are
part of an ad-hoc protocol and permit to send instructions
to create, configure, and connect ns-3 components in a ns-3
instance, as well as to start and stop the simulation.

The ns-3 server is implemented in Python, using an archi-
tecture divided in four layers. The innermost layer contains
the ns-3 models, i.e., C++ objects provided by ns-3 libraries,
the layer on top contains the Python bindings provided by
ns-3 to interact with ns-3 C++ objects using Python. The
wrapper layer is the core layer of the architecture, it trans-
lates the instructions received from NEPI into actions that
modify the simulation. Finally, the outermost layer, the ns-
3 server, enables communication by listening for messages in
a Unix socket, and passing those messages to the wrapper
layer. The NEPI script connects to the socket to send mes-
sages, locally if the simulation runs in the controller host, or
using SSH if the simulation runs in a remote host.

Figure 6 shows the interaction between the NEPI script
and the ns-3 server instance.

Applications Simu

Protocols Simu

FdNetDevice Simu

Node 1

ns-3 Instance 1

Host 1

Applications Simu

Protocols Simu

FdNetDevide Simu

Node 2

ns-3 Instance 2

Host 2

Distributed
connector

Figure 7: Distributed ns-3 instances connected
through UDP tunnels and FdNetDevices.

To run distributed ns-3 simulations, NEPI provides the
possibility of interconnecting ns-3 instances using UDP tun-
nels. Connections are done at the ns-3 device layer, using the
FdNetDevice special device of ns-3. A FdNetDevice is asso-
ciated to a file descriptor, and by reading and writing Ether-
net packets from/to the file descriptor it can exchange tra�c

generated inside an ns-3 simulation with external processes.
NEPI provides ResourceManagers to manage FdNetDevice
objects as well as UDP tunnels between ns-3 FdNetDevices.
Figure 7 shows the interconnection of two distributed ns-3
instances using a UDP tunnel. Other types of tunnels or
other techniques to run distributed ns-3 experiments can be
used in NEPI, if the corresponding ResourceManagers are
implemented to manage each component.

Applications Simu

Protocols Simu

FdNetDevice Simu

Node

ns-3 instance

Applications Live

Linux Resources

Linux Stack Live

TAP Live
file

descriptor

Host

NEPI script

Controller host

Figure 8: Hybrid experiments using ns-3 FdNetDe-
vices and Linux TAP devices.

Hybrid experiments can also be described in NEPI by con-
necting a FdNetDevice inside a simulation with a TAP de-
vice in the live host running the simulation. TAP devices
are associated to a file descriptor that can be used by a Fd-
NetDevice to write simulated network tra�c into the host
and to read live tra�c from the host. NEPI provides RMs
to model TAP devices as well as RMs to model the connec-
tion between TAP devices and FdNetDevices. The connec-
tor RMs work as virtual local links and take care of passing
the file descriptor from the TAP device to the FdNetDevice
during experiment deployment. Figure 8 shows an hybrid
experiment setup.

5. ANATOMY OF A MULTI-HOST NS-3 SIM-
ULATION WITH NEPI

Section 4 explains how NEPI helps in complex ns-3 exper-
iments. In this section, we use a common example to show
how to transparently perform parallel and distributed ns-3
simulations over multiple hosts as well as hybrid emulation 1.
To illustrate the three cases, we take as example a wire-

less sensor network scenario composed of a fixed access point
(AP) to which several sensor mobile nodes are connected.
Each mobile sensor node periodically transmits a report to
the AP, which runs an agent to analyze the messages re-
ceived from the mobile nodes. The AP also plays the role of
default gateway for the network (see Figure 9).
For the three cases, the anatomy of the NEPI script fol-

lows the same structure. First, the script defines the hosts
involved in the experiment and specifies that each of them
must run an ns-3 simulator instance.2 In this example, we
use hosts from the PlanetLab [?] testbed to run the simu-
lations. PlanetLab is a public research network, with hosts

1The source code of the NEPI scripts used in this sec-
tion are available in the NEPI repository and can be
viewed online at: http://nepi.inria.fr/code/nepi/file/
tip/examples/ns3/multi_host.
2For the sake of readability, we omit some details in the code
excerpts given in this section, the complete code is available
online at the NEPI repository.

Parallelisation

run independent simulations.

Hybrid emulation

connect simulations with a real
system.

Distributed simulations

span the simulation over
multiple hosts.

ns-3 is more than a simulator

4

and protocols inside ns-3 nodes, making it possible to test
the same software used for real networks inside a controlled
simulation environment. DCE also supports executing the
network stack of the Linux kernel on ns-3 nodes, instead of a
simulated stack. Emulation at the application and protocol
layers can be added independently from one another. Fig-
ure 2 shows the use of DCE at different layers of the network
to provide software emulation in ns-3.

Applications DCE

Protocols DCE

Devices Simu

Node 1

Applications DCE

Protocols DCE

Devices SimuLink Simu

Node 2

ns-3 Instance

Host

Figure 2: Application and Protocol Layer Emula-
tion: DCE executes unmodified Linux applications
and the Linux protocol stack in the simulator.

3.1.2 Hybrid Emulation
To support interconnection between simulated and live

networks, ns-3 provides special devices [3], such as the Tap-
Bridge and the FdNetDevice. These devices are capable
of sending simulated traffic into a real network device and
receiving real traffic from it. By connecting these special
device components to ns-3 nodes and attaching them to real
devices in the local host, using a local connection, ns-3 is able
to exchange traffic between a simulation and the real world.
What makes it possible for ns-3 to exchange traffic with live
networks is its ability to process events in real time, using
the host system’s clock, and to generate and consume real
Ethernet traffic. Figure 3 depicts the integration between
ns-3 and a live host at the ns-3 device layer.

Applications Simu

Protocols Simu

Devices Simu

Node

ns-3 instance

Applications Live

Linux Resources

Linux Stack Live

TAP ETH LiveLocal
connector

Host

Figure 3: Hybrid Simulation: ns-3 nodes are inter-
connected at the device level with live devices in the
local host.

3.2 Using Multiple Instances of ns-3
Experimental studies might require running multiple vari-

ations of a same scenario or running simulations composed
of thousands of hosts. Time constraints and resource limita-
tions might impact the possibility of conducting such stud-
ies. Solutions to reduce the duration and increase the scale
of ns-3 experiments consist on parallelizing and distributing
ns-3 simulations using multiple ns-3 instances.

3.2.1 Parallel Simulation
ns-3 simulations run as independent system processes with-

out requiring interaction with the experimenter or other pro-
cesses. This allows multiple instances of a same simulation

scenario to be executed simultaneously in batch and without
interference in a same or different hosts. Executing simula-
tions in parallel is useful to quickly scan ranges of network
parameters in a study by assigning a value in the range to
each instance. Parallelization can be an efficient approach if
the simulation is not greedy on system resources. For greedy
simulations, parallelization can be more efficient if multiple
hosts are used. Figure 4 shows the execution of multiple
parallel instances of ns-3 in a same host.

Applications Simu

Protocols Simu

Devices Simu

Node 1

Applications Simu

Protocols Simu

Devices Simu

Node 2

Link Simu

ns-3 instance 1

Applications Simu

Protocols Simu

Devices Simu

Node 1

Applications Simu

Protocols Simu

Devices Simu

Node 2

Link Simu

ns-3 instance 2

Host

Figure 4: Parallel Simulation: independent ns-3 in-
stances executed in parallel in the same host to eval-
uate different parameter values for a same scenario.

3.2.2 Distributed Simulation
Using a single host limits the scale of simulations to the

resources available on that host. Distributing a simulation
over several CPUs or hosts provides a work-around for scal-
ability limitations. Multiple instances of ns-3 can be inter-
connected, using a distributed connection mechanism, and
synchronized thanks to ns-3 support for distributed simu-
lations. Two alternatives for distributing ns-3 simulations
are available: using the MPI module [14] or interconnecting
ns-3 instances at the device layer through tunnels or other
distributed connectors. Figure 5 shows a simulation divided
into two ns-3 instances.

Applications Simu

Protocols Simu

Devices Simu

Node 1

ns-3 Instance 1

Applications Simu

Protocols Simu

Devices Simu

Node 2

ns-3 Instance 2

Distributed
connector

Host

Figure 5: Distributed Simulation: ns-3 instances in-
terconnected to scale the simulation size.

3.3 Difficulties of Multi-Hosts Scenarios
Using multiple hosts allows to take better advantage of

parallelization and distribution of ns-3 instances. Neverthe-
less, running multiple ns-3 instances across many hosts re-
quires considerable effort since ns-3 by itself does not provide
a way to automate configuration and deployment of ns-3 on
remote hosts. This means that in order to use multiple hosts,
users must manually configure, deploy, and synchronize ns-3
simulations.

In order to simplify the exploitation of ns-3 capabilities for
multi-host scenarios, in this paper we propose the use of the
NEPI framework to describe experiment scenarios that mix
simulated, emulated, and live components and to automate
their deployment and execution across multiple hosts.

and protocols inside ns-3 nodes, making it possible to test
the same software used for real networks inside a controlled
simulation environment. DCE also supports executing the
network stack of the Linux kernel on ns-3 nodes, instead of a
simulated stack. Emulation at the application and protocol
layers can be added independently from one another. Fig-
ure 2 shows the use of DCE at different layers of the network
to provide software emulation in ns-3.

Applications DCE

Protocols DCE

Devices Simu

Node 1

Applications DCE

Protocols DCE

Devices SimuLink Simu

Node 2

ns-3 Instance

Host

Figure 2: Application and Protocol Layer Emula-
tion: DCE executes unmodified Linux applications
and the Linux protocol stack in the simulator.

3.1.2 Hybrid Emulation
To support interconnection between simulated and live

networks, ns-3 provides special devices [3], such as the Tap-
Bridge and the FdNetDevice. These devices are capable
of sending simulated traffic into a real network device and
receiving real traffic from it. By connecting these special
device components to ns-3 nodes and attaching them to real
devices in the local host, using a local connection, ns-3 is able
to exchange traffic between a simulation and the real world.
What makes it possible for ns-3 to exchange traffic with live
networks is its ability to process events in real time, using
the host system’s clock, and to generate and consume real
Ethernet traffic. Figure 3 depicts the integration between
ns-3 and a live host at the ns-3 device layer.

Applications Simu

Protocols Simu

Devices Simu

Node

ns-3 instance

Applications Live

Linux Resources

Linux Stack Live

TAP ETH LiveLocal
connector

Host

Figure 3: Hybrid Simulation: ns-3 nodes are inter-
connected at the device level with live devices in the
local host.

3.2 Using Multiple Instances of ns-3
Experimental studies might require running multiple vari-

ations of a same scenario or running simulations composed
of thousands of hosts. Time constraints and resource limita-
tions might impact the possibility of conducting such stud-
ies. Solutions to reduce the duration and increase the scale
of ns-3 experiments consist on parallelizing and distributing
ns-3 simulations using multiple ns-3 instances.

3.2.1 Parallel Simulation
ns-3 simulations run as independent system processes with-

out requiring interaction with the experimenter or other pro-
cesses. This allows multiple instances of a same simulation

scenario to be executed simultaneously in batch and without
interference in a same or different hosts. Executing simula-
tions in parallel is useful to quickly scan ranges of network
parameters in a study by assigning a value in the range to
each instance. Parallelization can be an efficient approach if
the simulation is not greedy on system resources. For greedy
simulations, parallelization can be more efficient if multiple
hosts are used. Figure 4 shows the execution of multiple
parallel instances of ns-3 in a same host.

Applications Simu

Protocols Simu

Devices Simu

Node 1

Applications Simu

Protocols Simu

Devices Simu

Node 2

Link Simu

ns-3 instance 1

Applications Simu

Protocols Simu

Devices Simu

Node 1

Applications Simu

Protocols Simu

Devices Simu

Node 2

Link Simu

ns-3 instance 2

Host

Figure 4: Parallel Simulation: independent ns-3 in-
stances executed in parallel in the same host to eval-
uate different parameter values for a same scenario.

3.2.2 Distributed Simulation
Using a single host limits the scale of simulations to the

resources available on that host. Distributing a simulation
over several CPUs or hosts provides a work-around for scal-
ability limitations. Multiple instances of ns-3 can be inter-
connected, using a distributed connection mechanism, and
synchronized thanks to ns-3 support for distributed simu-
lations. Two alternatives for distributing ns-3 simulations
are available: using the MPI module [14] or interconnecting
ns-3 instances at the device layer through tunnels or other
distributed connectors. Figure 5 shows a simulation divided
into two ns-3 instances.

Applications Simu

Protocols Simu

Devices Simu

Node 1

ns-3 Instance 1

Applications Simu

Protocols Simu

Devices Simu

Node 2

ns-3 Instance 2

Distributed
connector

Host

Figure 5: Distributed Simulation: ns-3 instances in-
terconnected to scale the simulation size.

3.3 Difficulties of Multi-Hosts Scenarios
Using multiple hosts allows to take better advantage of

parallelization and distribution of ns-3 instances. Neverthe-
less, running multiple ns-3 instances across many hosts re-
quires considerable effort since ns-3 by itself does not provide
a way to automate configuration and deployment of ns-3 on
remote hosts. This means that in order to use multiple hosts,
users must manually configure, deploy, and synchronize ns-3
simulations.

In order to simplify the exploitation of ns-3 capabilities for
multi-host scenarios, in this paper we propose the use of the
NEPI framework to describe experiment scenarios that mix
simulated, emulated, and live components and to automate
their deployment and execution across multiple hosts.

with the other resources in the experiment.

4.2 Parallel, Distributed, and Hybrid ns-3 Ex-
periments

Each linux::ns3::Simulation RM added to the Experiment-
Controller manages an independent ns-3 instance. By adding
many RMs of this type, and connecting them to a same
linux::Node RM, it is possible to automatically deploy mul-
tiple ns-3 instances on a same Linux host. Multiple hosts,
with multiple ns-3 instances, can be managed from a single
NEPI script running on the controller host.

ns3::V4Ping

ns3::Nodens3::P2PDevice

ns3::Ipv4

ns3::P2PChannel

ns3::P2PDevice ns3::Node

ns3::Ipv4

linux::ns3::Simulator

linux::Node

NEPI Script

Controller host

Socket

ns-3 models

ns-3 bindings

ns-3 wrapper

ns-3 server

ns-3 instance

Host

ns-3 server
messages

Figure 6: Communication between NEPI and ns-3
instances.

To control independent, and possibly remote, ns-3 in-
stances from NEPI, we implemented a ns-3 server program.
The ns-3 server is a standalone process in a local or remote
host, and receives messages from NEPI. These messages are
part of an ad-hoc protocol and permit to send instructions
to create, configure, and connect ns-3 components in a ns-3
instance, as well as to start and stop the simulation.

The ns-3 server is implemented in Python, using an archi-
tecture divided in four layers. The innermost layer contains
the ns-3 models, i.e., C++ objects provided by ns-3 libraries,
the layer on top contains the Python bindings provided by
ns-3 to interact with ns-3 C++ objects using Python. The
wrapper layer is the core layer of the architecture, it trans-
lates the instructions received from NEPI into actions that
modify the simulation. Finally, the outermost layer, the ns-
3 server, enables communication by listening for messages in
a Unix socket, and passing those messages to the wrapper
layer. The NEPI script connects to the socket to send mes-
sages, locally if the simulation runs in the controller host, or
using SSH if the simulation runs in a remote host.

Figure 6 shows the interaction between the NEPI script
and the ns-3 server instance.

Applications Simu

Protocols Simu

FdNetDevice Simu

Node 1

ns-3 Instance 1

Host 1

Applications Simu

Protocols Simu

FdNetDevide Simu

Node 2

ns-3 Instance 2

Host 2

Distributed
connector

Figure 7: Distributed ns-3 instances connected
through UDP tunnels and FdNetDevices.

To run distributed ns-3 simulations, NEPI provides the
possibility of interconnecting ns-3 instances using UDP tun-
nels. Connections are done at the ns-3 device layer, using the
FdNetDevice special device of ns-3. A FdNetDevice is asso-
ciated to a file descriptor, and by reading and writing Ether-
net packets from/to the file descriptor it can exchange tra�c

generated inside an ns-3 simulation with external processes.
NEPI provides ResourceManagers to manage FdNetDevice
objects as well as UDP tunnels between ns-3 FdNetDevices.
Figure 7 shows the interconnection of two distributed ns-3
instances using a UDP tunnel. Other types of tunnels or
other techniques to run distributed ns-3 experiments can be
used in NEPI, if the corresponding ResourceManagers are
implemented to manage each component.

Applications Simu

Protocols Simu

FdNetDevice Simu

Node

ns-3 instance

Applications Live

Linux Resources

Linux Stack Live

TAP Live
file

descriptor

Host

NEPI script

Controller host

Figure 8: Hybrid experiments using ns-3 FdNetDe-
vices and Linux TAP devices.

Hybrid experiments can also be described in NEPI by con-
necting a FdNetDevice inside a simulation with a TAP de-
vice in the live host running the simulation. TAP devices
are associated to a file descriptor that can be used by a Fd-
NetDevice to write simulated network tra�c into the host
and to read live tra�c from the host. NEPI provides RMs
to model TAP devices as well as RMs to model the connec-
tion between TAP devices and FdNetDevices. The connec-
tor RMs work as virtual local links and take care of passing
the file descriptor from the TAP device to the FdNetDevice
during experiment deployment. Figure 8 shows an hybrid
experiment setup.

5. ANATOMY OF A MULTI-HOST NS-3 SIM-
ULATION WITH NEPI

Section 4 explains how NEPI helps in complex ns-3 exper-
iments. In this section, we use a common example to show
how to transparently perform parallel and distributed ns-3
simulations over multiple hosts as well as hybrid emulation 1.
To illustrate the three cases, we take as example a wire-

less sensor network scenario composed of a fixed access point
(AP) to which several sensor mobile nodes are connected.
Each mobile sensor node periodically transmits a report to
the AP, which runs an agent to analyze the messages re-
ceived from the mobile nodes. The AP also plays the role of
default gateway for the network (see Figure 9).
For the three cases, the anatomy of the NEPI script fol-

lows the same structure. First, the script defines the hosts
involved in the experiment and specifies that each of them
must run an ns-3 simulator instance.2 In this example, we
use hosts from the PlanetLab [?] testbed to run the simu-
lations. PlanetLab is a public research network, with hosts

1The source code of the NEPI scripts used in this sec-
tion are available in the NEPI repository and can be
viewed online at: http://nepi.inria.fr/code/nepi/file/
tip/examples/ns3/multi_host.
2For the sake of readability, we omit some details in the code
excerpts given in this section, the complete code is available
online at the NEPI repository.

This is fastidious  
(e.g., configuration, synchronisation)

NEPI to make it easy
NEPI, Network Experiment Programming Interface, is
a framework to manage network experiments

that abstracts components behind a common
interface: the resource

to automate experimentation steps.

Runs locally, no need to modify the experiment facility

e.g., ns-3, PlanetLab.

5

Everything is a resource

The user interacts with the Experiment Controller
(EC), which controls the resources.

Every resource implements the same interface

e.g., deploy, start, stop.

6

Experiment representation
An experiment is a graph of interconnected resources.  
 

Each resource has 3 set of properties:

attributes (e.g., configuration),

traces (e.g., stderr, stdout),

states (i.e., STARTED, STOPPED, FAILED).

7

Link

Node Node Application

Ping example
from nepi.execution.ec import ExperimentController

8

Ping example
from nepi.execution.ec import ExperimentController

ec = ExperimentController(exp_id="ping")

8

Ping example
from nepi.execution.ec import ExperimentController

ec = ExperimentController(exp_id="ping")

node = ec.register_resource("linux::Node")

ec.set(node, "hostname", "my-hostname")

ec.set(node, "username", "my-user")

ec.set(node, "identity", "ssh-key-file")

8

Ping example
from nepi.execution.ec import ExperimentController

ec = ExperimentController(exp_id="ping")

node = ec.register_resource("linux::Node")

ec.set(node, "hostname", "my-hostname")

ec.set(node, "username", "my-user")

ec.set(node, "identity", "ssh-key-file")

app = ec.register_resource("linux::Application")

ec.set(app, "command", "ping -c3 192.168.0.1")

8

Ping example
from nepi.execution.ec import ExperimentController

ec = ExperimentController(exp_id="ping")

node = ec.register_resource("linux::Node")

ec.set(node, "hostname", "my-hostname")

ec.set(node, "username", "my-user")

ec.set(node, "identity", "ssh-key-file")

app = ec.register_resource("linux::Application")

ec.set(app, "command", "ping -c3 192.168.0.1")

ec.register_connection(node, app)

8

Ping example
from nepi.execution.ec import ExperimentController

ec = ExperimentController(exp_id="ping")

node = ec.register_resource("linux::Node")

ec.set(node, "hostname", "my-hostname")

ec.set(node, "username", "my-user")

ec.set(node, "identity", "ssh-key-file")

app = ec.register_resource("linux::Application")

ec.set(app, "command", "ping -c3 192.168.0.1")

ec.register_connection(node, app)

ec.deploy()

ec.wait_finished(app)

8

Ping example
from nepi.execution.ec import ExperimentController

ec = ExperimentController(exp_id="ping")

node = ec.register_resource("linux::Node")

ec.set(node, "hostname", "my-hostname")

ec.set(node, "username", "my-user")

ec.set(node, "identity", "ssh-key-file")

app = ec.register_resource("linux::Application")

ec.set(app, "command", "ping -c3 192.168.0.1")

ec.register_connection(node, app)

ec.deploy()

ec.wait_finished(app)

print ec.trace(app, "stdout")

8

Ping example
from nepi.execution.ec import ExperimentController

ec = ExperimentController(exp_id="ping")

node = ec.register_resource("linux::Node")

ec.set(node, "hostname", "my-hostname")

ec.set(node, "username", "my-user")

ec.set(node, "identity", "ssh-key-file")

app = ec.register_resource("linux::Application")

ec.set(app, "command", "ping -c3 192.168.0.1")

ec.register_connection(node, app)

ec.deploy()

ec.wait_finished(app)

print ec.trace(app, "stdout")

ec.shutdown() 8

NEPI for ns-3
NEPI controls (remote) ns-3 simulations

 via ns-3 Python bindings

and a message passing protocol.

9

with the other resources in the experiment.

4.2 Parallel, Distributed, and Hybrid ns-3 Ex-
periments

Each linux::ns3::Simulation RM added to the Experiment-
Controller manages an independent ns-3 instance. By adding
many RMs of this type, and connecting them to a same
linux::Node RM, it is possible to automatically deploy mul-
tiple ns-3 instances on a same Linux host. Multiple hosts,
with multiple ns-3 instances, can be managed from a single
NEPI script running on the controller host.

ns3::V4Ping

ns3::Nodens3::P2PDevice

ns3::Ipv4

ns3::P2PChannel

ns3::P2PDevice ns3::Node

ns3::Ipv4

linux::ns3::Simulator

linux::Node

NEPI Script

Controller host

Socket

ns-3 models

ns-3 bindings

ns-3 wrapper

ns-3 server

ns-3 instance

Host

ns-3 server
messages

Figure 6: Communication between NEPI and ns-3
instances.

To control independent, and possibly remote, ns-3 in-
stances from NEPI, we implemented a ns-3 server program.
The ns-3 server is a standalone process in a local or remote
host, and receives messages from NEPI. These messages are
part of an ad-hoc protocol and permit to send instructions
to create, configure, and connect ns-3 components in a ns-3
instance, as well as to start and stop the simulation.

The ns-3 server is implemented in Python, using an archi-
tecture divided in four layers. The innermost layer contains
the ns-3 models, i.e., C++ objects provided by ns-3 libraries,
the layer on top contains the Python bindings provided by
ns-3 to interact with ns-3 C++ objects using Python. The
wrapper layer is the core layer of the architecture, it trans-
lates the instructions received from NEPI into actions that
modify the simulation. Finally, the outermost layer, the ns-
3 server, enables communication by listening for messages in
a Unix socket, and passing those messages to the wrapper
layer. The NEPI script connects to the socket to send mes-
sages, locally if the simulation runs in the controller host, or
using SSH if the simulation runs in a remote host.

Figure 6 shows the interaction between the NEPI script
and the ns-3 server instance.

Applications Simu

Protocols Simu

FdNetDevice Simu

Node 1

ns-3 Instance 1

Host 1

Applications Simu

Protocols Simu

FdNetDevide Simu

Node 2

ns-3 Instance 2

Host 2

Distributed
connector

Figure 7: Distributed ns-3 instances connected
through UDP tunnels and FdNetDevices.

To run distributed ns-3 simulations, NEPI provides the
possibility of interconnecting ns-3 instances using UDP tun-
nels. Connections are done at the ns-3 device layer, using the
FdNetDevice special device of ns-3. A FdNetDevice is asso-
ciated to a file descriptor, and by reading and writing Ether-
net packets from/to the file descriptor it can exchange tra�c

generated inside an ns-3 simulation with external processes.
NEPI provides ResourceManagers to manage FdNetDevice
objects as well as UDP tunnels between ns-3 FdNetDevices.
Figure 7 shows the interconnection of two distributed ns-3
instances using a UDP tunnel. Other types of tunnels or
other techniques to run distributed ns-3 experiments can be
used in NEPI, if the corresponding ResourceManagers are
implemented to manage each component.

Applications Simu

Protocols Simu

FdNetDevice Simu

Node

ns-3 instance

Applications Live

Linux Resources

Linux Stack Live

TAP Live
file

descriptor

Host

NEPI script

Controller host

Figure 8: Hybrid experiments using ns-3 FdNetDe-
vices and Linux TAP devices.

Hybrid experiments can also be described in NEPI by con-
necting a FdNetDevice inside a simulation with a TAP de-
vice in the live host running the simulation. TAP devices
are associated to a file descriptor that can be used by a Fd-
NetDevice to write simulated network tra�c into the host
and to read live tra�c from the host. NEPI provides RMs
to model TAP devices as well as RMs to model the connec-
tion between TAP devices and FdNetDevices. The connec-
tor RMs work as virtual local links and take care of passing
the file descriptor from the TAP device to the FdNetDevice
during experiment deployment. Figure 8 shows an hybrid
experiment setup.

5. ANATOMY OF A MULTI-HOST NS-3 SIM-
ULATION WITH NEPI

Section 4 explains how NEPI helps in complex ns-3 exper-
iments. In this section, we use a common example to show
how to transparently perform parallel and distributed ns-3
simulations over multiple hosts as well as hybrid emulation 1.
To illustrate the three cases, we take as example a wire-

less sensor network scenario composed of a fixed access point
(AP) to which several sensor mobile nodes are connected.
Each mobile sensor node periodically transmits a report to
the AP, which runs an agent to analyze the messages re-
ceived from the mobile nodes. The AP also plays the role of
default gateway for the network (see Figure 9).
For the three cases, the anatomy of the NEPI script fol-

lows the same structure. First, the script defines the hosts
involved in the experiment and specifies that each of them
must run an ns-3 simulator instance.2 In this example, we
use hosts from the PlanetLab [?] testbed to run the simu-
lations. PlanetLab is a public research network, with hosts

1The source code of the NEPI scripts used in this sec-
tion are available in the NEPI repository and can be
viewed online at: http://nepi.inria.fr/code/nepi/file/
tip/examples/ns3/multi_host.
2For the sake of readability, we omit some details in the code
excerpts given in this section, the complete code is available
online at the NEPI repository.

Hands-on*

10

* with simplified code, see the paper for the exact code

A mobility use case with
simulated and real nodes

11

s

transmitters

transmitter s

transmitter

s

transmitter AP

agent

Figure 9: Example of wireless network scenario. The
access point (AP) runs the agent, and the mobile
sensor nodes (s) run the transmitter to send reports
to the agent.

use hosts from the PlanetLab [16] testbed to run the simu-
lations. PlanetLab is a public research network, with hosts
that experimenters can access using a SSH credentials. As
we can see in Listing 3, the only configuration information
that is needed to manage the host is its name and the SSH
credentials of the user, i.e., username and SSH key. Using
this information, NEPI can automate installation of ns-3 on
the host during deployment and start the simulations with-
out any manual intervention.

1 def add host s imu (ec , hostname , username , s sh key) :
2 host = ec . r e g i s t e r r e s o u r c e (”p lane t l ab : : Node”)
3 ec . s e t (host , ”hostname ” , hostname)
4 ec . s e t (host , ”username ” , username)
5 ec . s e t (host , ” i d en t i t y ” , s sh key)
6
7 simu = ec . r e g i s t e r r e s o u r c e (” l inux : : ns3 : : S imulat ion ”)
8 ec . r e g i s t e r c o nn e c t i o n (simu , host)
9

10 return host , simu

Listing 3: NEPI function to describe a PlanetLab
host with an ns-3 simulator instance running on it.

Second, the script describes the network that will be simu-
lated in the ns-3 instance. As detailed in Listing 4, a wireless
channel is defined as transmission medium for the wireless
network. An ns-3 node is then created to simulate the AP
and is connected to the wireless channel as illustrated in
Listing 5. An emulated application to run the agent is then
attached to the AP. As Listing 6 shows, it is possible to
specify the source code and compilation instructions for the
DCE application. NEPI ensures that the application bina-
ries are built and installed on the right path in the host.
The script then defines as many mobile nodes as desired, all
attached to the wireless channel and running the transmit-
ter application defined in Listing 7. Mobile nodes use the
ns3::RandomDirection2dMobilityModel to model the mobil-
ity pattern. In addition, a default route towards the AP is
added to each mobile node (see details in Listing 8).

1 def bu i l d n s 3 t opo l o gy (ec , simu , node count , network ,
p r e f i x l en , ag en t i p) :

2 channel = ec . r e g i s t e r r e s o u r c e (”ns3 : : YansWifiChannel ”)
3
4 net = ipaddr . IPv4Network (”%s/%s ” % (network , p r e f i x l e n))
5 i t r = net . i t e r h o s t s ()
6
7 ap ip = i t r . next () . exploded
8 ap = add ns3 node (ec , simu , ap ip , p r e f i x l en , channel ,

ap mode=True)
9

10 i f ap ip == agen t i p :
11 add dce agent (ec , ap)
12
13 f o r i in range (0 , node count) :
14 ip = i t r . next () . exploded
15 sensor = add ns3 node (ec , simu , ip , p r e f i x l en , channel

, ap mode=False)

16 t ransmi t t e r = add dce t r an sm i t t e r (ec , sensor , ap ip)
17 add ns3 route (ec , sensor , network=” 0 . 0 . 0 . 0 ” , p r e f i x l e n

=”0” , nexthop=ap ip)
18
19 return ap

Listing 4: NEPI function to describe an ns-3
simulated network.

1 def add ns3 node (ec , simu , ip , p r e f i x l en , channel , ap mode
=False) :

2 ns3 node = ec . r e g i s t e r r e s o u r c e (”ns3 : : Node”)
3 ec . s e t (ns3 node , ”enableStack ” , True)
4 ec . r e g i s t e r c o nn e c t i o n (ns3 node , simu)
5
6 dev , phy = add n s 3 w i f i d e v i c e (ec , ns3 node , ip ,

p r e f i x l en , ap mode)
7 ec . r e g i s t e r c o nn e c t i o n (channel , phy)
8
9 i f not ap mode :

10 add ns3 random mobi l i ty (ec , ns3 node)
11
12 return ns3 node

Listing 5: NEPI function to add an ns-3 node in the
simulation instance.

1 def add dce agent (ec , ns3 node) :
2 agent = ec . r e g i s t e r r e s o u r c e (” l inux : : ns3 : : dce : :

Appl i cat ion ”)
3 ec . s e t (agent , ” source s ” , ”code/ agent . c ”)
4 ec . s e t (agent , ”bu i ld ” , ”gcc −fPIC −pie −rdynamic ${SRC}/

agent . c −o ${BIN DCE}/ agent ”)
5 ec . s e t (agent , ”binary ” , ”agent ”)
6 ec . r e g i s t e r c o nn e c t i o n (agent , ns3 node)
7
8 return agent

Listing 6: NEPI function to add the DCE agent to
an ns-3 node.

1 def add dce t r an sm i t t e r (ec , ns3 node , t a rg e t) :
2 t ransmi t t e r = ec . r e g i s t e r r e s o u r c e (” l inux : : ns3 : : dce : :

Appl i cat ion ”)
3 ec . s e t (t ransmit te r , ” source s ” , ”code/ t ransmi t t e r . c ”)
4 ec . s e t (t ransmit te r , ”bu i ld ” , ”gcc −fPIC −pie −rdynamic $

{SRC}/ t ransmi t t e r . c −o ${BIN DCE}/ t ransmi t t e r ”)
5 ec . s e t (t ransmit te r , ”binary ” , ” t ransmi t t e r ”)
6 ec . s e t (t ransmit te r , ”arguments ” , t a rg e t)
7 ec . r e g i s t e r c o nn e c t i o n (transmitter , ns3 node)
8
9 return t ransmi t t e r

Listing 7: NEPI function to add the DCE
transmitter to an ns-3 node.

1 def add ns3 route (ec , ns3 node , network , p r e f i x l en ,
nexthop) :

2 route = ec . r e g i s t e r r e s o u r c e (”ns3 : : Route ”)
3 ec . s e t (route , ”network ” , network)
4 ec . s e t (route , ” p r e f i x ” , p r e f i x l e n)
5 ec . s e t (route , ”nexthop ” , nexthop)
6 ec . r e g i s t e r c o nn e c t i o n (route , ns3 node)
7
8 return route

Listing 8: NEPI function to add a route to an ns-3
node.

At this stage, the simulated network is entirely defined
and to customize a ns-3 instance to exchange traffic with
another ns-3 instance or with a live network, the FdNet-
Device component is used. As shown in NEPI provides a
ResourceManager to manage FdNetDevices. In Listing 9,
the FdNetDevice is connected to the ns-3 AP node.

1 def add fdne t d ev i c e (ec , ap , ip , p r e f i x l e n) :
2 fddev = ec . r e g i s t e r r e s o u r c e (”ns3 : : FdNetDevice ”)
3 ec . s e t (fddev , ” ip ” , ip)
4 ec . s e t (fddev , ” p r e f i x ” , p r e f i x l e n)
5 ec . r e g i s t e r c o nn e c t i o n (ap , fddev)
6
7 return fddev

Listing 9: NEPI function to define an ns-3
FdNetDevice RM and connect it to the AP node.

Two remote ns-3 instances can be connected using a tun-
nel attached to FdNetDevices in each simulated network. To

ns-3

PlanetLab

s

transmitters

transmitter s

transmitter

s

transmitter AP

agent

Figure 9: Example of wireless network scenario. The
access point (AP) runs the agent, and the mobile
sensor nodes (s) run the transmitter to send reports
to the agent.

use hosts from the PlanetLab [16] testbed to run the simu-
lations. PlanetLab is a public research network, with hosts
that experimenters can access using a SSH credentials. As
we can see in Listing 3, the only configuration information
that is needed to manage the host is its name and the SSH
credentials of the user, i.e., username and SSH key. Using
this information, NEPI can automate installation of ns-3 on
the host during deployment and start the simulations with-
out any manual intervention.

1 def add host s imu (ec , hostname , username , s sh key) :
2 host = ec . r e g i s t e r r e s o u r c e (”p lane t l ab : : Node”)
3 ec . s e t (host , ”hostname ” , hostname)
4 ec . s e t (host , ”username ” , username)
5 ec . s e t (host , ” i d en t i t y ” , s sh key)
6
7 simu = ec . r e g i s t e r r e s o u r c e (” l inux : : ns3 : : S imulat ion ”)
8 ec . r e g i s t e r c o nn e c t i o n (simu , host)
9

10 return host , simu

Listing 3: NEPI function to describe a PlanetLab
host with an ns-3 simulator instance running on it.

Second, the script describes the network that will be simu-
lated in the ns-3 instance. As detailed in Listing 4, a wireless
channel is defined as transmission medium for the wireless
network. An ns-3 node is then created to simulate the AP
and is connected to the wireless channel as illustrated in
Listing 5. An emulated application to run the agent is then
attached to the AP. As Listing 6 shows, it is possible to
specify the source code and compilation instructions for the
DCE application. NEPI ensures that the application bina-
ries are built and installed on the right path in the host.
The script then defines as many mobile nodes as desired, all
attached to the wireless channel and running the transmit-
ter application defined in Listing 7. Mobile nodes use the
ns3::RandomDirection2dMobilityModel to model the mobil-
ity pattern. In addition, a default route towards the AP is
added to each mobile node (see details in Listing 8).

1 def bu i l d n s 3 t opo l o gy (ec , simu , node count , network ,
p r e f i x l en , ag en t i p) :

2 channel = ec . r e g i s t e r r e s o u r c e (”ns3 : : YansWifiChannel ”)
3
4 net = ipaddr . IPv4Network (”%s/%s ” % (network , p r e f i x l e n))
5 i t r = net . i t e r h o s t s ()
6
7 ap ip = i t r . next () . exploded
8 ap = add ns3 node (ec , simu , ap ip , p r e f i x l en , channel ,

ap mode=True)
9

10 i f ap ip == agen t i p :
11 add dce agent (ec , ap)
12
13 f o r i in range (0 , node count) :
14 ip = i t r . next () . exploded
15 sensor = add ns3 node (ec , simu , ip , p r e f i x l en , channel

, ap mode=False)

16 t ransmi t t e r = add dce t r an sm i t t e r (ec , sensor , ap ip)
17 add ns3 route (ec , sensor , network=” 0 . 0 . 0 . 0 ” , p r e f i x l e n

=”0” , nexthop=ap ip)
18
19 return ap

Listing 4: NEPI function to describe an ns-3
simulated network.

1 def add ns3 node (ec , simu , ip , p r e f i x l en , channel , ap mode
=False) :

2 ns3 node = ec . r e g i s t e r r e s o u r c e (”ns3 : : Node”)
3 ec . s e t (ns3 node , ”enableStack ” , True)
4 ec . r e g i s t e r c o nn e c t i o n (ns3 node , simu)
5
6 dev , phy = add n s 3 w i f i d e v i c e (ec , ns3 node , ip ,

p r e f i x l en , ap mode)
7 ec . r e g i s t e r c o nn e c t i o n (channel , phy)
8
9 i f not ap mode :

10 add ns3 random mobi l i ty (ec , ns3 node)
11
12 return ns3 node

Listing 5: NEPI function to add an ns-3 node in the
simulation instance.

1 def add dce agent (ec , ns3 node) :
2 agent = ec . r e g i s t e r r e s o u r c e (” l inux : : ns3 : : dce : :

Appl i cat ion ”)
3 ec . s e t (agent , ” source s ” , ”code/ agent . c ”)
4 ec . s e t (agent , ”bu i ld ” , ”gcc −fPIC −pie −rdynamic ${SRC}/

agent . c −o ${BIN DCE}/ agent ”)
5 ec . s e t (agent , ”binary ” , ”agent ”)
6 ec . r e g i s t e r c o nn e c t i o n (agent , ns3 node)
7
8 return agent

Listing 6: NEPI function to add the DCE agent to
an ns-3 node.

1 def add dce t r an sm i t t e r (ec , ns3 node , t a rg e t) :
2 t ransmi t t e r = ec . r e g i s t e r r e s o u r c e (” l inux : : ns3 : : dce : :

Appl i cat ion ”)
3 ec . s e t (t ransmit te r , ” source s ” , ”code/ t ransmi t t e r . c ”)
4 ec . s e t (t ransmit te r , ”bu i ld ” , ”gcc −fPIC −pie −rdynamic $

{SRC}/ t ransmi t t e r . c −o ${BIN DCE}/ t ransmi t t e r ”)
5 ec . s e t (t ransmit te r , ”binary ” , ” t ransmi t t e r ”)
6 ec . s e t (t ransmit te r , ”arguments ” , t a rg e t)
7 ec . r e g i s t e r c o nn e c t i o n (transmitter , ns3 node)
8
9 return t ransmi t t e r

Listing 7: NEPI function to add the DCE
transmitter to an ns-3 node.

1 def add ns3 route (ec , ns3 node , network , p r e f i x l en ,
nexthop) :

2 route = ec . r e g i s t e r r e s o u r c e (”ns3 : : Route ”)
3 ec . s e t (route , ”network ” , network)
4 ec . s e t (route , ” p r e f i x ” , p r e f i x l e n)
5 ec . s e t (route , ”nexthop ” , nexthop)
6 ec . r e g i s t e r c o nn e c t i o n (route , ns3 node)
7
8 return route

Listing 8: NEPI function to add a route to an ns-3
node.

At this stage, the simulated network is entirely defined
and to customize a ns-3 instance to exchange traffic with
another ns-3 instance or with a live network, the FdNet-
Device component is used. As shown in NEPI provides a
ResourceManager to manage FdNetDevices. In Listing 9,
the FdNetDevice is connected to the ns-3 AP node.

1 def add fdne t d ev i c e (ec , ap , ip , p r e f i x l e n) :
2 fddev = ec . r e g i s t e r r e s o u r c e (”ns3 : : FdNetDevice ”)
3 ec . s e t (fddev , ” ip ” , ip)
4 ec . s e t (fddev , ” p r e f i x ” , p r e f i x l e n)
5 ec . r e g i s t e r c o nn e c t i o n (ap , fddev)
6
7 return fddev

Listing 9: NEPI function to define an ns-3
FdNetDevice RM and connect it to the AP node.

Two remote ns-3 instances can be connected using a tun-
nel attached to FdNetDevices in each simulated network. To

Controller host

NEPI Script

To do list
Deploy ns-3 on a PlanetLab host

Model the simulated network in ns-3

Run a real transmitter application

Interconnect the ns-3 instance with the real
transmitter application

Run the experiment

12

Deploy ns-3 on PlanetLab

13

Deploy ns-3 on PlanetLab
ec = ExperimentController(exp_id="hybrid")

13

Deploy ns-3 on PlanetLab
ec = ExperimentController(exp_id="hybrid")

host = ec.register_resource("planetlab::Node")

ec.set(host, "hostname", hostname)

ec.set(host, "username", username)

ec.set(host, "identity", ssh_key)

13

Deploy ns-3 on PlanetLab
ec = ExperimentController(exp_id="hybrid")

host = ec.register_resource("planetlab::Node")

ec.set(host, "hostname", hostname)

ec.set(host, "username", username)

ec.set(host, "identity", ssh_key)

simu = ec.register_resource("linux::ns3::Simulation")

13

Deploy ns-3 on PlanetLab
ec = ExperimentController(exp_id="hybrid")

host = ec.register_resource("planetlab::Node")

ec.set(host, "hostname", hostname)

ec.set(host, "username", username)

ec.set(host, "identity", ssh_key)

simu = ec.register_resource("linux::ns3::Simulation")

ec.register_connection(simu, host)

13

Model the simulated network
in ns-3 - the topology

14

Model the simulated network
in ns-3 - the topology

channel = ec.register_resource("ns3::YansWifiChannel")

14

Model the simulated network
in ns-3 - the topology

channel = ec.register_resource("ns3::YansWifiChannel")

ap = add_ns3_node(ec, simu, agent_ip, prefixlen,  
" " " " " channel, ap_mode=True)

14

Model the simulated network
in ns-3 - the topology

channel = ec.register_resource("ns3::YansWifiChannel")

ap = add_ns3_node(ec, simu, agent_ip, prefixlen,  
" " " " " channel, ap_mode=True)

agent = add_dce_agent(ec, ap)

14

Model the simulated network
in ns-3 - the topology

channel = ec.register_resource("ns3::YansWifiChannel")

ap = add_ns3_node(ec, simu, agent_ip, prefixlen,  
" " " " " channel, ap_mode=True)

agent = add_dce_agent(ec, ap)

for ip in ips:

 sensor = add_ns3_node(ec, simu, ip, prefixlen,"" " " "
" " " " " " channel, ap_mode=False)

 transmitter = add_dce_transmitter(ec, sensor, agent_ip)

 add_ns3_route(ec, sensor, network="0.0.0.0/0", nexthop=agent_ip)

14

Model the simulated network
in ns-3 - the nodes

def add_ns3_node(ec, simu, ip, prefixlen, channel, ap_mode=False):

15

Model the simulated network
in ns-3 - the nodes

def add_ns3_node(ec, simu, ip, prefixlen, channel, ap_mode=False):

 ns3_node = ec.register_resource("ns3::Node")

 ec.set(ns3_node, "enableStack", True)

15

Model the simulated network
in ns-3 - the nodes

def add_ns3_node(ec, simu, ip, prefixlen, channel, ap_mode=False):

 ns3_node = ec.register_resource("ns3::Node")

 ec.set(ns3_node, "enableStack", True)

 ec.register_connection(ns3_node, simu)

15

Model the simulated network
in ns-3 - the nodes

def add_ns3_node(ec, simu, ip, prefixlen, channel, ap_mode=False):

 ns3_node = ec.register_resource("ns3::Node")

 ec.set(ns3_node, "enableStack", True)

 ec.register_connection(ns3_node, simu)

 dev, phy = add_ns3_wifi_device(ec, ns3_node, ip, prefixlen, ap_mode)

 ec.register_connection(channel, phy)

15

Model the simulated network
in ns-3 - the nodes

def add_ns3_node(ec, simu, ip, prefixlen, channel, ap_mode=False):

 ns3_node = ec.register_resource("ns3::Node")

 ec.set(ns3_node, "enableStack", True)

 ec.register_connection(ns3_node, simu)

 dev, phy = add_ns3_wifi_device(ec, ns3_node, ip, prefixlen, ap_mode)

 ec.register_connection(channel, phy)

 if not ap_mode:

 add_ns3_random_mobility(ec, ns3_node)

 return ns3_node

15

Model the simulated network
in ns-3 - the applications

def add_dce_transmitter(ec, ns3_node, target):

16

Model the simulated network
in ns-3 - the applications

def add_dce_transmitter(ec, ns3_node, target):

 transmitter = ec.register_resource("linux::ns3::dce::Application")

16

Model the simulated network
in ns-3 - the applications

def add_dce_transmitter(ec, ns3_node, target):

 transmitter = ec.register_resource("linux::ns3::dce::Application")

 ec.set(transmitter, "sources", "code/transmitter.c")

 ec.set(transmitter, "build", "gcc -fPIC -pie  
" " " -rdynamic ${SRC}/transmitter.c -o ${BIN_DCE}/transmitter")

 ec.set(transmitter, "binary", "transmitter")

 ec.set(transmitter, "arguments", target)

16

Model the simulated network
in ns-3 - the applications

def add_dce_transmitter(ec, ns3_node, target):

 transmitter = ec.register_resource("linux::ns3::dce::Application")

 ec.set(transmitter, "sources", "code/transmitter.c")

 ec.set(transmitter, "build", "gcc -fPIC -pie  
" " " -rdynamic ${SRC}/transmitter.c -o ${BIN_DCE}/transmitter")

 ec.set(transmitter, "binary", "transmitter")

 ec.set(transmitter, "arguments", target)

 ec.register_connection(transmitter, ns3_node)

 return transmitter

16

Interconnect the ns-3 instance with
the real transmitter application

Attach a File Descriptor NetDevice to the ns-3 node constituting
the access point (ns3::FdNetDevice).

Create a TAP device on the PlanetLab host (planetlab::Tap).

 Connect the “real” TAP to the File Descriptor NetDevice
(planetlab::ns3::TunTapFdLink).

Add routes

 to the simulated network via the access point
(planetlab::Vroute),

to the real network via the TAP (ns3::Route).

17

Run the experiment

ec.deploy()

18

Conclusion
ns-3 provides all the building blocks to perform

distributed simulations

hybrid experiments

but is fastidious to use as-is.

NEPI hides the complexity of hybridation and
distribution to automate ns-3 experiments.

19

Automating ns-3
Experimentation in
Multi-Host Scenarios

Alina Quereilhac 
Damien Saucez 
Thierry Turletti
Walid Dabbous

