WNS3 Workshop, 13-14 May, 2015 – Castelldefels Barcelona, Spain

NATIONAL & KAPODISTRIAN UNIVERSITY OF ATHENS

Implementing Clustering for Vehicular Ad-hoc Networks in ns-3

Lampros Katsikas (<u>lkatsikas@di.uoa.gr</u>) Konstantinos Chatzikokolakis (<u>kchatzi@di.uoa.gr</u>) Nancy Alonistioti (<u>nancy@di.uoa.gr</u>)

Outline

- Motivation
- Related Work
- Implementation
 - Control Application Model
 - Clustering Algorithm
 - Cooperative Collision Warning
- Evaluation
 - Cluster Evaluation
 - Cooperative Collision Warning Evaluation
- Conclusions and Future Work
- Questions and Answers

Motivation

http://scanlab.di.uoa.gr | Page 3 | 5/13/2015

Motivation (1/2)

- Vehicular Ad-hoc networks consist of the following types of communication
 - Short-range communication between vehicles (V2V)
 - Communication based on using preexisting network infrastructure such as Road-Side Units (RSUs) for longer communication range (V2I)
- VANET applications
 - Safety
 - Traffic Management
 - Infotainment

Motivation (2/2)

- WAVE protocol available in the latest versions of NS-3. However:
 - Congestion and thus communication failure may occur when having large number of devices cooperating in this band
 - Clustering schemes might be a solution to the network congestion problem by reducing data volumes exchanged. However, the absence of a clustering mechanism in the simulator is the motivation for our work

So, we implemented a new type of application that uses a v2v clustering scheme to group vehicles into a number of clusters based on their mobility

Related Work

http://scanlab.di.uoa.gr | Page 6 | 5/13/2015

Related Work

- Mobility based clustering schemes are classified into:
 - Direction based clustering schemes
 - DMAC algorithm
 - Non-Direction based clustering schemes
 - Basagni's Distributed algorithm
- One hop schemes
 - Affinity Propagation algorithm
- Multihop schemes
 - Fast Randomized algorithm

Traditional clustering algorithms for ad hoc networks are not suitable for vehicular ad hoc networks, due to the high mobility of the nodes

Implementation

http://scanlab.di.uoa.gr | Page 8 | 5/13/2015

Control Application Model (1/2)

- Extends NS-3 built-in application model
- Control v2v application supports:
 - Exchange cluster information and node status
 - Exchange specific clustering messages
 - Cooperative Collision Warning
 - Send either Point-to-point or Broadcast
 - Receive Cooperative Collision Warnings
 - Gather statistics related to cluster

Control Application Model (2/2)

- Finite State Machine(FSM) with four different states:
 - CLUSTER_INITIALIZATION
 - CLUSTER_HEAD_ELECTION
 - CLUSTER_FORMATION
 - CLUSTER_UPDATE
- V2v maintains information for neighboring vehicles:
 - ID
 - Cluster ID
 - Status (Standalone/CM/CH)
 - Mobility (Position, Velocity, Direction)

Header Messages Model

- Custom header messages extend NS-3 built-in header class
- Four different types of messages
 - V2vClusterInfoHeader
 - Broadcast periodic update messages
 - V2vInitiateClusterHeader
 - Start cluster formation algorithm
 - V2vFormClusterHeader
 - Announce cluster head role
 - V2vIncidentEventHeader
 - Report an incident to the cluster

Clustering Algorithm

- In general, each vehicle
 - periodically broadcasts information messages
 - Categorize its neighbors as stable and non-stable according to their velocity vectors → only stable neighbors may form clusters
- Clustering mechanism comprises the following processes
 - Cluster Formation
 - Cluster Maintenance

Clustering Algorithm – Cluster Formation

- Starts when the COV sends a message containing a temporary cluster id.
- Only faster stable neighbors react to this message:
 - Setting the temporary cluster id received from COV
 - Calculating their suitability to become Cluster Head (Suitability Check)
- Cluster Head (CH) announces the new cluster Id
 - Cluster Members (CM) set their new cluster id
 - Standalone vehicles continue through the same process

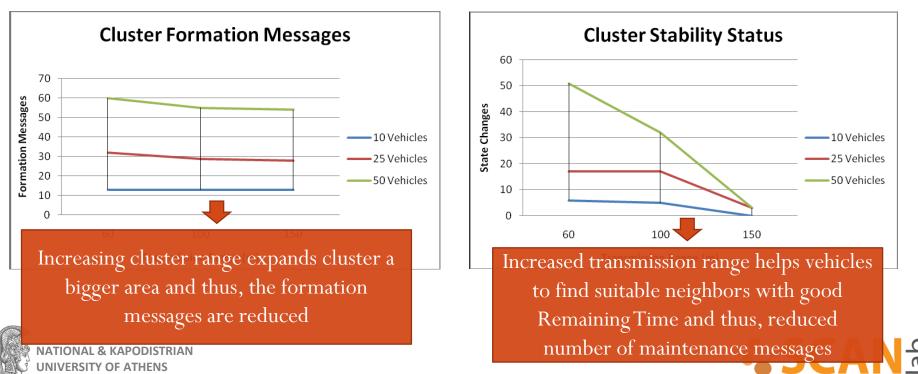
Clustering Algorithm – Cluster Maintenance

- Cluster Maintenance supports:
 - Vehicle joins to a cluster
 - Select most suitable cluster according to RT (Remaining Time)
 - Vehicle leaves a cluster
 - Select most suitable cluster according to RT, if any
 - Set current status to Standalone, if no cluster in range
 - Merge of two Cluster Heads
 - When two CH in range:
 - CH with less CMs becomes CM of the other CH
 - CM of the old CH also attempts to join the new CH
 - If new CH is not in range, then vehicles select other cluster
 - If no cluster in range, vehicles turn to Standalone state

Cooperative Collision Warning

- Control Application generates safety messages randomly during the simulation time using uniform random variable
- Currently the application supports 2 types of messages:
 - Notification messages
 - Emergency messages
- Three different cases for safety message propagation:
 - Standalone vehicle just broadcasts the message Worst Case Scenario
 - CH broadcasts the message to the cluster
 - CM sends the message to the CH (via point-to-point link) and CH broadcasts the event to the whole cluster

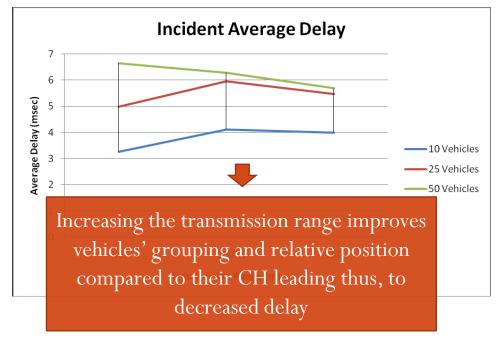
Evaluation



http://scanlab.di.uoa.gr | Page 16 | 5/13/2015

Cluster Evaluation

- No comparison available with other algorithms in NS-3
- Evaluation of our implementation by calculating:
 - Number of messages during formation process
 - Number of state changes of vehicles



http://scanlab.di.uoa.gr | Page 17 | 5/13/2015

Software Centric & Autonomic Networking

Cooperative Collision Warning Delay

- For the mean delay calculation we included only the worst case scenario
 - CM 🔶 CH 🌩 Cluster
 - The aggregation of the time is done using the timestamp field included in the header messages

Software Centric & Autonomic Networking

Conclusions and Future Work

- Conclusions
 - New application model
 - First clustering algorithm implementation
 - New header messages implementation
 - Code available at https://gitlab.scanlab.gr/lkatsikas/v2v.git
- Future Plans
 - Generalize the current API to support Mobility based Clustering schemes
 - Implement a couple of new algorithms
 - Develop a more realistic mobility model for VANETs using SUMO traffic simulator

Questions and Answers

"Questions are guaranteed in life; answers aren't"

http://scanlab.di.uoa.gr | Page 20 | 5/13/2015

Thank you

http://scanlab.di.uoa.gr | Page 21 | 5/13/2015