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Overview 
•  Focus: distributed ns3 simulations, parallel 

scheduler, model-building tools 

•  Objectives 
•  Develop custom network model-building tools to 

enable simulation of very large computer 
networks 

•  Study the scalability of distributed ns-3 in terms 
of the traffic runtime and memory footprint by 
varying CPU ranks and the size of the model 

•  Compare performance of two parallel 
schedulers, YAWNS and NULL 

Can we model planetary-scale (~1B nodes) 
networks using standard ns-3 today? 

Rank Country/entity IPv4 addresses % 
World 4,294,967,296 100.0 

1 United States 1,541,605,760 35.9 
Bogons 875,310,464 20.4 

2 China 330,321,408 7.7 
3 Japan 202,183,168 4.7 
4 United Kingdom 123,500,144 2.9 

Source: http://en.wikipedia.org/wiki/List_of_countries_by_IPv4_address_allocation 
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Previous Work 

•  E. Weingärtner, H. vom Lehn, and K. Wehrle (2009)                                                     
A performance comparison of recent network simulators 

•  J. Pelkey and G. Riley (2011)                                                                          
Distributed simulation with MPI in ns-3 

•  P. D. Barnes, Jr., et al. (2012)                                                                                        
A benchmark model for parallel ns3  

•  K. Renard, C. Peri, and J. Clarke (2012)                                                                       
A performance and scalability evaluation of the ns-3 distributed scheduler 

•  360M network nodes! 

•  S. Nikolaev, et al. (2013)                                                                                
Performance of distributed ns-3 network simulator   

•  Scalability study, performance metrics (runtime, RSS footprint), XNDL 
•  Largest model: 750K network nodes (node RAM-limited) 

!  S. G. Smith, et al. (2015), WNS3 2015                                                      
Improving Per Processor Memory Use of ns-3 to Enable Large Scale Simulations 
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Enabling Developments since SIMUTools’13 

Distributed network topology 
Instead of keeping the entire network model in memory, each processing rank stores 
only local (subset) network.  This allows to scale to the cluster memory instead of the 
compute node memory. 

XNDL maturation 

XML Network Description Language development specifically targeted very large 
networks. 

Incremental ns-3 development 

New version of ns-3 include performance improvements and optimizations that may 
enable running larger models. 

Evolution of computing hardware 

New distributed scheduler 

A new distributed scheduler is based on NULL message exchange and can lead to 
performance improvements for certain types of modeled networks. 

A new cluster, catalyst, became available with large RAM (128GB/node; 324 nodes) 
and NVRAM (800GB/node). Another cluster, herd, with very large RAM (1024GB/
node; 9 nodes) for memory-intensive processing. 
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Simulated Networks 

Since each channel has 2 unique IP addresses, the total address space is 3N.  
For 230 model networks, we are approaching the limit of the IPv4 address space. 

•  Small-world network of routers 
•  (k=4, β=0.5) 
•  Watts-Strogatz algorithm 
•  Mimics the backbone/AS 
•  Each router is connected to a 

single leaf node 

For N total nodes: 
 N/2 routers 
 N/2 leaf nodes 
 N/2 (CSMA) +Nk/4 (P2P) = 3N/2 total channels 
  Range of models simulated: 

217 230 

131,072 1,073,741,824 
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Network Traffic 
!  Full load models: Packet traffic is generated on every channel 
!  Single-hop routing: to avoid routing artifacts, only consider traffic between immediate 

neighbors 
!  Each channel has two OnOff Apps, cross-wired to two PacketSinks 

Packet size: 500 bytes	
Protocol: TCP	
Data rate: 5000 bps	
Link delays are U in [2,12] ms	
Channel bandwidth: 100 Mbps	
Mean packet rate: 0.56 pps	
Mean arrival interval: ~1.8 sec	

Simulation runs for 200 sim seconds: 100 (channel activation) + 100 (steady-state). To 
isolate the effects of routing calculations, channels activate randomly during the first 100 
simulation seconds (staggered activation). The second 100-sec interval is ‘steady-state’ 
regime. 

Staggered 
channel 
activation 

Steady-state 
regime 
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!  With distributed network topology, each MPI ranks only needs to store the 
part of network it is modeling (plus the neighbor nodes); before each MPI 
rank had to store the entire network topology (node RAM bottleneck) 

!  To distribute, the network is partitioned into sectors 
•  sector must reside on a single MPI rank; cannot be split 
•  since splitting is only allows across P2P channels, sector = CSMA subnet 

!  To enable communications among the partitions, we introduce ghost nodes 
•  ghost nodes are created during model initialization 
•  send and receive MPI communications between the ranks 
•  handshake between ghost nodes and underlying real nodes to set up MPI links 

Distributed Topology 
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Schedulers 

!  YAWNS scheduler 
•  default ns-3 distributed scheduler 
•  look ahead time, synchronization phase 
•  global mechanism; may result in performance hits for very large number 

of ranks  

!  NULL scheduler 
•  pair-wise (not global); expect good performance for sparse rank graphs 
•  packets continuously update look-ahead 
•  overhead of nulls only incurred when packets aren't frequent enough 

between a pair of ranks 
•  explicit NULL messages exchanged between ranks, giving the look-

ahead information (e.g. ‘don’t expect anything from me until time X’) 
•  avoids deadlocks 

 

The choice of a particular scheduler is done at runtime, through a command-line option 
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XNDL Features 

XNDL is an effort to design an XML-based language defined by a generic network 
domain model XSD 

XNDL 
Features 

Description / Benefit 

Separability Rather than specifying the model as part of ns-3 simulator using C++ syntax, the model is 
completely detached from the simulator 
"  Compile-once: Do not need to recompile ns-3 every time the model is changed 
"  The model code is drastically simplified 
"  Model description not obscured (or less obscured) by implementation details 

Portability Facilitates model sharing (e.g. “here’s my model, run it in your simulator”) 
XML file with complete XSD grammar (free error-checking) 
Allows comparison of simulators and cross-validation of simulation results 

Modularity Custom XSD and handler code lives in the ns-3 module directory 
Easy creation of XSD and parser for new model elements 
<name, value> generics for elements without XSD, leverages ObjectFactory, obtaining 
the c’tor from TypeId::LookupByName ()	
Configure attributes from <name, value> pairs 
Assumes (as does ns-3) that attributes are representable as strings 

Familiarity An XML file, so it is human- and machine-readable 
Recognizable grammar, uses familiar ns-3 elements e.g. NodeContainer, Application, etc 
Custom (intuitive) XSD for specific types 
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#include "ns3.h"	
	
int main (int argc, char **argv) {	
	std::string xmlFileName;	

	
	CommandLine cmd;	
	cmd.AddValue ("xmlFileName", "Path to XML file", xmlFileName);	
	cmd.Parse (argc, argv);	

	
	XMLSimulation simulation (xmlFileName);	

	
	simulation.Run ();	
	simulation.Report (std::cout);	

	
	return 0;	

}	
	

Compile-once XmlSim (entire ns-3 source file) 
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XNDL Features 
XNDL 

Features 
Description / Benefit 

Compactness Compact description  
Lightweight parser 
Support for compressed I/O streams 
XML compresses very well, ~95% compression 

Hierarchical 
Composability 

Existing models can be incorporated as sub-elements in larger models 
Facilitated by indirection (reference) in XNDL: elements are referenced by their 
(container,index) 

Parameter 
substitution 

Supports parameter substitution (e.g. base address) 

Inheritance Defines an element template using default parameter values 
Defines subsequent elements by referring to the parent element name and substitutes 
relevant parameters 
Leads to more compact model description 

* Composability, Parameter Substitution and Inheritance are not fully operational 
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<?xml version="1.0" encoding="UTF-8" standalone="yes"?>	
<!--Simulation XML file-->	
<XNDL	
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	
  xsi:noNamespaceSchemaLocation="XNDL.xsd"	
  SchemaVersion="1.0"	
	
  <!-- Model name -->	
  Name="Campus Network v2.9"	
	
  <!-- Anything can have a description -->	
  <Description>	
    This model describes ...	
  </Description>	
	
  <!-- Global attributes -->	
  CsmaEnableAsciiTraceAll ="false"	
  CsmaEnablePcapAll       ="false"	
  P2pEnableAsciiTraceAll  ="false"	
  P2pEnablePcapAll        ="false”	
  FileNumber              ="1"	
  TotalFiles              ="2"	
  	
  <!-- Override on command line -->	
  RandomSeed = …	
/>	
	

XNDL: XML Preamble 
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<NodeContainer Size="10" Name="ALL_NODES"/>	
<NodeContainer Size="100" Name="ALL_NEW_NODES"/>	
...	
<NodeContainer Name="p2p_12_nodes">	
    <RefNode Name="ALL_NODES" Index="3"/>	
    <RefNode Name="ALL_NODES" Index="0"/>	
    <ApplicationSet Name="WebBrowsingSet7_0" Index="0"/>	
    <ApplicationSet Name="WebBrowsingSet7_1" Index="1"/>	
</NodeContainer>	
...	
<Subnet Cidr="1.0.0.22/31" Type="P2P" Name="p2p_12" 	   	
        NodeContainer="p2p_12_nodes" DataRate="100Mbps" Delay="10ms“>	
    <Description>p2p_12_Subnet</Description>	
    <RefNode Type="ROUTER" DnsName="router4.llnl.gov" Index="0“>	
        <IPAddress>1.0.0.22</IPAddress>	
        <MAC>00:00:00:00:00:16</MAC>	
    </RefNode>	
    <RefNode Type="ROUTER" DnsName="router1.llnl.gov" Index="1“>	
        <IPAddress>1.0.0.23</IPAddress>	
        <MAC>00:00:00:00:00:17</MAC>	
    </RefNode>	
</Subnet>	
	

XNDL: NodeContainers and Subnets 
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<ApplicationSet Name="WebBrowsingSet7_0">	
    <Application Name="PacketSink"/>	
    <Application Name="Client_7"/>	
</ApplicationSet>	
<ApplicationSet Name="WebBrowsingSet7_1">	
    <Application Name="PacketSink"/>	
    <Application Name="Server_7"/>	
</ApplicationSet>	
	
...	
	
<Application xsi:type="PacketSinkAppType" Name="PacketSink"   	
   Protocol="ns3::TcpSocketFactory" LocalAddress="0.0.0.0" LocalPort="80" 	
   Start="0.0" Stop="200"/>	
	
...	
	
<Application xsi:type="OnOffAppType" Name="Client_7" 	
   Protocol="ns3::TcpSocketFactory" DataRate="5000bps" PacketSize="500" 	
   RemoteAddress="1.0.0.23" Port="80" Start="94.4669" Stop="200"/>	
<Application xsi:type="OnOffAppType" Name="Server_7" 	
   Protocol="ns3::TcpSocketFactory" DataRate="5000bps" PacketSize="500" 	
   RemoteAddress="1.0.0.22" Port="80" Start="94.4669" Stop="200"/>	
	
...	

XNDL: ApplicationSets and Applications 
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Hardware 

!  catalyst cluster 
!  149.3 TFLOP/s (theoretical peak) 
!  324 nodes (7776 cores) 
!  Infiniband QDR (Qlogic) interconnect 
!  41.5 TB total RAM 
!  800GB local NVRAM per node 
!  Disk I/O 2PB capacity, 7GB/s bandwidth 
!  TOSS 2.2 (RHEL 6), mvapich2-gnu-2.0 
!  Each node is a pair of 2.4 GHz Intel Xeon 

E5-2695 v2 CPUs, 24 cores and 128GB 
DRAM per node 

!  herd cluster 
!  1.6 TFLOP/s 
!  9 nodes (256 cores) 
!  Infiniband QDR (Mellanox) interconnect 
!  4.0 TB total RAM 
!  Disk I/O 5PB capacity, 7GB/s bandwidth 
!  TOSS 2.2 (RHEL 6), mvapich2-gnu-2.0 

Both herd and catalyst have greater RAM per node than cab cluster used 2 years 
ago.  With RAM as the bottleneck (even in distributed network topologies), our focus 
was on using clusters with large RAM per node. 
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Putting it all together: Making/Running a 
Network Model 

Model pipeline supports compressed streaming XML I/O throughout 

Generate 
Model 

Uses WS algorithm to generate basic graph structure given N. Writes the 
initial XNDL file with NodeContainers, Subnets, Applications, etc, but no 
sector information.  Can be done in parallel, with each rank writing a subset 
of xndl files. Can also specify the number of output files. 

Sector 
Labeling* 

Initial xndl model files are analyzed to derive the sector information (CSMA 
networks). A sector must reside on a single MPI rank. Specifies potential 
partitioning, without actually partitioning (no ranks information). This needs 
to be done only once, regardless of the target number of ranks. 

Model 
Partitioning 

Given the target number of MPI ranks and the sector information from 
previous step, partition the model using graph partitioning (METIS).  The 
xndl files now have all the information how to partition the model among the 
ranks; the information is mixed together. 

Model 
Separation 

Instead of having all MPI ranks read the same huge file(s), this step splits 
the original model file(s) into the chunks holding information relevant for 
target rank only.  This drastically reduces the I/O. 

ns-3 
Run 

Runs the network model, collecting performance metrics.  Runtime choice of 
scheduler.  
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!  Serial vs. Parallel-1 
•  Any MPI overheads 
•  Find the max size of a model that can fit onto a single node 

!  On-node vs. Off-node scaling 
•  Difference in performance using cores vs. nodes 

!  Strong scaling 
•  Holding the model size fixed, increase the number of MPI ranks for the run 

!  Weak scaling 
•  Increase the number of MPI ranks while holding the job size per rank fixed 

!  YAWNS vs. NULL scheduler comparisons 

!  Metrics 
•  Packet throughput rate 
•  Runtime (total, setup, routing, traffic)  
•  Memory (RSS) footprint 

Results 
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Serial vs. Parallel (1) 

!  Very little difference, no 
significant MPI overhead 

!  Typical runtime uncertainty is 
5% (symbol size) 

!  Super-linear relation for 
runtimes (solid line) provided 
a motivation for the study in 
the companion paper 

!  Relation for RSS is linear 
(dashed line) 

!  The largest model to fit onto a 
node is 220; 221 almost fits 

!  This limitation was due to 
inefficiencies in XNDL parser; 
now fixed 

RSS = Resident Set Size (code + data) 
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Packet throughput rate 

!  Packet Rx rate is measured 
in the steady-state regime 
(100-200 sim sec) 

!  NULL scheduler performs 
worse than YAWNS, and 
does not scale up as well for 
this model type, due to 
densely interconnected rank 
graph 

!  The turnover is due to 
increasing communications 
overhead 

!  Larger networks are less 
efficient for small number of 
ranks, but become more 
efficient with increasing 
number of ranks due to 
higher compute load which is 
masking communications 
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Traffic vs. total runtime 
Traffic time refers to packet 
traffic time, the interval between 
the first and the last packet 
arrival. It includes routing 
calculation time. 

Total time is the total runtime, 
including ns-3 compile, XNDL 
parsing, model initialization, 
and routing calculations. 

The difference (shown) 
indicates the impact of the 
model parsing and initialization. 
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Execution time fractions 

Routing calculations dominate for large model densities 

217 218 219 

220 223 227 

traffic 

routing setup 
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On-node vs. Off-node scaling 

!  On-node: run on varying 
number of cores on the same 
node, up to the node limit 

!  Off-node: run on varying 
number of nodes, at 1 rank 
per node 

!  Expected runtime metric is 
inversely proportional to the 
number of MPI ranks 

!  The on-node runs are 
negatively impacted, most 
likely by node memory 
bandwidth saturation 

Off-node runs are faster, yet are 
“wasteful”, at one rank per node. 
On-node runs are slower, yet let 
us use more ranks overall. 
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Strong scaling 

!  Fix total workload, increase 
the number of MPI ranks 

!  Desired behavior is inversely 
proportional to the number of 
ranks 

!  The slope change indicates 
the impact of the routing 
calculations 

!  At high number of ranks/low 
model density, the runtime 
starts to turn over due to 
increased burden of 
interprocess communications  
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YAWNS vs. NULL scheduler 

YAWNS NULL 

For this type of (densely connected) model graph, NULL-based scheduler cannot take 
advantage of pair-wise communications, so it performs consistently worse 
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Memory Scaling 

RSS scaling is much 
more linear than runtime 
 
Hint of flattening is due to 
fixed size of the code 
(constant term in RSS) 
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Weak scaling 

In weak scaling, the load per rank is kept constant. The expected behavior is flat 
(workload increase is balanced by the increase in the number of MPI ranks) 

Exclusive allocation Shared allocation 
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The Quest for 1B Node Model 

230 Model 
Input file 
(compressed) 

Size on disk 
(GB) 

model (orig) 138 
sector 21 
partition 15 
model (split) 400 

As we were building up models, we realized that 228 model  
was the largest that could fit into catalyst node (128 GB) 

Catalyst 
node RAM 

128GB 

228 model run on 256 nodes at 81.1 GB per node 
230 model on 256 nodes would then require 324.4 GB 
Thus began a quest to optimize RAM for 1B node model: 
•  Catalyst has 296 nodes: 324.4*(256/296) = 280.6 GB 
•  Streaming XNDL parser (~34%): 185.2 GB 
•  UDP packets instead of TCP (~15%): 143.1 GB 
•  Use 1 PacketSink per node, instead of 2 per channel 
     (6%): 126.3 GB 

128 GB 

324.4 GB 
280.6 GB 

185.2 GB 
143.1 GB 126.3 GB 

These optimizations allowed us to run the 
model with 230 (1,073,741,824) ns-3 nodes 

The final input deck for 230 model consists of 7104 directories (one per rank), with each 
directory using ~33 MB, for the total size of 400 GB 

rank_0000 
rank_0001 
rank_0002 

rank_7103 
… 

model_001.xndl.gz 
model_002.xndl.gz 
… 
model_128.xndl.gz 



Lawrence Livermore National Laboratory LLNL-PRES-671055 
28 

229 completes; 230 crashes at ~80 sim sec 

Shared allocation internet/model/ipv4-l3-protocol.cc, 
around line 688: 
 
  // 4) packet is not broadcast, and is 
passed in with a route entry but route-
>GetGateway is not set (e.g., on-demand)	
  if (route && route->GetGateway () == 
Ipv4Address ())	
    {	
      // This could arise because the 
synchronous RouteOutput() call	
      // returned to the transport 
protocol with a source address but	
      // there was no next hop available 
yet (since a route may need	
      // to be queried).	
      NS_FATAL_ERROR 
("Ipv4L3Protocol::Send case 4: This case 
not yet implemented");	
    }	

230 

229 

Error message 
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!  New developments in ns-3 world (distributed topology, XNDL, etc.) enable 
one to build and run large network models, out-of-the-box 

!  Using moderately large cluster (296 nodes; 7776 cores; 128GB/node) we 
demonstrated a planetary-scale network model (230 ns-3 nodes) 

!  Scaling studies (weak and strong) suggest ns-3 scales reasonably well to 
thousands of ranks 

!  Distributed scheduler should be chosen to match the network model 

!  Various optimizations to ns-3 implemented during the course of this work 

Conclusions and Future Work 

!  Future work will develop XNDL to implement parameter substitution and 
inheritance; as well as using XSLT to enable sharing models between simulators 

!  Release the code 




