
LLNL-PRES-671055
This work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Pushing the Envelope in Distributed ns-3 Simulations:
The Quest for One Billion Node Simulation

WNS3 2015, Castelldefels, Spain

S. Nikolaev, L. E. Banks, P. D. Barnes, Jr., D. R. Jefferson, S. G. Smith

May 13, 2015

Lawrence Livermore National Laboratory LLNL-PRES-671055
2

Overview
•  Focus: distributed ns3 simulations, parallel

scheduler, model-building tools

•  Objectives
•  Develop custom network model-building tools to

enable simulation of very large computer
networks

•  Study the scalability of distributed ns-3 in terms
of the traffic runtime and memory footprint by
varying CPU ranks and the size of the model

•  Compare performance of two parallel
schedulers, YAWNS and NULL

Can we model planetary-scale (~1B nodes)
networks using standard ns-3 today?

Rank Country/entity IPv4 addresses %
World 4,294,967,296 100.0

1 United States 1,541,605,760 35.9
Bogons 875,310,464 20.4

2 China 330,321,408 7.7
3 Japan 202,183,168 4.7
4 United Kingdom 123,500,144 2.9

Source: http://en.wikipedia.org/wiki/List_of_countries_by_IPv4_address_allocation

Lawrence Livermore National Laboratory LLNL-PRES-671055
3

Previous Work

•  E. Weingärtner, H. vom Lehn, and K. Wehrle (2009)
A performance comparison of recent network simulators

•  J. Pelkey and G. Riley (2011)
Distributed simulation with MPI in ns-3

•  P. D. Barnes, Jr., et al. (2012)
A benchmark model for parallel ns3

•  K. Renard, C. Peri, and J. Clarke (2012)
A performance and scalability evaluation of the ns-3 distributed scheduler

•  360M network nodes!

•  S. Nikolaev, et al. (2013)
Performance of distributed ns-3 network simulator

•  Scalability study, performance metrics (runtime, RSS footprint), XNDL
•  Largest model: 750K network nodes (node RAM-limited)

!  S. G. Smith, et al. (2015), WNS3 2015
Improving Per Processor Memory Use of ns-3 to Enable Large Scale Simulations

Lawrence Livermore National Laboratory LLNL-PRES-671055
4

Enabling Developments since SIMUTools’13

Distributed network topology
Instead of keeping the entire network model in memory, each processing rank stores
only local (subset) network. This allows to scale to the cluster memory instead of the
compute node memory.

XNDL maturation

XML Network Description Language development specifically targeted very large
networks.

Incremental ns-3 development

New version of ns-3 include performance improvements and optimizations that may
enable running larger models.

Evolution of computing hardware

New distributed scheduler

A new distributed scheduler is based on NULL message exchange and can lead to
performance improvements for certain types of modeled networks.

A new cluster, catalyst, became available with large RAM (128GB/node; 324 nodes)
and NVRAM (800GB/node). Another cluster, herd, with very large RAM (1024GB/
node; 9 nodes) for memory-intensive processing.

Lawrence Livermore National Laboratory LLNL-PRES-671055
5

Simulated Networks

Since each channel has 2 unique IP addresses, the total address space is 3N.
For 230 model networks, we are approaching the limit of the IPv4 address space.

•  Small-world network of routers
•  (k=4, β=0.5)
•  Watts-Strogatz algorithm
•  Mimics the backbone/AS
•  Each router is connected to a

single leaf node

For N total nodes:
 N/2 routers
 N/2 leaf nodes
 N/2 (CSMA) +Nk/4 (P2P) = 3N/2 total channels
 Range of models simulated:

217 230

131,072 1,073,741,824

Lawrence Livermore National Laboratory LLNL-PRES-671055
6

Network Traffic
!  Full load models: Packet traffic is generated on every channel
!  Single-hop routing: to avoid routing artifacts, only consider traffic between immediate

neighbors
!  Each channel has two OnOff Apps, cross-wired to two PacketSinks

Packet size: 500 bytes	
Protocol: TCP	
Data rate: 5000 bps	
Link delays are U in [2,12] ms	
Channel bandwidth: 100 Mbps	
Mean packet rate: 0.56 pps	
Mean arrival interval: ~1.8 sec	

Simulation runs for 200 sim seconds: 100 (channel activation) + 100 (steady-state). To
isolate the effects of routing calculations, channels activate randomly during the first 100
simulation seconds (staggered activation). The second 100-sec interval is ‘steady-state’
regime.

Staggered
channel
activation

Steady-state
regime

Lawrence Livermore National Laboratory LLNL-PRES-671055
7

!  With distributed network topology, each MPI ranks only needs to store the
part of network it is modeling (plus the neighbor nodes); before each MPI
rank had to store the entire network topology (node RAM bottleneck)

!  To distribute, the network is partitioned into sectors
•  sector must reside on a single MPI rank; cannot be split
•  since splitting is only allows across P2P channels, sector = CSMA subnet

!  To enable communications among the partitions, we introduce ghost nodes
•  ghost nodes are created during model initialization
•  send and receive MPI communications between the ranks
•  handshake between ghost nodes and underlying real nodes to set up MPI links

Distributed Topology

Lawrence Livermore National Laboratory LLNL-PRES-671055
8

Schedulers

!  YAWNS scheduler
•  default ns-3 distributed scheduler
•  look ahead time, synchronization phase
•  global mechanism; may result in performance hits for very large number

of ranks

!  NULL scheduler
•  pair-wise (not global); expect good performance for sparse rank graphs
•  packets continuously update look-ahead
•  overhead of nulls only incurred when packets aren't frequent enough

between a pair of ranks
•  explicit NULL messages exchanged between ranks, giving the look-

ahead information (e.g. ‘don’t expect anything from me until time X’)
•  avoids deadlocks

The choice of a particular scheduler is done at runtime, through a command-line option

Lawrence Livermore National Laboratory LLNL-PRES-671055
9

XNDL Features

XNDL is an effort to design an XML-based language defined by a generic network
domain model XSD

XNDL
Features

Description / Benefit

Separability Rather than specifying the model as part of ns-3 simulator using C++ syntax, the model is
completely detached from the simulator
"  Compile-once: Do not need to recompile ns-3 every time the model is changed
"  The model code is drastically simplified
"  Model description not obscured (or less obscured) by implementation details

Portability Facilitates model sharing (e.g. “here’s my model, run it in your simulator”)
XML file with complete XSD grammar (free error-checking)
Allows comparison of simulators and cross-validation of simulation results

Modularity Custom XSD and handler code lives in the ns-3 module directory
Easy creation of XSD and parser for new model elements
<name, value> generics for elements without XSD, leverages ObjectFactory, obtaining
the c’tor from TypeId::LookupByName ()	
Configure attributes from <name, value> pairs
Assumes (as does ns-3) that attributes are representable as strings

Familiarity An XML file, so it is human- and machine-readable
Recognizable grammar, uses familiar ns-3 elements e.g. NodeContainer, Application, etc
Custom (intuitive) XSD for specific types

Lawrence Livermore National Laboratory LLNL-PRES-671055
10

	
#include "ns3.h"	
	
int main (int argc, char **argv) {	
	std::string xmlFileName;	

	
	CommandLine cmd;	
	cmd.AddValue ("xmlFileName", "Path to XML file", xmlFileName);	
	cmd.Parse (argc, argv);	

	
	XMLSimulation simulation (xmlFileName);	

	
	simulation.Run ();	
	simulation.Report (std::cout);	

	
	return 0;	

}	
	

Compile-once XmlSim (entire ns-3 source file)

Lawrence Livermore National Laboratory LLNL-PRES-671055
11

XNDL Features
XNDL

Features
Description / Benefit

Compactness Compact description
Lightweight parser
Support for compressed I/O streams
XML compresses very well, ~95% compression

Hierarchical
Composability

Existing models can be incorporated as sub-elements in larger models
Facilitated by indirection (reference) in XNDL: elements are referenced by their
(container,index)

Parameter
substitution

Supports parameter substitution (e.g. base address)

Inheritance Defines an element template using default parameter values
Defines subsequent elements by referring to the parent element name and substitutes
relevant parameters
Leads to more compact model description

* Composability, Parameter Substitution and Inheritance are not fully operational

Lawrence Livermore National Laboratory LLNL-PRES-671055
12

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>	
<!--Simulation XML file-->	
<XNDL	
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	
 xsi:noNamespaceSchemaLocation="XNDL.xsd"	
 SchemaVersion="1.0"	
	
 <!-- Model name -->	
 Name="Campus Network v2.9"	
	
 <!-- Anything can have a description -->	
 <Description>	
 This model describes ...	
 </Description>	
	
 <!-- Global attributes -->	
 CsmaEnableAsciiTraceAll ="false"	
 CsmaEnablePcapAll ="false"	
 P2pEnableAsciiTraceAll ="false"	
 P2pEnablePcapAll ="false”	
 FileNumber ="1"	
 TotalFiles ="2"	
 	
 <!-- Override on command line -->	
 RandomSeed = …	
/>	
	

XNDL: XML Preamble

Lawrence Livermore National Laboratory LLNL-PRES-671055
13

	
<NodeContainer Size="10" Name="ALL_NODES"/>	
<NodeContainer Size="100" Name="ALL_NEW_NODES"/>	
...	
<NodeContainer Name="p2p_12_nodes">	
 <RefNode Name="ALL_NODES" Index="3"/>	
 <RefNode Name="ALL_NODES" Index="0"/>	
 <ApplicationSet Name="WebBrowsingSet7_0" Index="0"/>	
 <ApplicationSet Name="WebBrowsingSet7_1" Index="1"/>	
</NodeContainer>	
...	
<Subnet Cidr="1.0.0.22/31" Type="P2P" Name="p2p_12" 	 	
 NodeContainer="p2p_12_nodes" DataRate="100Mbps" Delay="10ms“>	
 <Description>p2p_12_Subnet</Description>	
 <RefNode Type="ROUTER" DnsName="router4.llnl.gov" Index="0“>	
 <IPAddress>1.0.0.22</IPAddress>	
 <MAC>00:00:00:00:00:16</MAC>	
 </RefNode>	
 <RefNode Type="ROUTER" DnsName="router1.llnl.gov" Index="1“>	
 <IPAddress>1.0.0.23</IPAddress>	
 <MAC>00:00:00:00:00:17</MAC>	
 </RefNode>	
</Subnet>	
	

XNDL: NodeContainers and Subnets

Lawrence Livermore National Laboratory LLNL-PRES-671055
14

<ApplicationSet Name="WebBrowsingSet7_0">	
 <Application Name="PacketSink"/>	
 <Application Name="Client_7"/>	
</ApplicationSet>	
<ApplicationSet Name="WebBrowsingSet7_1">	
 <Application Name="PacketSink"/>	
 <Application Name="Server_7"/>	
</ApplicationSet>	
	
...	
	
<Application xsi:type="PacketSinkAppType" Name="PacketSink" 	
 Protocol="ns3::TcpSocketFactory" LocalAddress="0.0.0.0" LocalPort="80" 	
 Start="0.0" Stop="200"/>	
	
...	
	
<Application xsi:type="OnOffAppType" Name="Client_7" 	
 Protocol="ns3::TcpSocketFactory" DataRate="5000bps" PacketSize="500" 	
 RemoteAddress="1.0.0.23" Port="80" Start="94.4669" Stop="200"/>	
<Application xsi:type="OnOffAppType" Name="Server_7" 	
 Protocol="ns3::TcpSocketFactory" DataRate="5000bps" PacketSize="500" 	
 RemoteAddress="1.0.0.22" Port="80" Start="94.4669" Stop="200"/>	
	
...	

XNDL: ApplicationSets and Applications

Lawrence Livermore National Laboratory LLNL-PRES-671055
15

Hardware

!  catalyst cluster
!  149.3 TFLOP/s (theoretical peak)
!  324 nodes (7776 cores)
!  Infiniband QDR (Qlogic) interconnect
!  41.5 TB total RAM
!  800GB local NVRAM per node
!  Disk I/O 2PB capacity, 7GB/s bandwidth
!  TOSS 2.2 (RHEL 6), mvapich2-gnu-2.0
!  Each node is a pair of 2.4 GHz Intel Xeon

E5-2695 v2 CPUs, 24 cores and 128GB
DRAM per node

!  herd cluster
!  1.6 TFLOP/s
!  9 nodes (256 cores)
!  Infiniband QDR (Mellanox) interconnect
!  4.0 TB total RAM
!  Disk I/O 5PB capacity, 7GB/s bandwidth
!  TOSS 2.2 (RHEL 6), mvapich2-gnu-2.0

Both herd and catalyst have greater RAM per node than cab cluster used 2 years
ago. With RAM as the bottleneck (even in distributed network topologies), our focus
was on using clusters with large RAM per node.

Lawrence Livermore National Laboratory LLNL-PRES-671055
16

Putting it all together: Making/Running a
Network Model

Model pipeline supports compressed streaming XML I/O throughout

Generate
Model

Uses WS algorithm to generate basic graph structure given N. Writes the
initial XNDL file with NodeContainers, Subnets, Applications, etc, but no
sector information. Can be done in parallel, with each rank writing a subset
of xndl files. Can also specify the number of output files.

Sector
Labeling*

Initial xndl model files are analyzed to derive the sector information (CSMA
networks). A sector must reside on a single MPI rank. Specifies potential
partitioning, without actually partitioning (no ranks information). This needs
to be done only once, regardless of the target number of ranks.

Model
Partitioning

Given the target number of MPI ranks and the sector information from
previous step, partition the model using graph partitioning (METIS). The
xndl files now have all the information how to partition the model among the
ranks; the information is mixed together.

Model
Separation

Instead of having all MPI ranks read the same huge file(s), this step splits
the original model file(s) into the chunks holding information relevant for
target rank only. This drastically reduces the I/O.

ns-3
Run

Runs the network model, collecting performance metrics. Runtime choice of
scheduler.

Lawrence Livermore National Laboratory LLNL-PRES-671055
17

!  Serial vs. Parallel-1
•  Any MPI overheads
•  Find the max size of a model that can fit onto a single node

!  On-node vs. Off-node scaling
•  Difference in performance using cores vs. nodes

!  Strong scaling
•  Holding the model size fixed, increase the number of MPI ranks for the run

!  Weak scaling
•  Increase the number of MPI ranks while holding the job size per rank fixed

!  YAWNS vs. NULL scheduler comparisons

!  Metrics
•  Packet throughput rate
•  Runtime (total, setup, routing, traffic)
•  Memory (RSS) footprint

Results

Lawrence Livermore National Laboratory LLNL-PRES-671055
18

Serial vs. Parallel (1)

!  Very little difference, no
significant MPI overhead

!  Typical runtime uncertainty is
5% (symbol size)

!  Super-linear relation for
runtimes (solid line) provided
a motivation for the study in
the companion paper

!  Relation for RSS is linear
(dashed line)

!  The largest model to fit onto a
node is 220; 221 almost fits

!  This limitation was due to
inefficiencies in XNDL parser;
now fixed

RSS = Resident Set Size (code + data)

Lawrence Livermore National Laboratory LLNL-PRES-671055
19

Packet throughput rate

!  Packet Rx rate is measured
in the steady-state regime
(100-200 sim sec)

!  NULL scheduler performs
worse than YAWNS, and
does not scale up as well for
this model type, due to
densely interconnected rank
graph

!  The turnover is due to
increasing communications
overhead

!  Larger networks are less
efficient for small number of
ranks, but become more
efficient with increasing
number of ranks due to
higher compute load which is
masking communications

Lawrence Livermore National Laboratory LLNL-PRES-671055
20

Traffic vs. total runtime
Traffic time refers to packet
traffic time, the interval between
the first and the last packet
arrival. It includes routing
calculation time.

Total time is the total runtime,
including ns-3 compile, XNDL
parsing, model initialization,
and routing calculations.

The difference (shown)
indicates the impact of the
model parsing and initialization.

Lawrence Livermore National Laboratory LLNL-PRES-671055
21

Execution time fractions

Routing calculations dominate for large model densities

217 218 219

220 223 227

traffic

routing setup

Lawrence Livermore National Laboratory LLNL-PRES-671055
22

On-node vs. Off-node scaling

!  On-node: run on varying
number of cores on the same
node, up to the node limit

!  Off-node: run on varying
number of nodes, at 1 rank
per node

!  Expected runtime metric is
inversely proportional to the
number of MPI ranks

!  The on-node runs are
negatively impacted, most
likely by node memory
bandwidth saturation

Off-node runs are faster, yet are
“wasteful”, at one rank per node.
On-node runs are slower, yet let
us use more ranks overall.

Lawrence Livermore National Laboratory LLNL-PRES-671055
23

Strong scaling

!  Fix total workload, increase
the number of MPI ranks

!  Desired behavior is inversely
proportional to the number of
ranks

!  The slope change indicates
the impact of the routing
calculations

!  At high number of ranks/low
model density, the runtime
starts to turn over due to
increased burden of
interprocess communications

Lawrence Livermore National Laboratory LLNL-PRES-671055
24

YAWNS vs. NULL scheduler

YAWNS NULL

For this type of (densely connected) model graph, NULL-based scheduler cannot take
advantage of pair-wise communications, so it performs consistently worse

Lawrence Livermore National Laboratory LLNL-PRES-671055
25

Memory Scaling

RSS scaling is much
more linear than runtime

Hint of flattening is due to
fixed size of the code
(constant term in RSS)

Lawrence Livermore National Laboratory LLNL-PRES-671055
26

Weak scaling

In weak scaling, the load per rank is kept constant. The expected behavior is flat
(workload increase is balanced by the increase in the number of MPI ranks)

Exclusive allocation Shared allocation

Lawrence Livermore National Laboratory LLNL-PRES-671055
27

The Quest for 1B Node Model

230 Model
Input file
(compressed)

Size on disk
(GB)

model (orig) 138
sector 21
partition 15
model (split) 400

As we were building up models, we realized that 228 model
was the largest that could fit into catalyst node (128 GB)

Catalyst
node RAM

128GB

228 model run on 256 nodes at 81.1 GB per node
230 model on 256 nodes would then require 324.4 GB
Thus began a quest to optimize RAM for 1B node model:
•  Catalyst has 296 nodes: 324.4*(256/296) = 280.6 GB
•  Streaming XNDL parser (~34%): 185.2 GB
•  UDP packets instead of TCP (~15%): 143.1 GB
•  Use 1 PacketSink per node, instead of 2 per channel
 (6%): 126.3 GB

128 GB

324.4 GB
280.6 GB

185.2 GB
143.1 GB 126.3 GB

These optimizations allowed us to run the
model with 230 (1,073,741,824) ns-3 nodes

The final input deck for 230 model consists of 7104 directories (one per rank), with each
directory using ~33 MB, for the total size of 400 GB

rank_0000
rank_0001
rank_0002

rank_7103
…

model_001.xndl.gz
model_002.xndl.gz
…
model_128.xndl.gz

Lawrence Livermore National Laboratory LLNL-PRES-671055
28

229 completes; 230 crashes at ~80 sim sec

Shared allocation internet/model/ipv4-l3-protocol.cc,
around line 688:

 // 4) packet is not broadcast, and is
passed in with a route entry but route-
>GetGateway is not set (e.g., on-demand)	
 if (route && route->GetGateway () ==
Ipv4Address ())	
 {	
 // This could arise because the
synchronous RouteOutput() call	
 // returned to the transport
protocol with a source address but	
 // there was no next hop available
yet (since a route may need	
 // to be queried).	
 NS_FATAL_ERROR
("Ipv4L3Protocol::Send case 4: This case
not yet implemented");	
 }	

230

229

Error message

Lawrence Livermore National Laboratory LLNL-PRES-671055
29

!  New developments in ns-3 world (distributed topology, XNDL, etc.) enable
one to build and run large network models, out-of-the-box

!  Using moderately large cluster (296 nodes; 7776 cores; 128GB/node) we
demonstrated a planetary-scale network model (230 ns-3 nodes)

!  Scaling studies (weak and strong) suggest ns-3 scales reasonably well to
thousands of ranks

!  Distributed scheduler should be chosen to match the network model

!  Various optimizations to ns-3 implemented during the course of this work

Conclusions and Future Work

!  Future work will develop XNDL to implement parameter substitution and
inheritance; as well as using XSLT to enable sharing models between simulators

!  Release the code

