A Software-Defined Spanning Tree Application for ns-3

Jared S. Ivey, Michael K. Riley, and George F. Riley
School of Electrical and Computer Engineering
Georgia Institute of Technology

. Atlanta, GA, USA
{j.ivey, mriley7, riley}@gatech.edu

1. INTRODUCTION

This work demonstrates a spanning tree application for
ns-3 under a software-defined networking (SDN) framework.
SDN enables more flexibility in communication networks
by separating the global routing decisions of the control
plane from the simple packet forwarding of the data plane.
Through standards such as the OpenFlow protocol, it sim-
plifies the logical components directing the system by ab-
stracting lower-level functionality. These concepts allow the
network to be more easily partitioned, accommodating wider
levels of research without interfering with typical end-user
traffic flow. Furthermore, greater traceability is achieved
due to the logical centralization of network control, enabling
an infrastructure for more thorough network security mea-
sures.

To accommodate more scalable and resilient topologies in
both traditional and software-defined networks, techniques
must be employed to prevent extraneous behavior, such as
forwarding or flooding loops. The basic spanning tree al-
gorithm provides one method in SDN for preventing flood-
ing loops that would otherwise be caused by simple packet-
forwarding, learning applications. Unlike the traditional
Spanning Tree Protocol, a spanning tree application in SDN
offloads the responsibility of topology awareness and span-
ning tree creation to a logically centralized controller. The
controller can then instruct the switches it controls to config-
ure their ports based on the characteristics of the spanning
tree. This work examines some of the visual and statistical
effects of a spanning tree application on an n-by-n grid topol-
ogy of switches in terms of latency in the basic network and
reactivity to topology changes. NetAnim will be employed
to visually demonstrate the correctness of the spanning tree
effects.

2. BACKGROUND
2.1 OpenFlow Protocol

The OpenFlow communication protocol is a prevalent stan-
dard under which SDN may be deployed. It is an open pro-
tocol that enables researchers to run experimental protocols
on large scale networks while maintaining the integrity of
normal user traffic. With OpenFlow, the flow-tables con-
tained in modern Ethernet switches and routers are sim-
plified to accommodate a general set of functions and can
be programmed according to these functions. An Open-
Flow switch integrates a flow table, a secure channel, and
the OpenFlow protocol. The flow table consists of a set of
flow entries. A flow is a match qualifier linked with a list of

actions to take if the specific match is found (possibly send-
ing the packet out through a certain port, modifying some
field or fields in the packet before forwarding it, or simply
dropping the packet).

The secure channel of an OpenFlow switch connects it re-
motely to a process, referred to as the controller. Across this
connection, the switch and controller can communicate com-
mands and packets. This communication is standardized by
the OpenFlow protocol which provides a means to interface
with the switch without directly programming it. The con-
troller can communicate appropriate actions for switches to
take on packets by adding, modifying, or removing flow en-
tries from the flow tables of the switch.

The formal OpenFlow protocol may be found in the Open-
Flow Switch Specification. At the time of this work, versions
extend from 1.0.0 to 1.5.0. This work and its implementa-
tion focuses primarily on version 1.0.0.

2.2 libfluid SDN Library

The libfluid library is actually a bundle of two separate
libraries that provide the basic capabilities to implement an
OpenFlow controller. The libfluid base library provides
the classes necessary to allow a formal OpenFlow connec-
tion, an OpenFlow controller to listen for these connections,
and event handlers across the network. The libfluid_msg
class library provides simple methods for creating, parsing,
and formatting OpenFlow messages for transfer.

The libfluid_base library is designed according to a client-
server architecture. 0FConnection objects in the libfluid_base
library encapsulate the attributes and components of Open-
Flow connections. These objects maintain the connection
state, OpenFlow version, and other attributes for a partic-
ular connection.

The libfluid_msg library provides a simplified interface
for creating and analyzing OpenFlow messages. It provides
the base class OFMsg that all other OpenFlow message ob-
jects inherit. Each child message class inherits two methods,
pack and unpack. The pack method takes the contents of
an OFMsg object and formats it in network byte order struc-
tures according to the appropriate OpenFlow specification.
The unpack method performs the reverse operation.

2.3 ns-SDN

The design of the classes specific to providing SDN simu-
lation capabilities in ns-3 primarily center on implementing
an SDN controller and OpenFlow-enabled switch as user-
defined applications. These applications in ns-3 are installed
on nodes in the simulated topology where they may receive
packets, perform a given set of actions based on the nature



of these received packets, and then forward them appropri-
ately.

2.4 SDN Controller

The SDN controller application is composed of the SdnLis-
tener and SdnController classes while heavily relying on

the SdnConnection class to communicate with the SDN switch

application. The SdnListener class provides the basic capa-
bilities to interface with a libfluid-style controller program.
The SdnController class provides the underlying function-
ality to communicate the event-based instructions to the
SDN switch application.

The SdnListener class provides the basic functionality
handled in libfluid by an abstract controller example.This
class can accept one of three types of controller events as
an input to its event_callback method: EVENT_SWITCH_UP,
EVENT_SWITCH_DOWN, EVENT_PACKET_IN, EVENT_PORT_UP, and
EVENT_PORT_DOWN.

The SdnConnection class takes the place of the libfluid
OFConnection class. This interface mimics that of the OF-
Connection well enough to reduce any compatibility issues
between libfluid and ns-3. Underneath this interface, the
SdnConnection class utilizes ns-3 sockets, providing com-
munication capability suitable within an ns-3 simulation.

The SdnController class contains an SdnlListener object
to handle controller events, establishes connections to each
switch to which it is directly connected, and handles packets
that it receives from these connections. At startup, it will
search each of its next hop connections to determine if an
SdnSwitch application is installed on this subsequent node.
If so, it will establish an SdnConnection with it. Once a
connection has been established, the SdnController can call
the EVENT_SWITCH_UP event on its SdnListener, allowing it
to receive subsequent OpenFlow PacketIn messages that can
prompt EVENT_PACKET_IN events on the SdnListener.

2.5 OpenFlow Switch

The SDN switch application is comprised of the SdnPort,
SdnFlowTable, and SdnSwitch classes. SdnPort provides the
formal definition of a binding port for the switch to send
and receive data. The SdnFlowTable provides the structure
and control for a table of flow rules for the switch to use
on incoming packets. The SdnSwitch provides the actual
application to act as a switch.

The SdnPort class is used as an enclosing class for switch-
to-switch connections. When a switch needs to send out
a packet, it does a lookup for the relevant SdnPort, grabs
the relevant SdnConnection, and sends off the connection
through the NetDevice.

The SdnFlowTable is responsible for all the flows a switch
controls. SdnFlowTable is also responsible for keeping up
with its own table statistics. The table also allows for adding,
modifying, and deleting flow entries based on SdnController
messages.

The SdnSwitch object is the main implementing class for
an SDN-enabled switch. It functions as an ns-3 applica-
tion installed on a node. The primary components of an
SdnSwitch are an SdnConnection specifically connecting to
an SdnController object, an SdnFlowTable that maintains
the current flow rules to apply toward incoming packets,
and a map of SdnPort objects to SdnConnection objects for
all non-controller connections. The SdnSwitch objects re-
ceive data via callbacks from each given connection. At the

NetDevice level (layer 2), packets can be retrieved with all
of their headers still prepended exactly as they would have
arrived to a real switch.

When an SdnSwitch handles data from a non-controller
source, it sends the packet to the SdnFlowTable, returning
the outPort from which the packet must be sent. As the
packet was received at layer 2, it must also be sent from
layer 2, sending out from the appropriate NetDevice. If a
port of OFPP_NONE is returned from the table, the packet
was not handled and must be sent to the controller via an
OFPT_PACKET_IN message to request the appropriate ac-
tion.

3. DEMONSTRATION
3.1 Spanning Tree Application

Spanning tree algorithms are implemented in typical net-
work communication protocols to prevent forwarding loops
by determining a single route between each pair of nodes
within a topology. Within software-defined networking, the
processing effort and topology awareness of the spanning
tree algorithm can be offloaded to the controller as one of
its applications. Within this application, the controller cre-
ates a flow for each of its switches to implement its own
version of link-layer discovery (similar to the protocol of the
same name), allowing it to determine the topology it con-
trols. This topology is constructed as a set of enabled links
between switches. The links are structures specifying the
source and destination datapaths, the destination port, and
the link delay. For the spanning tree, a current node is
selected as the switch with the lowest datapath value. Its
next-hop neighboring switches are then examined. If a desti-
nation switch has not previously been processed, the link to
it will be set such that its port is allowed to flood packets.
This setting is accomplished through a PortMod message
with the OFPPC_NO_FLOOD bit unset. Then, each next-hop
destination switch will selected as the current node. The
process repeats until all switches in the tree have been ex-
amined. The controller can handle updates to the topology
based on the entry or exit of switches. In this way, the
controller can determine the difference between a previous
topology and the current one and send new PortMod mes-
sages to the switches accordingly.

3.2 Simulated Topology

The simulated topology on which the spanning tree appli-
cation will be employed is an n-by-n grid of switches (nodes
with the SdnSwitch application installed) with each edge
switch connected to a single host. Each switch is also di-
rectly connected to a single “controller” node (one which
has the SdnController application installed). A slightly
modified version of the V4Ping application predefined in ns-
3 is installed on each host. The modifications produce a
"ping-all” behavior that allows each host to send a specific
number of pings to each other host in the topology. This be-
havior provides a mechanism for visually verifying the con-
nectivity of the entire simulated topology. For other parts
of the demonstration, the predefined On0OffApplication is
installed on the hosts to produce streams of packets within
the network. Some of the switches may then be "downed”
by stopping their SdnSwitch applications. The reactivity of
the network may be examined as the controller updates the
spanning tree based on the new topology.



