
An Implementation of the SACK-Based Conservative Loss
Recovery Algorithm for TCP in ns-3

Truc Anh N Nguyen∗ and James P.G. Sterbenz∗†§
∗Information and Telecommunication Technology Center

Department of Electrical Engineering and Computer Science
The University of Kansas, Lawrence, KS 66045, USA

†School of Computing and Communications (SCC) and InfoLab21
The Lancaster University, Lancaster LA1 4WA, UK

§Department of Computing
The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

{annguyen, jpgs}@ittc.ku.edu
www.ittc.ku.edu/resilinets

ABSTRACT
This extended abstract is a short version of our full paper,
which describes our implementation and simulation analysis
of the SACK option and the SACK-based conservative loss
recovery algorithm for TCP in ns-3.

Categories and Subject Descriptors
I.6 [Simulation and Modeling]: General, Model Devel-
opment, Model Validation and Analysis

General Terms
Implementation, Analysis, Testing, Verification

Keywords
TCP, SACK, ns-3, Tahoe, (New)Reno, Westwood+

1. INTRODUCTION
TCP, although having been evolved as the dominant reli-

able transport protocol for the Global Internet, fails to main-
tain its throughput when being deployed in network environ-
ments that suffer highly correlated corruption-based losses.
Many mechanisms have been proposed to improve TCP loss
recovery process. One of them is the SACK option exten-
sion to TCP [7], which in turns motivates the development
of TCP SACK’s conservative loss recovery algorithm that
was originally proposed in [2] and later revised in [3]. Given
the lack of SACK option and TCP SACK models in ns-3 [1],
we have decided to implement these models to extend ns-3’s
functionality and hopefully encourage further developments
and studies that are based on or make use of the models. In
this extended abstract, we briefly discuss the SACK option

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Wns3 2015 March 13, Barcelona, Spain.
Copyright 2015 ACM ...$15.00.

structure and the loss recovery algorithm employed by TCP
SACK in Section 2, which is then followed by a description
of our implementations in Section 3. In Section 4, we discuss
a few results obtained from our simulations of the models.
Finally, Section 5 concludes our abstract with directions for
future work. This extended abstract is a very short ver-
sion of our full paper available on our ResiliNets wiki [8] 1.
We remark that although there have been studies on TCP
SACK [6, 4], both of these studies implemented the previous
version as discussed in [2]. To the best of our knowledge, our
work is the first study on TCP SACK that incorporates the
recent changes specified in [3].

2. BACKGROUND
To address the limitation of traditional cumulative ACK

in facing multiple segment losses per sending window, the
SACK option, which was first proposed in [5] and later re-
vised in [7] to increase its robustness, allows a TCP receiver
to inform the sender isolated chunks of data existed in its
buffer due to some missing segments. Each chunk is repre-
sented by a SACK block consisting of two 32-bit sequence
numbers identifying the left edge and the right edge of the
data chunk. The use of SACK option is negotiated by ap-
pending the SACK-PERMITTED option to the SYN mes-
sage at the beginning of a connection. TCP SACK, first
proposed in [2] and later refined in [3] implements another
loss recovery scheme in addition to NewReno’s fast recovery
to exploit the information carried in SACK option to assist
a TCP sender in making correct retransmission decision and
better utilizing the available network’s bandwidth.

3. IMPLEMENTATION
We implement the SACK-PERMITTED and SACK op-

tions by following the structures described in [7] as derived
classes of TcpOption. The processing of these options are
implemented in the base class TcpSocketBase to allow the
use of the options by other TCP variants when desired.
The construction of a SACK list, which consists of multiple
SACK blocks, is assisted by an auxiliary function TcpSock-

etBase::ArrangeSackBlocks to ensure that the first block

1https://wiki.ittc.ku.edu/resilinets/ResiliNets Publications

contains the triggered sequence number. After its construc-
tion, the SACK list is added to the header through a call
to TcpHeader::AppendOption. The AppendOption may be
recalled to ensure that the length of the SACK list together
with any other options already appended to the header do
not exceed the 40-byte option length limit.

TcpSocketBase	

TcpSACK	 TcpWestwood	
m_cWnd	
m_ssThresh	
m_inFastRec	 	 	

m_cWnd	 	
m_ssThresh	
m_retxThresh	

TcpRxBuffer	

TcpSocket	
{absract}	

	

TcpL4Protocol	

TcpHeader	 TcpTxBuffer	

NewAck()	
DupAck()	
Retransmit()	

TcpTahoe	 TcpReno	 TcpNewReno	

NewAck()	
DupAck()	
Retransmit()	

m_cWnd	
m_inFastRec	
m_recover	 	 	
NewAck()	
DupAck()	
Retransmit()	

m_currentBW	
m_lastSampleBW	
m_bwEsEmateEvent	 	 	
CountAck()	
Filtering()	
EsEmateBW()	

m_inFastRec	
m_recover	
m_pipe	 	 	
NewAck()	
DupAck()	
Retransmit()	

*	
m_sockets	

m_rWnd	 	
m_state	
m_nextTxSequence	

m_size	
m_nextRxSeq	
	

m_node	
m_endPoints	
m_sockets	

m_source	 	
m_sequenceNumber	
m_protocol	

m_size	 	
m_firstByteSeq	
	

SetSndBufSize()	 =	 0	
SetSSThresh()	 =	 0	
SetConnTimeout()	 =	 0	

Serialize()	
Deserialize()	
GetSerializedSize()	

Add()	
Available()	
	

Add()	
Available()	

Allocate()	
Send()	
Receive()	

ForwardUp()	
SendPendingData()	
SendEmptyPacket()	

Figure 1: Class diagram of TCP module in ns-3

Figure 1 illustrates the interaction between different TCP
classes in ns-3. The implementation of TCP SACK con-
sists of 2 main files: TcpScoreBoard and TcpSack. Tcp-

ScoreBoard implements the scoreboard structure, which is
a list of scoreboard entries (TcpScoreBoardEntry) where
each containing the sequence number of a transmitted seg-
ment m sequenceNumber and a SACK flag m isSacked. The
scoreboard is used by a TCP SACK sender to keep track
of SACK information received from the other side. While
in this work, we are not concerned with the efficiency of
the list data structure, our implementation ensures that it
can correctly perform all the scoreboard functions outlined
in the specification, including AddEntry, which creates an
entry when a new data segment is transmitted using Tcp-

Sack::SendDataPacket, Update, which scans through the
scoreboard to discard entries that are cumulatively ACKed
and update SACK flags of those that are SACKed upon
the arrival of an ACK, IsLost, which determines if a se-
quence number is considered to be lost, SetPipe, which cal-
culates the number of outstanding segments m pipe, and Is-

DupACK, which determines if a received segment that carries
SACK information is a duplicate ACK as defined in the
new specification [3]. The NextSeq functionality described
in [3] is accomplished through NextSeqPerRule1, TcpSock-
etBase::SendPendingDate (in place of NextSeqPerRule2),
NextSeqPerlRule3, and NextSeqPerRule4 methods.

The implementation of the SACK-based loss recovery al-
gorithm is contained in TcpSack, which is inherited from
the base class TcpSocketBase and covers the 3 main meth-
ods: SackDupAck, NewAck, and StartPipe. Given the new
definition of duplicate ACK in the revised TCP SACK speci-
fication, we give our method a different name called SackDu-

pAck to distinguish it from TcpSocketBase::DupAck. This
method is called when TcpScoreBoard::IsDupAck returns
true. In addition to determining if the TCP needs to enter

loss recovery like DupAck, SackDupAck also uses TCP SACK’s
pipe algorithm by calling StartPipe to take advantage of
additional available congestion window for additional data
transmission. Implemented in NewAck, TCP SACK’s behav-
ior on the receipt of a new ACK is very similar to NewReno’s
except the employment of the pipe algorithm when a partial
ACK is received. Finally, StartPipe implements the TCP
SACK’s pipe algorithm, which is the heart of TCP SACK al-
lowing a better utilization of available network’s bandwidth
by exploiting information conveyed in SACK blocks. This
method calculates the amount of additional data that can be
transmitted as the difference between the congestion window
m cWnd and the number of outstanding octets m pipe.

4. SIMULATION RESULTS
In our work, we perform simulations to study TCP SACK’s

behavior and compare its performance with the existing
TCP variants in ns-3 including Tahoe, Reno, NewReno, and
Westwood+. Figure 2 illustrates our simulation topology,
and Table 1 summarizes all the simulation parameters. Due
to the page constraint in this extended abstract, we present
only a plot in Figure 3, which shows that TCP SACK per-
forms as well as NewReno and outperforms both Tahoe and
Reno in the presence of correlated losses with high error
rate. TCP SACK performs worse than Westwood+ at the
error rate of 10−3 because even though TCP SACK tries to
send more data after a loss, it still reduces its congestion
window when losses occur. Westwood+, on the other hand,
tries to estimate the actual bandwidth to make decision on
its sending rate following a packet loss.

router! router!sender ! receiver !

bottleneck link!

10 Mb/s!

0.1 ms!

10 Mb/s!

0.1 ms!

2 Mb/s – 8 Mb/s!

10 ms – 250 ms!

Figure 2: Single flow topology

Parameter Values
Access link bandwidth 10 Mb/s

Bottleneck link bandwidth 4 Mb/s to 8 Mb/s
Access link propagation delay 0.1 ms

Bottleneck link propagation delay 50 ms to 250 ms
Packet MTU size 1500 B

Delayed ACK count 2 segments
Delayed ACK timeout 200 ms

Error model BurstErrorModel

Burst error rate 10−7 to 10−3

Burst size 2 to 5
Application type Bulk send application
Simulation time 600 s
Number of runs 10

Table 1: Simulation parameters

5. CONCLUSIONS AND FUTURE WORK
In this extended abstract, we briefly discuss our work

on implementing and simulating the SACK option and the
newest version of the SACK-based conservative loss recov-
ery algorithm for TCP in ns-3. We acknowledge that in this

av
er

ag
e

th
ro

ug
hp

ut
 [M

b/
s]

burst error rate

NewReno

SACK

Reno

Tahoe

Westwood+

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

1E-07 1E-06 1E-05 1E-04 1E-03

Figure 3: Average throughput vs. burst error rate

work, we use a very simple simulation topology. Hence, for
the future work, we plan to extend our study of TCP SACK
using a more complicated topology.

6. REFERENCES
[1] The ns-3 network simulator. http://www.nsnam.org,

July 2009.

[2] E. Blanton, M. Allman, K. Fall, and L. Wang. A
Conservative Selective Acknowledgment (SACK)-based
Loss Recovery Algorithm for TCP. RFC 3517
(Proposed Standard), Apr. 2003.

[3] E. Blanton, M. Allman, L. Wang, I.Jarvinen, M. Kojo,
and Y.Nishida. A Conservative Loss Recovery
Algorithm Based on Selective Acknowledgment
(SACK) for TCP. RFC 6675 (Standard), 2012.

[4] J. L. Gil. Performance analysis of the tcp sack-based
loss recovery mechanism (rfc 3517) under correlated
losses. In Proceedings of the ACM International
Workshop on Performance Monitoring, Measurement,
and Evaluation of Heterogeneous Wireless and Wired
Networks, PM2HW2N ’06, pages 64–73, New York, NY,
USA, 2006. ACM.

[5] V. Jacobson and R. Braden. TCP extensions for
long-delay paths. RFC 1072, Oct. 1988. Obsoleted by
RFCs 1323, 2018.

[6] S. Ladha, P. Amer, J. Caro, A., and J. Iyengar. On the
prevalence and evaluation of recent TCP
enhancements. In Global Telecommunications
Conference, 2004. GLOBECOM ’04. IEEE, volume 3,
pages 1301–1307 Vol.3, Nov 2004.

[7] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow.
TCP Selective Acknowledgment Options. RFC 2018
(Proposed Standard), Oct. 1996.

[8] T. A. N. Nguyen and J. P. G. Sterbenz. An
Implementation of the SACK-Based Conservative Loss
Recovery Algorithm for TCP in ns-3. Technical Report
ITTC-FY2015-TR-69221-02, Information
Telecommunication and Technology Center, University
of Kansas, Lawrence, KS, 2015.

