Using Al/ML frameworks with ns-3

Hao Yin

Collaborators:
Pengyu Liu, Keshu Liu, Xun Deng (Huazhong University of Science and Technology, HUST)

Lyutianyang Zhang, Liu Cao, Collin Brady, Sachin Nayak (University of Washington, UW)

Advisors:

Xiaojun Hei, Yayu Gao (HUST), Sumit Roy, Thomas R. Henderson (UW)
UNIVERSITY of WASHINGTON

W/

Outline

e AlI/ML in communication
* Introduction of the ns3-ai module

e Basic usage of the ns3-ai module

e Basic functions and usage

e Demos and instructions with code

* Example: Wi-Fi Rate Control

Introduction

UNIIVERSITY of WASHINGTON

Al/ML in Communication

] Motivation

Challenges for the traditional communication system:

> PHY/MAC Complexity: Multi-User Operation, Temporal Dynamics - hard to model analytically
> Clear model, but space of algorithms very large - complex search for suitable algorithm
> Model/Algorithm deficiencies due to imperfect information - learn/adapt

Aligned with:

> Availability of large data sets (supervised/un-supervised)
> Fast Computing (GPU, FPGA)

> Mapping Algorithmic onto ML computation architecture

Al/ML in Communication

oFT
N Fadi h |
Bits—| F~-C ding|— Stream F'\)"r'e'\f'o [oFT — > to multiple Users
pale coding
J PHY Layer ri(; coding | IDFT Y
I\:I,CS Nss streams Subcarriers Ntx TX
allocation chains
Exploding Complexity RX
Reverse MIMO Y <
, : : oo |FEC ! el | —
> Increasing MIMO dimensions s decoding Seam de- | F}x\.NE‘ R
> Complex channels e # of interference
> Greater co-channel interference (denser networks) PHY layer procedures in MIMO system

> Higher order of MU transmissions
Applications of Deep Learning in PHY layer improvements

> DeepTurbo: Deep Turbo Decoder [1]
> Deepcode: Feedback Codes via Deep Learning [2]

[1] Y. Jiang, S. Kannan, H. Kim, S. Oh, H. Asnani and P. Viswanath, "DEEPTURBO: Deep Turbo Decoder. "
[2] H. Kim, Y. Jiang, S. Kannan, S. Oh and P. Viswanath, "Deepcode: Feedback Codes via Deep Learning. " w

Al/ML in Communication

@ WiFiSTA
@ LAAUE

100 L

d MAC Layer al
Dense overlapping Networks 5 o

> Interference between different BSSs
> Scheduling and resource allocation scheme to improve the performance

> Link adaptation and channel access scheme gserie
> Coexistence of WiFi, LTE, and 5G pense Overlapping networks
Applications of Reinforcement Learning in MAC layer

> FDRL in WiFi: Reinforcement Learning for WiFi channel access [3]

> DRL in Resource Slicing for eMBB and URLLC Coexistence in 5G [4]

Al/ML is promising for the next-generation wireless networks!

[3] L. Zhang, H. Yin, Z. Zhou, S. Roy and Y. Sun, "Enhancing WiFi Multiple Access Performance with Federated Deep Reinforcement Learning."
[4] M. Alsenwi et al, "Intelligent Resource Slicing for eMBB and URLLC Coexistence in 5G and Beyond: A Deep Reinforcement Learning Based A

Ns-3 Simulation with AL/ML algorithms

> Easier to scale network dimension (e.g. dense overlapping networks) for
performance evaluation, compared to building test bed.

> Allows cross layer (PHY/MAC) simulation = e.g. cross-layer optimization
like WiFi rate control.

> (Generate data and traces = use ns-3 to generate training data.

> Ns-3 is open source - easy for the researcher to modify and test the
Al/ML algorithms.

Al/ML model training with ns-3

|
Generate " Pre-configure
data AL Optimized @ (Non-Real-time Cases)
frameworks Parameters

Real world or
previous ns-3 data

nteract with each other

@(Near-ReaI-time Cases)
simulation
Actions: parameters, prediction...
Al/ML frameworks ’ @ (Real-time Cases)
(Training, executing ML model) simulation

Data: observation, states...
@ @ Offline Training

8
@ Online Training w

Al/ML L EEIE VB model
(Executed by
frameworks)

frameworks

Al/ML model training with ns-3

 Offline training

|
Al/ML

Generate — Pre-configure :
Optimized @ (Non-Real-time)
frameworks Parameters

nteract with each other

ns-3 :
(:) (Near-Real-time)
simulation

> Offline training: The model is first trained with offline data (from real world or ns-3).

Generate| /5 aplele =

(Executed by
frameworks)

Al/ML
frameworks

> Two ways to use the model in the network/simulation.
* 1: Configure the parameters before the simulation: power, ACK timeout threshold, sensing power.
e 2: Make decisions dynamically during the simulation: execute the model to adjust the parameters in

simulation.
9 W

Al/ML model training with ns-3

 Online Training
Actions: parameters, prediction...

Al/ML frameworks >
(Training, executing ML model) simulation

Data: observation, states...

@ (Real-time)

> Scenarios such as reinforcement learning, where the model
‘learns’ as it is executing in the network.

> |nteract with ns-3 in real time.
> Examples: CQl, RL-TCP, WiFi Rate Control

10

Using Al/ML frameworks with ns-3

(d How to connect ns-3 with Al/ML frameworks

> Find C++ frameworks - compile with ns-3
« Hard to development ML model with C++
« Compile issues
« C++ API found insufficient

> Python Bounding
« Not support for all the models - rewrite the bounding code
« Not good with call back functions

> Using Python based frameworks - Inter-process communication (IPC)
 Easier way to develop ML models
 IPC: sockets, shared memory...
« Take time to develop the IPC models

11

Using Al/ML frameworks with ns-3

Compiling with the C++ library ns3-gym | Python Bounding
versions of Al frameworks

Al frameworks supported Re-Compile C++ version for ALL python- \ OpenAl- ALL python-based
different frameworks hased Gym

Develop efficiency Low (All in C++) @ High Medium
(Re-implement some

ns-3 models)

Additional Resource None Low (Extra Medium None
Memory) (Memory,
Socket)
Speed Fast Medium Slow Slow

Ease of Use Hard Easy Medium

Research & Evaluation

u W

ns3-ai module

] Overview T
| O PyTorch
« Use shared memory as a data transmission module Frameworks | y i
T
« Divide the data transmission module into two parts DL/RZI;e;a; _____
’ Python Side P—ythf — — |: Shared Memory:|“ — — — —
) C++ Slde o DL/RL Interface
. Nodes

Memory Management:

|
| Node
. ns-3 |N<"d‘1 Y :
> Shared memory pool management Simulator| > |
| =
|

> Dynamic memory allocation | Model NodeN
> Read/Write lock

13

ns3-ai module

o » »
head
Main
Memory Memory Memory| === | Control | Control | Control Cartrol
Block 1 Block 2 Block 3 == Block 3 | Block 2 | Block 1
block
tail
\\\ 7
| - s
versi| next data info | ID | size| offset
on |version
Address

rrrrrr

memory block

> Read-write lock: version information

« Compare the version with the next version:
> same = accessible

> different = not accessible 'w

ns3-ai module

Implementation: shared memory

> Use C++ to create and maintain shared memory

* Create and release of shared memory pool
* Inter-process read-write lock control and synchronization

> Development on the Python side
* The same function with Python interface

Pythonside | C#rside | funcion

py_init SharedMemoryPool Created a shared memory pool
py_freeMemory FreeMemory Freed shared memory pool
py_regMemory RegisterMemory Got memory block and added read-write lock

py_getMemoryVersion GetMemoryVersion Got version information and determined the lock status

ns3-ai module

1 User-friendly features

> No need to consider low-level development and management of the shared
memory.

> DL/RL interface (helper) for users
- E.g., use Env and Action for the variables directly for RL algorithms

> Directly use python to run the ns-3 examples (no need to run separately).

> Hands-on Examples:
« Simple usage: multi-run (A+B)
« DL model: CQI
« RL model: RL-TCP
« Wi-Fi Rate Control

: W

ns3-ai module

(] Possible Pitfalls and Difficulties

> |nstallation:
« Using Python3
« Environment path issues

> Shared Memory
« Don't use the same id for different programs
« Not enough memory: change the size of shared memory to 256/512 (bytes)
« Use the right lock: Follow the multi-run example

17

ns3-ai module

] Release Timeline and Plans

2021 Feb. R1.5 2021 Q3R 2.0

1. All the components can be established in Python 1. Run with optimized mode in ns-3

2. RL multi-agent support 2. More detailed documents and instructions
3. Enhance RL algorithms in TCP example 3. Wi-Fi Rate Control example

|

2020 Feb. R1.0

1. Shared Memory Operation
2. DL and RL interface

3. CQl and TCP examples

18

Why and When to use ns3-ai?

« Do you need Python to implement your ML algorithms?
- C++: Multi-arm-bandit: Thompson sampling, e-greedy
- Python: Neural Network based algorithms like Deep Q-Learning, LSTM

« Do you need to train or execute a ML model?

« Do you already implement the code in Python?

Basic Usage

UNSVERSITY of WASHINGTON

Basic Usage

VvV V V V

In this section, we will

show how to use ns3-ai module step by step.

Codebase: ns-3-dev (https://gitlab.com/nsnam/ns-3-dev)

Test Machine: MacBook Pro (macOS Catalina 10.15.7)
Installation guide: https://github.com/hust-diangroup/ns3-

ai#finstallation

Basic usage example:
ai/tree/master/examp

Nttps://github.com/hust-diangroup/ns3-

e/multi-run

We now go through al
(Live Demo)

the installation and example code together.

https://gitlab.com/nsnam/ns-3-dev
https://github.com/hust-diangroup/ns3-ai#installation
https://github.com/hust-diangroup/ns3-ai/tree/master/example/multi-run

Example — Wi-Fi Rate Control

UNIVERSITY of WASHINGTON

Dense and overlapping WLANS

UNIVERSITY of WASHINGTON w

Spatial Reuse in 802.11ax

Intra-BSS frame:

Same frame color -> have to contend for the medium as
normal process.

Inter-BSS frame:

Different colors-> can ignore it and will not contend for the
medium and will continue transmitting.

Enable simultaneous transmissions in overlapping networks
to increase total throughput.

OBSS signal@-82dBm

CCAidle @
A CCA busy
@ .

Intra-BSS A CQA busy->idle;

dukation de‘qoding

duratign-deceding error

0BSS_PD

OBSS_PD, =. 62dBm

Livd_defalt

-62dBm —

OBSS P, g™ - B2dBm

-82dBm —

» TX_PWR

OBSS_PD threshold []

UNIVERSITY of WASHINGTON

Benefits/Challenges from the Spatial Reuse

STA1 STA1
: | |
Benefits: d1] d2
* Increase capacity | d3 |
* Adaptive CCA can adjust signal level threshold AP] -c-mmmmmmm o AP2

e Decrease channel contention problem

e Signals with same BSS color use a low RSSI threshold for
deferral, therefor reducing collision in same BSS.

e Signals with OBSS use a higher RSSI threshold for deferral,
therefor allowing more simultaneous connection

wifi-spatial-reuse.cc simulation:
(mcs = @, d3 = 150m, dl = d2 =
30m)

Enable spatial reuse:
Challenges: Throughput for BSS 1: 6.6468 Mbit/s
Throughput for BSS 2: 6.6672 Mbit/s
Disable spatial reuse:
Throughput for BSS 1: 5.8692 Mbit/s
change the parameter values Throughput for BSS 2: 5.9364 Mbit/s

UNIVERSITY of WASHINGTON

* Increase the interference
* The rapid changing wireless environment -> dynamically

Dense Overlapping Scenario

* Dense and overlapping WLAN networks — multiple
Basic Service Set (BSS)

 Each BSS interfere with each other

* Several factors on the system performance:

« Carrier Sense Range (CSR)
 Interference Range (IR)
« MCS per frame

Increase throughput and decrease delay?

Q Q Q a D ESS4

.

2.
k,-:l

Q Intcrmet - —— —m a
BSS! ‘“’i‘;&: = . "|'.- /QE Q QHSSH
o &

UNIVERSITY of WASHINGTON

Impacts on the Rate Adaptation (MCS Selection)

Throughput

Complex dependency of different parameter
- Change one may impact others

- Hard to randomly search the optimal
solutions Channel Packet
access time error (PER

Dynamically changed environments

- In dense set up, more devices and more
interference

- Traffic features may change very quickly

Interference

OBSS_PD

Hard to find the (sub-)optimal solution
with traditional approach!

UNIVERSITY of WASHINGTON

Wi-Fi Rate Control Algorithms in ns-3

Ideal: Use the SINR at the receiver and channel model to calculate the PER and then determine the data
rate at the transmitter (unreal)
Minstrel:
e Goal: maximize throughput (TP)
e Trial-and-error:
* |dea: try to send at different rates, measure their channel statistics (success probability, TP), then
choose the one that can max TP to send normal packets
* Two time period (exploration & exploitation):
o Sampling period: send probe packets with a certain rate policy
o Non-sampling period: send normal packets with a certain rate policy
o Minstrel uses 10% of the traffic for sampling (measuring channel statistics)

Name Category Metrics Modify Standard
Ideal Explicit Feedback SINR Y
Minstrel-HT N
Implicit Feedback Throughput U N l V E R S ITY Uf WAS H I N G TO N

Thompson Sampling N

Wi-Fi Rate Control Algorithms with RL

Fa
50 - P S —

40

Delay, ms
w
o

N
(=}
L

-®- Minstrel

TS
10 1 —e— 0BSS PD, Minstrel
—A— OBSS PD, TS
—m— OBSS PD, PF

T T T T T T T T
3 4 5 6 7 8 9 10
Number of apartments

FIGURE 13. Results for the residential building.

et

FIGURE 12. Residential building scenario. [5]

10m

- TS: MAB algorithm, using binomial distribution to approximate the success
probability and then select the MCS (arm). Using Thompson sampling (TS)
approach to calculate reward.

- PF: Estimate the channel SINR, then using TS to approach to approximate the
SINR distribution, and then select the MCS based on the SINR.

- OBSS PD: Using OBSS PD to enable spatial reuse setup. The same way to
calculate the OBSS PD: Threshold = Average RSSI - Margin (Margin is a positive
value that considers channel quality fluctuations).

Benefits from RL (reinforcement learning):

- Explore the optimal way to search the (sub-)optimal setup <-> randomly
search in traditional ways .

- Learn from the environment -> ‘remember’ similar situations.

- Capable for the optimization in large and complex scenario.

Deep RL? MAB?

UNIVERSITY of WASHINGTON

[5] A. Krotov, A. Kiryanov and E. Khorov, "Rate Control With Spatial Reuse for Wi-Fi 6 Dense Deployments," in IEEE Access, vol. 8, pp. 168898-168909, 2020, doi: 10.1109/ACCESS.2020.3023552.

Why and When to use ns3-ai?

* Do you need Python to implement your ML algorithms?
- C++: Multi-arm-bandit: Thompson sampling, e-greedy
- Python: Neural Network based algorithms like Deep Q-Learning, LSTM

Do you need to train or execute a ML model?
* Do you already implement the code in Python?

Name Need Python? Online or Model execution? Already have code?
Thompson Sampling N Y Y —_— C++, but can ns3-ai also do the JOb?
DON Y Y Y — ns3-ai

UNIVERSITY of WASHINGTON

Build TS rate control algorithm
with ns3-ai

UNIVERSITY of WASHINGTON w

Implementation of Thompson Sampling with ns3-ai

Objective:

 How to transfer data and maintain statistics using ns3-ai?
e How to add the ML algorithms using ns3-ai?

 How to build a structure to test your model?

* Benchmarking

Step by step example to build your own model with ns3-ail

The following section would be some operation and analysis with the code.

Exp code: https://github.com/hust-diangroup/ns3-ai/tree/master/example/rate-control
UNIVERSITY of WASHINGTON

https://github.com/hust-diangroup/ns3-ai/tree/master/example/rate-control

Thompson Sampling Rate Control Algorithm

* Foragiven MCS (i.e., the transmission rate r]-), the number of successful transmissions follows the binomial
distribution with unknown success probability p;.

* Estimate the value of given statistics of successful transmissions -> beta distribution with parameters (1, 1)

* ajand f; are the numbers of successful and unsuccessful transmissions for MCS j.

* Atthe very beginning a; = ; = 0 25 (1)

* Every time we need a value for p;, we sample it from the following beta distribution: pj(:lz) = B(a,,5,)

* Thompson sampling-based rate control selects an MCS: 5 = argmax; p;r;

* Policy improvements: use exponential smoothing after each transmission attempt (decay w and interval At):

{aj(t — At) - e + 1, in case of success B:(1) {,Bj(t — At) - et + 1, in case of failure
J\t) = _

a;(t) =

B;(t — At) - e otherwise
UNIVERSITY of WASHINGTON

a;(t — At) - e, otherwise

Step 1: Change MCS using ns3-ai

Actions: new random MCS
Al/ML frameworks
(Training, executing ML model) Env: last MCS

> Add a new rate controller class
> Send the old MCS to Python using ns3-ai
> Putanew MCS back to ns-3

UNIVERSITY of WASHINGTON

Step 2: Get success/failure statistics from ns-3

Actions: new random MCS

Al/ML frameworks ns-3

(Training, executing ML model)

Env: last MCS

success/failure call back for each stations

> Define call back to transfer the statistics of transmission failures/success
> Transfer the data to Python
> Maintain the statistics for different nodes

UNIVERSITY of WASHINGTON

Step 3: Add Thompson sampling to obtain new MCS

Actions: new MCS from TS

Al/ML frameworks

ns-3

(Training, executing ML model)

Env: last MCS

success/failure call back for each stations

> Implement the TS algorithm in Python
> Using the TS to get the new MCS from the statistics gathered
> Transfer back the action using ns3-ai

Now you have a new version of TS using Python and ns3-ai!

UNIVERSITY of WASHINGTON

Simulation and Benchmarking

UNIVERSITY of WASHINGTON w

Simulation Scenario

* Created by modifying the file “ examples/tutorials/third.cc” in ns-3. —0 25 (Gt S5}
E ap | WiFistations
®* The topology contains 10 wired LAN nodes connected to each other and : 5.0 CE
one of the nodes is connected to the stationary Access Point(AP) of the :
Wireless Network using a point to point link with 50Mbps bandwidth —0 Tran. 100 O O
and 10ms delay. ; o
Bardaidth: 50hbye
O—ehrlins & o
® Reference code: Fartopontlk g5 0 15
https://github.com/DodiyaParth/802.11ac_compatible RAAs_Performa 10 LAH nordes 11 WiFi nodes (includs AF)

nce Analysis in NS3

Simulation Scenario [6]

UNIVERSITY of WASHINGTON

[6] Huang, Tingpei, et al. "A comparative simulation study of rate adaptation algorithms in wireless LANs." International Journal of
Sensor Networks 14.1 (2013): 9-21.

https://github.com/DodiyaParth/802.11ac_compatible_RAAs_Performance_Analysis_in_NS3

Simulation Setup

Error Rate Model NistErrorRateModel

ConstantSpeedPropagationDelay

Channel Delay Model Model e C(Calculate the throughput every second with

LogDistancePropagationLossMode different rate control algorithms.

Channel Loss Model |

* Change the total node numbers and

MAC(Station/AP) Type Sta WifiMac/ ApWifiMac . : :
(/AP) Typ / Ap simulation duration to compare the results.

Application Data Rate 1 Mbps

Packet Size 1024 bytes
Mobility Model RandomDirectional2dMobilityMo
del
s Random Variable : U(15.0 mps,
Mobility Speed 20.0 mps)
Simulation Topology of Grid, rectangle range: (-100m, UNIVERSITY of WASHINGTON

Wifi nodes 100m, -100m, 100m)

401

30

204

104

Simulation Results

throughput(Mbps), 30s

e Simulation duration: 30 s

35.36+8.18 33.14£11.30

30.42+£9.66 31.06+8.94
32.34+5.23

20.73+14.25 1$.00+16.17

1.03+14.52

14.93+

0+11.81

32.35x7.21

2

12
nwifi

Em AThompsonSampling B ThompsenSampling

Ly
0

throughput(Mbps), 30s

. 1 Average throughput for all 20 random seeds

.41+12.31

e Change the random seed for
20 different seeds and test
the performance

* Fig 1: Average throughput for
all 20 cases

50

B8 EFELVE
GG 0TFr6'8T

40

ST'9F96'GZ
€8'¥F09°62
TS'9FS6'8C
0L SFH0'8T
EULFEY 6T
ZP'SFG6'6Z
SLFFEQOE

ZEPFEO LT

30 4

204

10 4

OT'SFLELT

3 6 9 12 15
nwifi

mmm AiThompsonSampling mmm ThompsonSampling

Fig. 2 Average throughput after removing bad cases

9T'6F9v°9Z

* Fig 2: Remove the bad case
(less than 2 Mbps) and then
run average

* In most cases, the ns3-ai based TS
has similar results compared with
the pure ns-3 implementation

* By changing the random variable,
the variance of the TS algorithm is
large, and the pure ns-3 version
may have more bad cases.

* Both algorithms outperform the
minstrel algorithm.

Throughput : nWifi=11

7 < ™ "'"-vmr —F -- q---r--' ==
40 | \
w
g T AIThompsonSamplmg
E.- 30 —— ThompsonSampling
2 —— MinstrelHt
5 — Ideal
3 201 c
£ —— ConstantRate
[
10 1
0 —J U Y
T T T T
0 2 4 6 8 10
Time(s)

UNIVERSITY of WASHINGTON
https://gitlab.com/nsnam/ns-3-dev/-/issues/414#note_602000119

Test Server:
CPU: Intel Xeon Gold 6242 2.8 GHz

Benchmarking Memory: 128 GB

OS: Centos 7

Total Execution Time (s) as Simulation Duration Increases

Total Execution Time (s) as nodes number increase 4500

4000
— 3500
GJ 3000

2000
1500
1000
’ ||

Simulation duration (s

900
800
700

600

wv
< 500

[}
£ 400
" 300
200
100
0

Total Nodes Number

.I_
N
(%2
o
o

Execution Tim

Hns3-ai M pure-ns3
Hns3-ai M pure-ns3

Simulation duration is 10 s Total STAs number is 8

* Using ns3-ai has around 20% increase on the program execution time in average.

* ns3-ai introduces extra time that transfers data with shard memory.
* The difference of the random seed may also contribute to the execution tlmUl.“““ﬂ-:l:{SITY of WASHINGTON

Thank you!

UNIVERSITY of WASHINGTON 42

Backup

UNIVERSITY of WASHINGTON 43

	Using AI/ML frameworks with ns-3
	Outline
	Introduction
	AI/ML in Communication
	AI/ML in Communication
	AI/ML in Communication
	Ns-3 Simulation with AL/ML algorithms
	AI/ML model training with ns-3
	AI/ML model training with ns-3
	AI/ML model training with ns-3
	Using AI/ML frameworks with ns-3
	Using AI/ML frameworks with ns-3
	ns3-ai module
	ns3-ai module
	ns3-ai module
	ns3-ai module
	ns3-ai module
	ns3-ai module
	Why and When to use ns3-ai?
	Basic Usage
	Basic Usage
	Example – Wi-Fi Rate Control
	Dense and overlapping WLANs
	Spatial Reuse in 802.11ax
	Benefits/Challenges from the Spatial Reuse
	Dense Overlapping Scenario
	Impacts on the Rate Adaptation (MCS Selection)
	Wi-Fi Rate Control Algorithms in ns-3
	Wi-Fi Rate Control Algorithms with RL
	Why and When to use ns3-ai?
	Build TS rate control algorithm with ns3-ai
	Implementation of Thompson Sampling with ns3-ai
	Thompson Sampling Rate Control Algorithm
	Step 1: Change MCS using ns3-ai
	Step 2: Get success/failure statistics from ns-3
	Step 3: Add Thompson sampling to obtain new MCS
	Simulation and Benchmarking
	Simulation Scenario
	Simulation Setup
	Simulation Results
	Benchmarking
	Thank you!
	Backup

