
Using AI/ML frameworks with ns-3

Hao Yin

Collaborators:
Pengyu Liu, Keshu Liu, Xun Deng (Huazhong University of Science and Technology, HUST)
Lyutianyang Zhang, Liu Cao, Collin Brady, Sachin Nayak (University of Washington, UW)
Advisors:
Xiaojun Hei, Yayu Gao (HUST), Sumit Roy, Thomas R. Henderson (UW)

Outline

• AI/ML in communication

• Introduction of the ns3-ai module

• Basic usage of the ns3-ai module
• Basic functions and usage

• Demos and instructions with code

• Example: Wi-Fi Rate Control

Introduction

3

Challenges for the traditional communication system:
> PHY/MAC Complexity: Multi-User Operation, Temporal Dynamics  hard to model analytically
> Clear model, but space of algorithms very large  complex search for suitable algorithm
> Model/Algorithm deficiencies due to imperfect information learn/adapt

Aligned with:
> Availability of large data sets (supervised/un-supervised)
> Fast Computing (GPU, FPGA)
> Mapping Algorithmic onto ML computation architecture

Motivation

AI/ML in Communication

Exploding Complexity
> Increasing MIMO dimensions
> Complex channels
> Greater co-channel interference (denser networks)
> Higher order of MU transmissions

Applications of Deep Learning in PHY layer improvements
> DeepTurbo: Deep Turbo Decoder [1]
> Deepcode: Feedback Codes via Deep Learning [2]

AI/ML in Communication

[1] Y. Jiang, S. Kannan, H. Kim, S. Oh, H. Asnani and P. Viswanath, "DEEPTURBO: Deep Turbo Decoder. "
[2] H. Kim, Y. Jiang, S. Kannan, S. Oh and P. Viswanath, "Deepcode: Feedback Codes via Deep Learning. "

PHY layer procedures in MIMO system

 PHY Layer

Dense overlapping Networks
> Interference between different BSSs
> Scheduling and resource allocation scheme to improve the performance
> Link adaptation and channel access scheme
> Coexistence of WiFi, LTE, and 5G

Applications of Reinforcement Learning in MAC layer
> FDRL in WiFi: Reinforcement Learning for WiFi channel access [3]
> DRL in Resource Slicing for eMBB and URLLC Coexistence in 5G [4]

AI/ML in Communication

[3] L. Zhang, H. Yin, Z. Zhou, S. Roy and Y. Sun, "Enhancing WiFi Multiple Access Performance with Federated Deep Reinforcement Learning."
[4] M. Alsenwi et al, "Intelligent Resource Slicing for eMBB and URLLC Coexistence in 5G and Beyond: A Deep Reinforcement Learning Based Approach."

MAC Layer

−50 50

−50

0

50

100

0
distance [m]

di
st

an
ce

[m
]

WiFi AP

LAA BS

Dense Overlapping networks

LAA UE

WiFi STA

AI/ML is promising for the next-generation wireless networks!

> Easier to scale network dimension (e.g. dense overlapping networks) for
performance evaluation, compared to building test bed.

> Allows cross layer (PHY/MAC) simulation  e.g. cross-layer optimization
like WiFi rate control.

> Generate data and traces  use ns-3 to generate training data.

> Ns-3 is open source  easy for the researcher to modify and test the
AI/ML algorithms.

Ns-3 Simulation with AL/ML algorithms

AI/ML model training with ns-3

data AI/ML
frameworks

ML model
(Executed by
frameworks)

Optimized
Parameters

ns-3
simulation

ns-3
simulation

Pre-configure

Interact with each other

1

2

8

(Non-Real-time Cases)

(Near-Real-time Cases)
Generate

Generate

data AI/ML
frameworks

ns-3
simulation

Data: observation, states…

Actions: parameters, prediction…
3

Real world or
previous ns-3 data

AI/ML frameworks
(Training, executing ML model)

(Real-time Cases)

2

3

Offline Training1

Online Training

> Offline training: The model is first trained with offline data (from real world or ns-3).
> Two ways to use the model in the network/simulation.

• 1: Configure the parameters before the simulation: power, ACK timeout threshold, sensing power.
• 2: Make decisions dynamically during the simulation: execute the model to adjust the parameters in

simulation.

 Offline training

AI/ML model training with ns-3

9

data AI/ML
frameworks

ML model
(Executed by
frameworks)

Optimized
Parameters

ns-3
simulation

ns-3
simulation

Pre-configure

Interact with each other

1

2

(Non-Real-time)

(Near-Real-time)
Generate

Generate

data AI/ML
frameworks

> Scenarios such as reinforcement learning, where the model
‘learns’ as it is executing in the network.

> Interact with ns-3 in real time.
> Examples: CQI, RL-TCP, WiFi Rate Control

 Online Training

AI/ML model training with ns-3

10

ns-3
simulation

Data: observation, states…

Actions: parameters, prediction…
3AI/ML frameworks

(Training, executing ML model)
(Real-time)

> Find C++ frameworks – compile with ns-3
• Hard to development ML model with C++
• Compile issues
• C++ API found insufficient

> Python Bounding
• Not support for all the models – rewrite the bounding code
• Not good with call back functions

> Using Python based frameworks – Inter-process communication (IPC)
• Easier way to develop ML models
• IPC: sockets, shared memory…
• Take time to develop the IPC models

Using AI/ML frameworks with ns-3

11

 How to connect ns-3 with AI/ML frameworks

Using AI/ML frameworks with ns-3

Methods
Aspects

Compiling with the C++ library
versions of AI frameworks

ns3-ai ns3-gym Python Bounding

AI frameworks supported Re-Compile C++ version for
different frameworks

ALL python-
based

OpenAI-
Gym

ALL python-based

Develop efficiency Low (All in C++) High High Medium
(Re-implement some
ns-3 models)

Additional Resource None Low (Extra
Memory)

Medium
(Memory,
Socket)

None

Speed Fast Medium Slow Slow

Ease of Use Hard Easy Easy Medium

Research & Evaluation
12

ns3-ai module

• Use shared memory as a data transmission module

• Divide the data transmission module into two parts
• Python side
• C++ side

• Memory Management:
> Shared memory pool management
> Dynamic memory allocation
> Read/Write lock

 Overview

13

ns3-ai module

> Shared memory pool was divided into main control block, control block and
memory block

> Read-write lock: version information
• Compare the version with the next version:

> same = accessible
> different = not accessible

> Use C++ to create and maintain shared memory
• Create and release of shared memory pool
• Inter-process read-write lock control and synchronization

> Development on the Python side
• The same function with Python interface

Implementation: shared memory

ns3-ai module

Python side C++ side function
py_init SharedMemoryPool Created a shared memory pool

py_freeMemory FreeMemory Freed shared memory pool
py_regMemory RegisterMemory Got memory block and added read-write lock

py_getMemoryVersion GetMemoryVersion Got version information and determined the lock status
…… …… ……

ns3-ai module

> No need to consider low-level development and management of the shared
memory.

> DL/RL interface (helper) for users
• E.g., use Env and Action for the variables directly for RL algorithms

> Directly use python to run the ns-3 examples (no need to run separately).

> Hands-on Examples:
• Simple usage: multi-run (A+B)
• DL model: CQI
• RL model: RL-TCP
• Wi-Fi Rate Control

 User-friendly features

16

ns3-ai module

> Installation:
• Using Python3
• Environment path issues

> Shared Memory
• Don’t use the same id for different programs
• Not enough memory: change the size of shared memory to 256/512 (bytes)
• Use the right lock: Follow the multi-run example

 Possible Pitfalls and Difficulties

17

 Release Timeline and Plans

ns3-ai module

2020 Feb. R1.0
1. Shared Memory Operation
2. DL and RL interface
3. CQI and TCP examples

2021 Feb. R1.5
1. All the components can be established in Python
2. RL multi-agent support
3. Enhance RL algorithms in TCP example

2021 Q3 R 2.0
1. Run with optimized mode in ns-3
2. More detailed documents and instructions
3. Wi-Fi Rate Control example

18

• Do you need Python to implement your ML algorithms?
- C++: Multi-arm-bandit: Thompson sampling, ɛ-greedy
- Python: Neural Network based algorithms like Deep Q-Learning, LSTM

• Do you need to train or execute a ML model?

• Do you already implement the code in Python?

Why and When to use ns3-ai?

19

Basic Usage

20

> In this section, we will show how to use ns3-ai module step by step.
> Codebase: ns-3-dev (https://gitlab.com/nsnam/ns-3-dev)
> Test Machine: MacBook Pro (macOS Catalina 10.15.7)
> Installation guide: https://github.com/hust-diangroup/ns3-

ai#installation
> Basic usage example: https://github.com/hust-diangroup/ns3-

ai/tree/master/example/multi-run
> We now go through all the installation and example code together.

(Live Demo)

Basic Usage

https://gitlab.com/nsnam/ns-3-dev
https://github.com/hust-diangroup/ns3-ai#installation
https://github.com/hust-diangroup/ns3-ai/tree/master/example/multi-run

Example – Wi-Fi Rate Control

22

Dense and overlapping WLANs

Spatial Reuse in 802.11ax
OBSS

A

OBSS signal@-82dBm

OBSS signal@-72dBm

CCA busy
CCA idle

CCA busy->idle;
duration decoding error

CCA busy->idle;
duration decoding
correctly

B

Intra-BSS

OBSS_PD threshold []

Intra-BSS frame:
Same frame color -> have to contend for the medium as
normal process.
Inter-BSS frame:
Different colors-> can ignore it and will not contend for the
medium and will continue transmitting.

Enable simultaneous transmissions in overlapping networks
to increase total throughput.

Benefits/Challenges from the Spatial Reuse
STA1 STA1
| |

d1| |d2
| d3 |
AP1 -----------AP2

wifi-spatial-reuse.cc simulation:
(mcs = 0, d3 = 150m, d1 = d2 =
30m)

Enable spatial reuse:
Throughput for BSS 1: 6.6468 Mbit/s
Throughput for BSS 2: 6.6672 Mbit/s
Disable spatial reuse:
Throughput for BSS 1: 5.8692 Mbit/s
Throughput for BSS 2: 5.9364 Mbit/s

Benefits:
• Increase capacity
• Adaptive CCA can adjust signal level threshold
• Decrease channel contention problem
• Signals with same BSS color use a low RSSI threshold for

deferral, therefor reducing collision in same BSS.
• Signals with OBSS use a higher RSSI threshold for deferral,

therefor allowing more simultaneous connection

Challenges:
• Increase the interference
• The rapid changing wireless environment -> dynamically

change the parameter values

• Dense and overlapping WLAN networks – multiple
Basic Service Set (BSS)

• Each BSS interfere with each other
• Several factors on the system performance:

• Carrier Sense Range (CSR)
• Interference Range (IR)
• MCS per frame

Dense Overlapping Scenario

Increase throughput and decrease delay?

Impacts on the Rate Adaptation (MCS Selection)

OBSS_PD

Interference

TX
Power

Channel
access time

Packet
error (PER)

MCS

Throughput
Complex dependency of different parameter
- Change one may impact others
- Hard to randomly search the optimal

solutions

Dynamically changed environments
- In dense set up, more devices and more

interference
- Traffic features may change very quickly

Hard to find the (sub-)optimal solution
with traditional approach!

Wi-Fi Rate Control Algorithms in ns-3

Name Category Metrics Modify Standard

Ideal Explicit Feedback SINR Y

Minstrel-HT
Implicit Feedback Throughput

N

Thompson Sampling N

Ideal: Use the SINR at the receiver and channel model to calculate the PER and then determine the data
rate at the transmitter (unreal)
Minstrel:
• Goal: maximize throughput (TP)
• Trial-and-error:

• Idea: try to send at different rates, measure their channel statistics (success probability, TP), then
choose the one that can max TP to send normal packets

• Two time period (exploration & exploitation):
o Sampling period: send probe packets with a certain rate policy
o Non-sampling period: send normal packets with a certain rate policy
o Minstrel uses 10% of the traffic for sampling (measuring channel statistics)

Wi-Fi Rate Control Algorithms with RL

[5] A. Krotov, A. Kiryanov and E. Khorov, "Rate Control With Spatial Reuse for Wi-Fi 6 Dense Deployments," in IEEE Access, vol. 8, pp. 168898-168909, 2020, doi: 10.1109/ACCESS.2020.3023552.

- TS: MAB algorithm, using binomial distribution to approximate the success
probability and then select the MCS (arm). Using Thompson sampling (TS)
approach to calculate reward.
- PF: Estimate the channel SINR, then using TS to approach to approximate the
SINR distribution, and then select the MCS based on the SINR.
- OBSS PD: Using OBSS PD to enable spatial reuse setup. The same way to
calculate the OBSS PD: Threshold = Average RSSI − Margin (Margin is a positive
value that considers channel quality fluctuations).

Benefits from RL (reinforcement learning):
- Explore the optimal way to search the (sub-)optimal setup <-> randomly

search in traditional ways .
- Learn from the environment -> ‘remember’ similar situations.
- Capable for the optimization in large and complex scenario.

[5]

Deep RL? MAB?

Why and When to use ns3-ai?
• Do you need Python to implement your ML algorithms?

- C++: Multi-arm-bandit: Thompson sampling, ɛ-greedy
- Python: Neural Network based algorithms like Deep Q-Learning, LSTM

• Do you need to train or execute a ML model?
• Do you already implement the code in Python?

Name Need Python? Online or Model execution? Already have code?

Thompson Sampling N Y Y

DQN Y Y Y ns3-ai

C++, but can ns3-ai also do the job?

Build TS rate control algorithm
with ns3-ai

Implementation of Thompson Sampling with ns3-ai

Objective:
• How to transfer data and maintain statistics using ns3-ai?
• How to add the ML algorithms using ns3-ai?
• How to build a structure to test your model?
• Benchmarking

Step by step example to build your own model with ns3-ai!

The following section would be some operation and analysis with the code.
Exp code: https://github.com/hust-diangroup/ns3-ai/tree/master/example/rate-control

https://github.com/hust-diangroup/ns3-ai/tree/master/example/rate-control

Thompson Sampling Rate Control Algorithm

• For a given MCS 𝑗𝑗 (i.e., the transmission rate 𝑟𝑟𝑗𝑗), the number of successful transmissions follows the binomial
distribution with unknown success probability 𝑝𝑝𝑗𝑗.

• Estimate the value of given statistics of successful transmissions -> beta distribution with parameters (1, 1)
• 𝛼𝛼𝑗𝑗 and 𝛽𝛽𝑗𝑗 are the numbers of successful and unsuccessful transmissions for MCS 𝑗𝑗.
• At the very beginning 𝛼𝛼𝑗𝑗 = 𝛽𝛽𝑗𝑗 = 0
• Every time we need a value for 𝑝𝑝𝑗𝑗, we sample it from the following beta distribution:

• Thompson sampling-based rate control selects an MCS:

• Policy improvements: use exponential smoothing after each transmission attempt (decay 𝑤𝑤 and interval Δ𝑡𝑡):

> Add a new rate controller class
> Send the old MCS to Python using ns3-ai
> Put a new MCS back to ns-3

Step 1: Change MCS using ns3-ai

ns-3
Env: last MCS

AI/ML frameworks
(Training, executing ML model)

Actions: new random MCS

> Define call back to transfer the statistics of transmission failures/success
> Transfer the data to Python
> Maintain the statistics for different nodes

Step 2: Get success/failure statistics from ns-3

ns-3
Env: last MCS

Actions: new random MCS
AI/ML frameworks

(Training, executing ML model)

success/failure call back for each stations

> Implement the TS algorithm in Python
> Using the TS to get the new MCS from the statistics gathered
> Transfer back the action using ns3-ai

Step 3: Add Thompson sampling to obtain new MCS

ns-3
Env: last MCS

Actions: new MCS from TS
AI/ML frameworks

(Training, executing ML model)

success/failure call back for each stations

Now you have a new version of TS using Python and ns3-ai!

Simulation and Benchmarking

Simulation Scenario

• Created by modifying the file “​ examples/tutorials/third.cc” ​ in ns-3.

• The topology contains 10 wired LAN nodes connected to each other and
one of the nodes is connected to the stationary Access Point(AP) of the
Wireless Network using a point to point link with 50Mbps bandwidth
and 10ms delay.

• Reference code:
https://github.com/DodiyaParth/802.11ac_compatible_RAAs_Performa
nce_Analysis_in_NS3

[6] Huang, Tingpei, et al. "A comparative simulation study of rate adaptation algorithms in wireless LANs." International Journal of
Sensor Networks 14.1 (2013): 9-21.

Simulation Scenario [6]

https://github.com/DodiyaParth/802.11ac_compatible_RAAs_Performance_Analysis_in_NS3

Simulation Setup

• Calculate the throughput every second with
different rate control algorithms.

• Change the total node numbers and
simulation duration to compare the results.

Error Rate Model NistErrorRateModel

Channel Delay Model ConstantSpeedPropagationDelay
Model

Channel Loss Model LogDistancePropagationLossMode
l

MAC(Station/AP) Type Sta WifiMac/ ApWifiMac

Application Data Rate 1 Mbps

Packet Size 1024 bytes

Mobility Model RandomDirectional2dMobilityMo
del

Mobility Speed Random Variable : U(15.0 mps,
20.0 mps)

Simulation Topology of
Wifi nodes

Grid, rectangle range: (-100m,
100m, -100m, 100m)

Simulation Results • In most cases, the ns3-ai based TS
has similar results compared with
the pure ns-3 implementation

• By changing the random variable,
the variance of the TS algorithm is
large, and the pure ns-3 version
may have more bad cases.

• Both algorithms outperform the
minstrel algorithm.

• Simulation duration: 30 s
• Change the random seed for

20 different seeds and test
the performance

• Fig 1: Average throughput for
all 20 cases

• Fig 2: Remove the bad case
(less than 2 Mbps) and then
run average Fig. 1 Average throughput for all 20 random seeds

Fig. 2 Average throughput after removing bad cases https://gitlab.com/nsnam/ns-3-dev/-/issues/414#note_602000119

Benchmarking

• Using ns3-ai has around 20% increase on the program execution time in average.
• ns3-ai introduces extra time that transfers data with shard memory.
• The difference of the random seed may also contribute to the execution time.

0
100
200
300
400
500
600
700
800
900

4 6 8 10 12

Ti
m

e
(s

)

Total Nodes Number

Total Execution Time (s) as nodes number increase

ns3-ai pure-ns3

0

500

1000

1500

2000

2500

3000

3500

4000

4500

10 20 30 40 50 60 70 80 90 100

Ex
ec

ut
io

n
Ti

m
e

(s
)

Simulation duration (s)

Total Execution Time (s) as Simulation Duration Increases

ns3-ai pure-ns3

Simulation duration is 10 s Total STAs number is 8

Test Server:
CPU: Intel Xeon Gold 6242 2.8 GHz
Memory: 128 GB
OS: Centos 7

Thank you!

42

Backup

43

	Using AI/ML frameworks with ns-3
	Outline
	Introduction
	AI/ML in Communication
	AI/ML in Communication
	AI/ML in Communication
	Ns-3 Simulation with AL/ML algorithms
	AI/ML model training with ns-3
	AI/ML model training with ns-3
	AI/ML model training with ns-3
	Using AI/ML frameworks with ns-3
	Using AI/ML frameworks with ns-3
	ns3-ai module
	ns3-ai module
	ns3-ai module
	ns3-ai module
	ns3-ai module
	ns3-ai module
	Why and When to use ns3-ai?
	Basic Usage
	Basic Usage
	Example – Wi-Fi Rate Control
	Dense and overlapping WLANs
	Spatial Reuse in 802.11ax
	Benefits/Challenges from the Spatial Reuse
	Dense Overlapping Scenario
	Impacts on the Rate Adaptation (MCS Selection)
	Wi-Fi Rate Control Algorithms in ns-3
	Wi-Fi Rate Control Algorithms with RL
	Why and When to use ns3-ai?
	Build TS rate control algorithm with ns3-ai
	Implementation of Thompson Sampling with ns3-ai
	Thompson Sampling Rate Control Algorithm
	Step 1: Change MCS using ns3-ai
	Step 2: Get success/failure statistics from ns-3
	Step 3: Add Thompson sampling to obtain new MCS
	Simulation and Benchmarking
	Simulation Scenario
	Simulation Setup
	Simulation Results
	Benchmarking
	Thank you!
	Backup

