

Implementation and Evaluation of a WLAN IEEE 802.11ay Model in Network Simulator ns-3

Hany Assasa, Nina Grosheva, Joerg Widmer (IMDEA Networks) Tanguy Ropitault, Steve Blandino, Nada Golmie (NIST)

Developing the

Science of Networks

- Introduction and Motivation
- Implementation of IEEE 802.11ay in ns-3
- Evaluation
- Conclusions and Future Work

- Introduction and Motivation
- Implementation of IEEE 802.11ay in ns-3
- Evaluation
- Conclusions and Future Work

Introduction to IEEE 802.11ay

- Increased interest for mmWave
 - 5G implementations
 - Consumer devices
 - Emerging wireless applications

- Extension of IEEE 802.11ad
- Data rates up to 100 Gbps and ultra low latency
- Advanced PHY layer technologies:
 (MIMO, channel bonding/aggregation)
- New beamforming techniques

mmWave distribution networks, wireless backhauling, FWA

Augmented Reality/ Virtual Reality

Data center inter-rack connectivity

Motivation

Existing high-fidelity IEEE 802.11ad model

Contribution

Extend the model to support the novel IEEE 802.11ay protocol

- 1. Basic IEEE 802.11ay support
- 2. New training field structure
- 3. MIMO operation support
 - a) SU and MU MIMO BFT algorithms
 - b) SU-MIMO channel access and data transmission

- Introduction and motivation
- Implementation of IEEE 802.11ay in ns-3
- Evaluation
- Conclusions and future work

IEEE 802.11ay basic support

New EDMG frame format

- Expanded set of MCSs for EDMG SC and EDMG OFDM PHY
 - New modulations and coding rates
 - New SNR to BER lookup tables for an accurate error model

- Channel configurations
 - 4 new channels
 - Bonding of up to 4 channels

EDMG TRN Field

- Redesign and expanded use in IEEE 802.11ay
 - Flexibility of the format, size and switching requirements
 - New format for simultaneous transmit and receive training
 - Increased use (both for SISO and MIMO BFT)

MIMO Implementation

Extension of the NIST Q-D Channel Realization Software

NIST Q-D Channel Realization

Define the scenario:

- Nodes Positions
- PAA positions
- Mobility patterns
- environment geometry and properties

For each pair of nodes

Q-D files

For each pair of nodes

- for each Tx-Rx PAA pair
- 1. #MPCs
- 2. AoD and AoA (degrees)
- 3. Path loss (dB)
- 4. Path delay (ns)

ns-3 IEEE 802.11ad/ay

Calculate Rx power

- for each Tx-Rx PAA pair

MIMO Implementation in ns-3

- Implement standard compliant SU/MU-MIMO BFT protocols
 - Training of transmit and receive antenna arrays
 - Exhaustive search is not possible too many combinations

Two main phases:

- SISO phase get the optimal SISO BFT configuration
- Select MIMO combinations to test (based on SISO phase results)
- MIMO phase test specific MIMO combinations, get MIMO performance (including inter-stream interference)

- SISO phase
 - Transmit training of initiator
 - Measure SISO performance
 - Get SNR of Tx beam patterns

- Candidate = antenna configuration
 for each antenna being trained
- Selection algorithm

- MIMO phase
 - Transmit and receive training of candidates
 - Measure MIMO performance
 - Get SINR of Tx-Rx MIMO combinations

- Choose optimal configuration
 - Maximize the minimum per stream SINR
 - Easily extended to other criteria

- NxN MIMO (tested up to 4x4 MIMO)
- Beam refinement option in MIMO phase
 - Reduced scalability vs improved accuracy
- All Tx-Rx antenna pairs are tested to choose the optimal one
- Traces to get the full set of SISO and MIMO phase measurements and MIMO transmit candidates
- MIMO implementation is still being validated and extended for more complex scenarios
 - Full list of limitations in the WiKi page of the project

- Introduction and motivation
- Implementation of IEEE 802.11ay in ns-3
- Evaluation
- Conclusions and future work

Achievable Throughput

- Validation of our implementation in terms of application throughput
 - Closely matches the data rates from the standard
 - Up to 30 Gbit/s single stream throughput per device

SU-MIMO evaluation

Antenna Configuration

- Visualization of the best SU-MIMO configuration
- Very high spatial separation of the streams, despite small PAA separation
 - Very high SINRs of 23.53 dB for Stream 1 and 39.25 dB for Stream 2
- Use of EDMG SC MCS-21 achieves aggregate throughput of 14 Gbit/s

MU-MIMO Evaluation

Antenna configuration

- AP: 2 PAAs of 2*8

- STA: 1 PAA of 2*8

- Visualization of the best
 MU-MIMO configuration
- Very good spatial separation of the stations
 - SINRs of 33.8 dB and 33.3 dB

- Introduction and motivation
- Implementation of IEEE 802.11ay in ns-3
- Evaluation
- Conclusions and future work

Conclusions and Future Work

Conclusions:

- Implementation of the novel IEEE 802.11ay protocol
- Evaluation of new technologies introduced, including mmWave MIMO operation

Future Work:

- Multi-channel scheduling
- MU-MIMO channel access procedure and data transmission
- Antenna polarization support
- TDD protocol for Fixed Wireless Access (FWA)

Contact Information

Framework Repositories:

https://github.com/wigig-tools

Project maintainers email addresses:

- 1. ns-3 IEEE 802.11ad/ay Module and Codebook Generator:
 - Hany Assasa (<u>hany.assasa@gmail.com</u>)
 - Nina Grosheva (<u>nina.grosheva@imdea.org</u>)

- 2. NIST Q-D Channel Realization + Q-D Interpreter
 - Tanguy Ropitault (<u>tanguy.ropitault@nist.gov</u>)

Questions

