EESM-log-AR: An Efficient Error Model for OFDM MIMO Systems over **Time-Varying Channels**

Sian Jin, Sumit Roy, Thomas R. Henderson **University of Washington Fundamentals of Networking Lab**

2021 Workshop on ns-3

Contacts: sianjin@uw.edu, sroy@uw.edu, tomhend@uw.edu

1

Outline

- Motivation: Fast ns-3 error models for increasingly complex Wi-Fi physical layer scenarios
- 2. Approach: Take link-to-system mapping approach a step further
 - EESM-log-AR based error model for ns-3
- Results: A link-to-system mapping with constant run-time and modest storage requirement

An error model represents packet error rate (PER) as a function of

MCS **Channel type**

MIMO Bandwidth **RX SNR** dimension

- An error model represents packet error rate (PER) as a function of
 - MCS **Channel type**

RX SNR

MIMO **Bandwidth** dimension

- An error model represents packet error rate (PER) as a function of
 - MCS **Channel type**

MIMO **Bandwidth RX SNR** dimension

- An error model represents packet error rate (PER) as a function of
 - MCS **Channel type**

MIMO **Bandwidth** dimension

RX SNR

- An error model represents packet error rate (PER) as a function of
 - MCS **Channel type**

RX SNR

MIMO **Bandwidth** dimension

- An error model represents packet error rate (PER) as a function of
 - MCS **Channel type**

RX SNR

MIMO **Bandwidth** dimension

An error model represents packet error rate (PER) as a function of

MIMO

ns-3 WifiNetDevice example

Why Need an Efficient Error Model?

• Full PHY model is the most accurate error model

Full PHY simulation block diagram

Fading channel

Channel type

Why Need an Efficient Error Model?

- Full PHY model is the most accurate error model
- However, full PHY simulation is prohibitively slow for a cross-layer simulator

Full PHY simulation block diagram

Fading channel

Channel type

Why Need an Efficient Error Model?

- Full PHY model is the most accurate error model

Full PHY simulation block diagram

However, full PHY simulation is prohibitively slow for a cross-layer simulator

Runtime of single link 200,000-packet simulation (Table 1)

Fading channel

Channel type

$N_t \times N_r$	Bandwidth	Full PHY
1×1	20MHz	171 min
1 × 1	40MHz	201 min
4×2	20MHz	362 min
4×2	40MHz	544 min
8 × 2	20MHz	755 min
8×2	40MHz	1098 min

History of ns-3 Error Models YANS model

white Gaussian noise (AWGN) channel, and can be easily computed

[1] M. Lacage, et. al. Yet another network simulator. WNS:

Original ns-3 Wi-Fi PHY is based on OFDM, SISO, frequency-flat additive

- Flat		
2 2006. ¹⁴	Frequency	

History of ns-3 Error Models YANS model

- Original ns-3 Wi-Fi PHY is based on OFDM, SISO, frequency-flat additive white Gaussian noise (AWGN) channel, and can be easily computed
- However, frequently-selective fading channels commonly occur in OFDM system, and this greatly impacts system performance

[1] M. Lacage, et. al. Yet another network simulator. WNS2 2006.

- A traditional abstraction for OFDM MIMO based PHY over a frequencyselective channel
- Block diagram suggested by IEEE TGax group:

- A traditional abstraction for OFDM MIMO based PHY over a frequencyselective channel
- Block diagram suggested by IEEE TGax group:

[2] R. Patidar, et. al. Link-to-System Mapping for ns-3 Wi-Fi OFDM Error Models. WNS3 2017.

17

- A traditional abstraction for OFDM MIMO based PHY over a frequencyselective channel
- Block diagram suggested by IEEE TGax group:

- A traditional abstraction for OFDM MIMO based PHY over a frequencyselective channel
- Block diagram suggested by IEEE TGax group:

- A traditional abstraction for OFDM MIMO based PHY over a frequencyselective channel
- Block diagram suggested by IEEE TGax group:

- A traditional abstraction for OFDM MIMO based PHY over a frequencyselective channel
- Block diagram suggested by IEEE TGax group:

Runtime Scaling Issue

Runtime of single link 200,000-packet simulation (Table 1)

$N_t \times N_r$	Bandwidth	Full PHY	L2S Mapping
1 × 1	20MHz	171 min	97 min
1 × 1	40MHz	201 min	126 min
4×2	20MHz	362 min	234 min
4×2	40MHz	544 min	320 min
8×2	20MHz	755 min	428 min
8×2	40MHz	1098 min	573 min

Runtime-expensive matrix generations and computations

L2S

Runtime Scaling Issue

Runtime of single link 200,000-packet simulation (Table 1)

$N_t \times N_r$	Bandwidth	Full PHY	L2S Mapping
1 × 1	20MHz	171 min	97 min
1 × 1	40MHz	201 min	126 min
4×2	20MHz	362 min	234 min
4×2	40MHz	544 min	320 min
8×2	20MHz	755 min	428 min
8×2	40MHz	1098 min	573 min

How to reduce runtime when simulating complex PHY?

L2S mapping suggested by IEEE TGax group:

Runtime-expensive matrix generations and computations

Observation: upper layer only needs instantaneous PER (random process)

L2S mapping suggested by IEEE TGax group:

Runtime-expensive matrix generations and computations

Observation: upper layer only needs instantaneous PER (random process) Q1: Can we bypass runtime-expensive matrix calculation and directly store average PER (mean of instantaneous PER)?

L2S mapping suggested by IEEE TGax group:

Runtime-expensive matrix generations and computations

directly store average PER (mean of instantaneous PER)?

- Observation: upper layer only needs instantaneous PER (random process)
 - Q1: Can we bypass runtime-expensive matrix calculation and
 - No variance, skewness, kurtosis, time correlation information

L2S mapping suggested by IEEE TGax group:

Runtime-expensive matrix generations and computations

directly model instantaneous PER?

Observation: upper layer only needs instantaneous PER (random process) Q2: Can we bypass runtime-expensive matrix calculation and

L2S mapping suggested by IEEE TGax group:

Runtime-expensive matrix generations and computations

directly model instantaneous PER?

lengths

- Observation: upper layer only needs instantaneous PER (random process)
 - Q2: Can we bypass runtime-expensive matrix calculation and
 - Cannot provide models of instantaneous PERs for different packet

L2S mapping suggested by IEEE TGax group:

Runtime-expensive matrix generations and computations

Observation: upper layer only needs instantaneous PER (random process) Q3: Can we bypass runtime-expensive matrix calculation and directly model effective SNR?

L2S mapping suggested by IEEE TGax group:

Runtime-expensive matrix generations and computations

directly model effective SNR?

into instantaneous PER

- Observation: upper layer only needs instantaneous PER (random process)
 - Q3: Can we bypass runtime-expensive matrix calculation and
 - Effective SNR is insensitive to packet length and is easy to be mapped

New Method: EESM-log-SGN **Previous State-of-the-art**

Assume IID channel for different packets

New Method: EESM-log-SGN **Previous State-of-the-art**

Previous State-of-the-art

Runtime-expensive matrix generations and computations

Assume IID channel, model effective SNR distribution, and directly outputs IID effective SNRs

Previous State-of-the-art

effective SNR distribution follows:

Log-skew generalized normal (log-SGN) distribution

[3] S. Jin, et. al. Efficient Abstractions for Implementing TGn Channel and OFDM-MIMO Links in ns-3. WNS3 2020. [4] S. Jin, et. al. Efficient PHY Layer Abstraction for Fast Simulations in Complex System Environments. IEEE TCOM, 2021.

Previous State-of-the-art

Under IID channel & EESM L2S mapping function, effective SNR distribution follows:

Log-skew generalized normal (log-SGN) distribution

$$X \triangleq \ln(\Gamma_{eff,k}^{sinr}) \qquad f_X(x;\hat{\mu},\hat{\sigma},\hat{\lambda}_1,\hat{\lambda}_2) \quad \mathsf{PDF of } \mathsf{X} \ \sim \mathrm{SGN}(\hat{\mu},\hat{\sigma},\hat{\lambda}_1,\hat{\lambda}_2) \qquad = \frac{2}{\hat{\sigma}}\psi\left(\frac{x-\hat{\mu}}{\hat{\sigma}}\right)\Psi\left(rac{\hat{\lambda}_1(x-\hat{\mu})}{\sqrt{\hat{\sigma}^2+\hat{\lambda}_2(x-\hat{\mu})^2}}
ight), \ x \in \mathbf{R},$$

[3] S. Jin, et. al. Efficient Abstractions for Implementing TGn Channel and OFDM-MIMO Links in ns-3. WNS3 2020. [4] S. Jin, et. al. Efficient PHY Layer Abstraction for Fast Simulations in Complex System Environments. IEEE TCOM, 2021.

Previous State-of-the-art

effective SNR distribution follows:

$$\begin{split} X &\triangleq \ln(\Gamma_{eff,k}^{sinr}) & f_X(x;\hat{\mu},\hat{\sigma},\hat{\lambda}_1,\hat{\lambda}_2) & \mathsf{PDF of} \\ &\sim \mathrm{SGN}(\hat{\mu},\hat{\sigma},\hat{\lambda}_1,\hat{\lambda}_2) & = \frac{2}{\hat{\sigma}}\psi\left(\frac{x-\hat{\mu}}{\hat{\sigma}}\right)\Psi\left(\frac{\hat{\lambda}_1(x-\hat{\mu})}{\sqrt{\hat{\sigma}^2+\hat{\lambda}_2}}\right) \end{split}$$

[3] S. Jin, et. al. Efficient Abstractions for Implementing TGn Channel and OFDM-MIMO Links in ns-3. WNS3 2020. [4] S. Jin, et. al. Efficient PHY Layer Abstraction for Fast Simulations in Complex System Environments. IEEE TCOM, 2021.

New Method: EESM-log-SGN

Previous State-of-the-art

Runtime-expensive matrix generations and computations

Assume IID channel for different packets

Sub-6GHz Wi-Fi Time-varying Channel

L2S mapping:

Sub-6GHz Wi-Fi channel is time-varying

Have correlations Vary slowly overtime

Real Wi-Fi Time-varying Channel

L2S mapping:

Real Wi-Fi channel: time-varying channel Have correlations Vary slowly overtime

Extend EESM-log-SGN method to time-varying channel

process

- 20

function, effective SNR process follows:

Log-AutoRegressive (log-AR) process

- 20

function, effective SNR process follows:

Log-AutoRegressive (log-AR) process

$$X[l] = c + \sum_{m=1}^{p} \phi_m X[l - m] + \epsilon[l] \quad \text{AR model}$$

Normal variable

- 20

EESM-log-AR: Main Idea 0 2 Time (sec) Correlated effective SNR random process generator Log-AR parameters storage Log-AutoRegressive (log-AR) process $X[l] \triangleq \ln(\Gamma_{eff}[l])$ Take log of effective SNR $X[l] = c + \sum_{m=1}^{l} \phi_m X[l-m] + \epsilon[l] \quad \text{AR model}$

EESM-log-AR: Main Idea Effective SNR (dB) 0 2 Time (sec) Correlated effective SNR random process generator Log-AR parameters storage Log-AutoRegressive (log-AR) process $X[l] \triangleq \ln(\Gamma_{eff}[l])$ Take log of effective SNR $X[l] = c + \sum \phi_m X[l - m] + \epsilon[l] \quad \text{AR model}$ *m*=1

log-AR parameters depend on: MIMO setup, bandwidth, MCS, and channel types

EESM-log-AR: Runtime

Runtime of single link 200,000-packet simulation (Table 4)

$N_t \times N_r$	Bandwidth	L2S Mapping	EESM-log-AR
1 × 1	20MHz	97 min	0.4 sec
1 × 1	40MHz	126 min	0.4 sec
4×2	20MHz	234 min	0.4 sec
4×2	40MHz	320 min	0.4 sec
8×2	20MHz	428 min	0.4 sec
8 × 2	40MHz	573 min	0.4 sec

Runtime of the proposed method is significantly smaller and insensitive to system dimension change

1st order performance: Average PER VS. RX SNR

1st order performance: Average PER VS. RX SNR

2nd order performance: AutoCorrelation Function (ACF) and Partial ACF (PACF)

1st order performance: Average PER VS. RX SNR

(ACF) and Partial ACF (PACF)

1st order performance: Average PER VS. RX SNR

2nd order performance: AutoCorrelation Function (ACF) and Partial ACF (PACF)

We also validated EESM-log-AR using modified LMC test & residual diagnoses

Contributions

 Under time-varying channel, EESM-log-AR directly outputs effective SNR per-packet basis

process rather than generating channels and calculating effective SNR on a

Contributions

- Under time-varying channel, EESM-log-AR directly outputs effective SNR process rather than generating channels and calculating effective SNR on a per-packet basis
- Payoff: good accuracy with substantial run-time improvements
- Cost: require store log-AR parameters at different PHY configurations

Contributions and Future Work

- Under time-varying channel, EESM-log-AR directly outputs effective SNR process rather than generating channels and calculating effective SNR on a per-packet basis
- Payoff: good accuracy with substantial run-time improvements
- Cost: require to store log-AR parameters at different PHY configurations
- Future work:
 - Model the impact of interference
 - Extension to OFDMA and MU-MIMO cases

Backup Slides

Full-PHY Block Diagram

Multi-path Propagation

DReceived signal power VS. distance

(dB) $P_{\rm r}$

Frequency-selective Channel

Frequency flat

(a)

Frequency selective

Time-varying Channel

Rayleigh Fading with doppler effect for Fm=20Hz

Rayleigh Fading with doppler effect for Fm=50Hz

TGax Channel Models

TGax channel Models: A~F

Jakes' Model

Uniform scattering environment

Doppler spectrum

PHY Layer Simulation Setup

Communication system

Link simulator

of packets per simulation Channel type Doppler spectrum Maximum moving speed Coherence time Sample period Channel coding Payload length MCS RX SNR Bandwidth Channel estimation Phase tracking & Synchronization MIMO precoding/decoding MIMO dimension MIMO streams CPU

Properties of log-AR process

Properties of log-AR process:

- 1) fully characterized by p+2 parameters;
- 2) easy to generate;
- 3) but cannot capture skewness and kurtosis of marginal distribution well.

$X[l] \triangleq \ln(\Gamma_{eff}[l])$ $X[l] = c + \sum^{p} \phi_m X[l - m] + \epsilon[l]$ m=1

Traditional L2S Mapping

scalar metric - effective SNR

$$\Gamma_{eff,k}^{sinr} = \alpha \Phi^{-1} \left(\frac{1}{n_{sc,k}} \frac{1}{n_{ss,k}} \sum_{i \in \mathcal{N}_{sc,k}} \sum_{j=1}^{n_{ss,k}} \Phi\left(\frac{\Gamma_{k,i,j}}{\beta} \right) \right)$$

- performance for a network simulator
- 2 popular L2S mapping functions: EESM and RBIR
- For EESM, $\Phi(x) = \exp(-x)$ and α

 Over an OFDM/OFDMA MIMO/MU-MIMO system, abstracting the post-MIMO processing SINRs over all subcarriers and spatial streams into a a single

L2S mapping function

The single effective SINR is a convenient metric to describe the packet-level

$$= \beta \qquad \Gamma_{eff,k}^{sinr} = -\beta \ln \left(\frac{1}{n_{sc,k}} \frac{1}{n_{ss,k}} \sum_{i \in \mathcal{N}_{sc,k}} \sum_{j=1}^{n_{ss,k}} \exp \left(-\frac{\Gamma_{k,j}}{\beta} \right) \right)$$

EESM-log-SGN

Directly characterize effective SNR random process

Correlated effective SNR random process generator

Log-AR parameters storage

PACF of Effective SNR Processes

ML Estimation of Log-AR Parameters

RX SNR y	$\hat{c}(\gamma)$	$\hat{\phi}_1(\gamma)$	$\hat{\phi}_5(\gamma)$	$\hat{\phi}_9(\gamma)$	$\hat{\sigma}_{10}^{2}(\gamma)$
12dB	0.5764	1.3454	0.3685	0.0607	0.0076
13dB	0.6525	1.2702	0.3068	0.0474	0.0085
14dB	0.7297	1.2047	0.2561	0.0370	0.0096
15dB	0.8093	1.1443	0.2128	0.0294	0.0112

Storage-complexity aspect Handling wide range of RX SNRs: challenge & principle

- Fact: effective SNR depends on RX SNR
- Challenge: cannot store effective SNR process under any RX SNR
- Solution: estimate effective SNR process for any RX SNR using a small # of stored effective SNR processes - Linear Interpolated (LI) log-AR parameter estimation

$$\hat{c}(\gamma) = (1 - \epsilon)\hat{c}(\gamma_1) + \epsilon\hat{c}(\gamma_2),$$

$$\hat{\phi}_m(\gamma) = (1 - \epsilon)\hat{\phi}_m(\gamma_1) + \epsilon\hat{\phi}_m(\gamma_2), \quad m = 1, 2, \dots, p, \qquad \epsilon = \frac{\gamma - \gamma_1}{\gamma_2 - \gamma_1}$$

$$\hat{\sigma}_p^2(\gamma) = (1 - \epsilon)\hat{\sigma}_p^2(\gamma_1) + \epsilon\hat{\sigma}_p^2(\gamma_2)$$

Estimated parameters Stored parameters

Sample Paths of Effective SNR Processes

Residual Definition

• AR model

$$X[l] = c + \sum_{m=1}^{p} \phi_m X[l-m] + \epsilon$$

Residual

$$\hat{\epsilon}[l] \triangleq X[l] - \hat{c}(\gamma) - \sum_{m=1}^{p} \hat{\phi}_{m}(\gamma)$$

[l] zero-mean white Gaussian process with a constant variance

 $(\gamma)X[l-m]$

Residual Whiteness Test

Check whether residual is white
Modified Leybourne- McCabe (LMC) Test

- Null hypothesis: X [l] is a stationary AR(p) process
- Our simulation: the modified LMC test fails to reject the null hypothesis with a large p-Value (> 0.05)
- Thus, X [l] is stationary and can be modeled as an AR(p) process

Residual Distribution

Check whether residual~Gaussian distribution

ACF and PACF of Squared Residual

Check whether residual has constant variance

Comparison

- EESM-log-SGN VS EESM-log-AR:
 - EESM-log-SGN model is more accurate for IID channel
 - varying channel

EESM-log-AR has wider applicability as it is modeled for the general time-

Extension to 5G

- Inherent assumption for WiFi:
 - Slow fading (channel gain does not change in a packet duration)
 - No inter-carrier interference or ICI (extreme low Doppler)
- Extension to 5G
 - Fast fading
 - ICI introduced by Doppler

Runtime-expensive matrix generations and computations

Interference Scenario

