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Outline

1. Motivation: Fast ns-3 error models for increasingly complex Wi-Fi physical 
layer scenarios 

2. Approach: Take link-to-system mapping approach a step further 

EESM-log-AR based error model for ns-3

3. Results: A link-to-system mapping with constant run-time and modest 
storage requirement 
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What Is an Error Model?
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• An error model represents packet error rate (PER) as a function of

BandwidthChannel type RX SNRMIMO 
dimensionMCS
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What Is an Error Model?
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• An error model represents packet error rate (PER) as a function of

Channel type RX SNRMIMO 
dimensionMCS

Packet error
or success

Compare

Bandwidth

Full PHY simulation block diagram



What Is an Error Model?
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• Full PHY model is the most accurate error model

Why Need an Efficient Error Model?

Full PHY simulation block diagram
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• Full PHY model is the most accurate error model

• However, full PHY simulation is prohibitively slow for a cross-layer simulator

Why Need an Efficient Error Model?

Runtime of single link 200,000-packet simulation (Table 1)

Full PHY simulation block diagram



History of ns-3 Error Models
YANS model
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• Original ns-3 Wi-Fi PHY is based on OFDM, SISO, frequency-flat additive 
white Gaussian noise (AWGN) channel, and can be easily computed 

[1] M. Lacage, et. al. Yet another network simulator. WNS2 2006.



History of ns-3 Error Models
YANS model
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• Original ns-3 Wi-Fi PHY is based on OFDM, SISO, frequency-flat additive 
white Gaussian noise (AWGN) channel, and can be easily computed 

• However, frequently-selective fading channels commonly occur in OFDM 
system, and this greatly impacts system performance 

[1] M. Lacage, et. al. Yet another network simulator. WNS2 2006.



History of ns-3 Error Models
Link-to-system (L2S) mapping
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• A traditional abstraction for OFDM MIMO based PHY over a frequency-
selective channel

• Block diagram suggested by IEEE TGax group:

[2] R. Patidar, et. al. Link-to-System Mapping for ns-3 Wi-Fi OFDM Error Models. WNS3 2017.
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• A traditional abstraction for OFDM MIMO based PHY over a frequency-
selective channel

• Block diagram suggested by IEEE TGax group:

[2] R. Patidar, et. al. Link-to-System Mapping for ns-3 Wi-Fi OFDM Error Models. WNS3 2017.
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Full PHY:

L2S 
mapping:

Runtime Scaling Issue

L2S Mapping

Runtime of single link 200,000-packet simulation (Table 1)
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How to reduce runtime when simulating complex PHY?

Full PHY:

L2S 
mapping:

Runtime Scaling Issue

Runtime of single link 200,000-packet simulation (Table 1)

L2S Mapping
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L2S mapping suggested by IEEE TGax group:

Observation: upper layer only needs instantaneous PER (random process)

Key Observation
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L2S mapping suggested by IEEE TGax group:

Key Observation

Q1: Can we bypass runtime-expensive matrix calculation and
directly store average PER (mean of instantaneous PER)?
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L2S mapping suggested by IEEE TGax group:

Key Observation

Q1: Can we bypass runtime-expensive matrix calculation and
directly store average PER (mean of instantaneous PER)?

Observation: upper layer only needs instantaneous PER (random process)

No variance, skewness, kurtosis, time correlation information
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L2S mapping suggested by IEEE TGax group:

Key Observation

Q2: Can we bypass runtime-expensive matrix calculation and
directly model instantaneous PER?

Observation: upper layer only needs instantaneous PER (random process)

Cannot provide models of instantaneous PERs for different packet 
lengths
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Key Observation

L2S mapping suggested by IEEE TGax group:

Q3: Can we bypass runtime-expensive matrix calculation and
directly model effective SNR?

Observation: upper layer only needs instantaneous PER (random process)
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Key Observation

L2S mapping suggested by IEEE TGax group:

Q3: Can we bypass runtime-expensive matrix calculation and
directly model effective SNR?

Observation: upper layer only needs instantaneous PER (random process)

Effective SNR is insensitive to packet length and is easy to be mapped 
into instantaneous PER



31

New Method: EESM-log-SGN

Assume IID channel for different packets

Time

IID Channel Packet
PacketPacket

Packet

Previous State-of-the-art
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Assume IID channel for different packets, then 
effective SNR for different packets are also IID

Time

Effective SNR Packet
PacketPacket

Packet

New Method: EESM-log-SGN
Previous State-of-the-art
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L2S mapping:

Assume IID channel, model effective SNR 
distribution, and directly outputs IID effective SNRs

Time

Effective SNR Packet
PacketPacket

Packet

New Method: EESM-log-SGN
Previous State-of-the-art
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[3] S. Jin, et. al. Efficient Abstractions for Implementing TGn Channel and OFDM-MIMO Links in ns-3. WNS3 2020.
[4] S. Jin, et. al. Efficient PHY Layer Abstraction for Fast Simulations in Complex System Environments. IEEE TCOM, 2021.

Log-skew generalized normal (log-SGN) distribution

Under IID channel & EESM L2S mapping function, 
effective SNR distribution follows:

New Method: EESM-log-SGN

L2S mapping:

Previous State-of-the-art
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Assume IID channel for different packets

Time

Effective SNR Packet
PacketPacket

Packet

New Method: EESM-log-SGN

L2S mapping:

Previous State-of-the-art



38

L2S mapping:

Sub-6GHz Wi-Fi Time-varying Channel

Sub-6GHz Wi-Fi channel is time-varying
Have correlations
Vary slowly overtime

Burst error
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L2S mapping:

Real Wi-Fi Time-varying Channel

Real Wi-Fi channel: time-varying channel

Extend EESM-log-SGN method to time-varying channel

Have correlations
Vary slowly overtime

Burst error
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L2S mapping:

EESM-log-AR: Main Idea

Assume time-varying channel, model effective SNR 
process, and directly outputs effective SNR 
process
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L2S mapping:

Log-AutoRegressive (log-AR) process

EESM-log-AR: Main Idea

Under time-varying channel & EESM L2S mapping 
function, effective SNR process follows:
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L2S mapping:

Log-AutoRegressive (log-AR) process

EESM-log-AR: Main Idea

Take log of effective SNR

AR model
Normal variable

Under time-varying channel & EESM L2S mapping 
function, effective SNR process follows:
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Log-AutoRegressive (log-AR) process

EESM-log-AR: Main Idea

Take log of effective SNR

AR model
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Log-AutoRegressive (log-AR) process

EESM-log-AR: Main Idea

Take log of effective SNR

AR model

log-AR parameters depend on: 
MIMO setup, bandwidth, MCS, 
and channel types
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Runtime of the proposed method is significantly smaller 
and insensitive to system dimension change

EESM-log-AR: Runtime

Runtime of single link 200,000-packet simulation (Table 4)

L2S Mapping
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EESM-log-AR: Accuracy
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EESM-log-AR: Accuracy

1st order performance: Average PER VS. RX SNR
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(ACF) and Partial ACF (PACF)



50

EESM-log-AR: Accuracy

1st order performance: Average PER VS. RX SNR 2nd order performance: AutoCorrelation Function 
(ACF) and Partial ACF (PACF)



51

EESM-log-AR: Accuracy

We also validated EESM-log-AR using 
modified LMC test & residual diagnoses

1st order performance: Average PER VS. RX SNR 2nd order performance: AutoCorrelation Function 
(ACF) and Partial ACF (PACF)



Contributions
• Under time-varying channel, EESM-log-AR directly outputs effective SNR 

process rather than generating channels and calculating effective SNR on a 
per-packet basis 
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Contributions and Future Work
• Under time-varying channel, EESM-log-AR directly outputs effective SNR 

process rather than generating channels and calculating effective SNR on a 
per-packet basis 

• Payoff: good accuracy with substantial run-time improvements

• Cost: require to store log-AR parameters at different PHY configurations

• Future work: 

Model the impact of interference

Extension to OFDMA and MU-MIMO cases

54



Backup Slides
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Multi-path Propagation
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Fading

58

Received signal power VS. distance



Frequency-selective Channel
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Frequency flat

Frequency selective

LOS

multi-path NLOS

LOS + 



Time-varying Channel

60



TGax Channel Models
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TGax channel 
Models: A~F

Power Vs received multi-path signal delay



Jakes’ Model
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Doppler spectrumUniform scattering environment



PHY Layer Simulation Setup 
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Properties of log-AR process
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Properties of log-AR process: 

1) fully characterized by p+2 
parameters; 

2) easy to generate; 

3) but cannot capture skewness and 
kurtosis of marginal distribution well.



• Over an OFDM/OFDMA MIMO/MU-MIMO system, abstracting the post-MIMO 
processing SINRs over all subcarriers and spatial streams into a a single 
scalar metric - effective SNR 

• The single effective SINR is a convenient metric to describe the packet-level 
performance for a network simulator 

• 2 popular L2S mapping functions: EESM and RBIR

• For EESM,                            and
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L2S mapping function

Traditional L2S Mapping



EESM-log-SGN
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PACF of Effective SNR Processes 
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ML Estimation of Log-AR Parameters 
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Storage-complexity aspect
Handling wide range of RX SNRs: challenge & principle 

• Fact: effective SNR depends on RX SNR 

• Challenge: cannot store effective SNR process under any RX SNR

• Solution: estimate effective SNR process for any RX SNR using a small # of 
stored effective SNR processes - Linear Interpolated (LI) log-AR parameter 
estimation
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Stored parametersEstimated parameters



Sample Paths of Effective SNR Processes 
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Residual Definition

• AR model

• Residual

71

zero-mean white Gaussian process
with a constant variance



Residual Whiteness Test 
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Check whether 
residual is white



Modified Leybourne- McCabe (LMC) Test

• Null hypothesis: ! ["] is a stationary AR(#) process 

• Our simulation: the modified LMC test fails to reject the null hypothesis with a 
large p-Value (> 0.05) 

• Thus, ! [" ] is stationary and can be modeled as an AR(#) process

73



Residual Distribution 
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Check whether 
residual~Gaussian 
distribution



ACF and PACF of Squared Residual 
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Check whether 
residual has 
constant variance



Comparison
• EESM-log-SGN VS EESM-log-AR: 

• EESM-log-SGN model is more accurate for IID channel

• EESM-log-AR has wider applicability as it is modeled for the general time-
varying channel 

76



Extension to 5G
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• Inherent assumption for WiFi:

• Slow fading (channel gain does not change in a packet duration)

• No inter-carrier interference or ICI (extreme low Doppler)

• Extension to 5G 

• Fast fading

• ICI introduced by Doppler



Extension to 5G
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• Fast fading 

• Consider ICI A packet

Channel gain

Time

ICI



Interference Scenario
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