Validation of the ns-3 802.11ax OFDMA Implementation

Davide Magrin, Stefano Avallone, Sumit Roy, Michele Zorzi

802.11ax

- Previous iterations of WiFi aimed at increasing throughput
- 802.11ax focuses on efficiency
 - Accommodating more devices
 - Increasing area throughput
- How it's done
 - Spatial Reuse
 - UL MU-MIMO
 - Support for 6 GHz (WiFi 6E)
 - OFDMA

Orthogonal Frequency-Division Multiple Access

With OFDMA the APs can now:

- Serve multiple STAs in the DL
- Coordinate simultaneous UL transmissions from multiple STAs, using Trigger Frames

Support for 802.11ax OFDMA in ns-3

- DL and UL OFDMA at the MAC and PHY layers is supported since ns-3.34
- Refactoring of the MAC and PHY layers
- Effort by Stefano Avallone, Sébastien Deronne, and Rediet Getachew

The Mathematical Model

The validation workflow

- [4] Boris Bellalta and Katarzyna Kosek-Szott. 2019. AP-Initiated Multi-User Transmissions in IEEE 802.11ax WLANs. Ad Hoc Networks 85 (2019), 145-159. 1 Find a suitable model from the literature
- 2. Strip it down to just what we need
- 3 Add some features
- 4. Implement it
- 5. Check if its output matches simulation results
- 6. If no match, diagnose, correct, and go back to 4

How the model works

- Based on the Bianchi 802.11 model
- Compute channel access probabilities
- Compute duration of events
- Get throughput!

Validation Scenario

Metrics:

- Throughput
- Head-of-Line Delay
 - Time between two consecutive transmissions to the same STA

Variables:

- Number of STAs
- Type of employed scheduler
- Channel access parameters
- ACK Sequence
- Intensity of DL and UL traffic

Quantity	Value			
Network radius	10 m			
AP Transmission Power	17 dBm			
STA Transmission Power	17 dBm			
MCS	5			
Application Layer Traffic Rate	100 Mbit/s			
Traffic type	UDP			
Access Category	BE			
Beacon Period	20480 ms			
MSDU Lifetime	20000 ms			
Simulation Time	5 s			
Propagation Loss Model	Friis			

Single User Transmissions Only

Scheduling

- How do we assign Resource Units to STAs?
- Scheduling is typically left to the implementation
- Assumption: we only split the available bandwidth evenly
 - \circ 9 RUs composed of 26 tones, or
 - \circ 4 RUs composed of 52 tones, or
 - \circ 2 RUs composed of 106 tones, or
 - 1 RU composed of 242 tones
- We implemented two extremely simple "schedulers":
 - One prioritizing bandwidth utilization
 - One trying to serve as many STAs as possible

# of STAs	Ν	1	2	3	4	5	6	7	8	9	≥ 10
# of RUs to split the BW in	fbw	1	2	2	4	4	4	4	4	9	9
	fhol	1	2	4	4	9	9	9	9	9	9

DL Throughput for Our Schedulers

Head-of-Line Delay for Different Schedulers

ACK Sequences

After a MU DL transmission, the AP can request ACKs in various ways

- ACK-SU-FORMAT: the AP sends a Single User Block Ack Request to each STA in sequence
- **MU-BAR**: a SIFS after the MU DL transmission, the AP sends an MU BAR to coordinate simultaneous transmission of ACKs by all STAs
- AGGR-MU-BAR: the MU BAR is aggregated directly to the DL MU transmission

Different ACK Sequences

For this simulation, we have each STA generate a fixed amount of traffic

Few STAs: low traffic

Code is available!

Batteries included:

- Python-based implementation of the model
- ns-3 code updated to current ns-3-dev
- Jupyter Notebook to:
 - Run simulations
 - $\circ \quad \text{Run the model} \quad$
 - Generate the plots you find in the paper

Get it at https://github.com/signetlabdei/ofdma-validation

Conclusions

- Things seem to work as expected
 - Throughput
 - Head-of-Line Delay
 - Frame durations
 - Channel access probabilities
- Fixed some bugs in the simulator along the way
- Future developments
 - Use this as a form of testing?
 - Validate other aspects of 802.11ax OFDMA
 - Coexistence with legacy devices

Validation of the ns-3 802.11ax OFDMA Implementation

Davide Magrin, Stefano Avallone, Sumit Roy, Michele Zorzi

