Reproducible MIMO Operation in ns-3 using Trace-based Wi-Fi Rate Adaptation

Workshop on ns-3 2021

Vitor Lamela, <u>Helder Fontes</u>, Jose Ruela, Manuel Ricardo and Rui Campos <u>helder.m.fontes@inesctec.pt</u> Wireless Networks Area, CTM, INESC TEC

23-06-2021

INSTITUTE FOR SYSTEMS AND COMPUTER ENGINEERING, TECHNOLOGY AND SCIENCE

Background and Motivation

- Trace-based Simulation Approach
- Problem
- Trace-based Wi-Fi Rate Adaptation
- Evaluation Results
- Conclusions
- Future Work

Background and Motivation

Problem

- Emerging Testbeds experiments are difficult to repeat and reproduce
 - Unstable physical conditions
 - Cost and operational constraints
 - Simulation is too optimistic

Objective

- Enable repeatable and reproducible experiments without access to the testbed
 - Accurately reproduce Real-World Experiments conditions in ns-3

Trace-based Simulation Approach

- Capture Traces of Real Experiments
 - Position of Nodes
 - GPS or cartesian coordinates
 - Radio link quality
 - Signal-to-Noise Ratio (SNR)
 - Other metrics

Trace-based Simulation (TS) Approach

- Reproduce Traces in ns-3
 - Configuration of Wi-Fi Cards \rightarrow Channel, BW, standard, etc.
 - Positions of Nodes → WaypointMobilityModel
 - Link Quality \rightarrow <u>Trace-based Simulation Models</u>

Trace-based Propagation Loss Background

- Reproduces the **asymmetric SNR** between neighboring nodes
 - Each successfully received frame is a valid **RSSI** sample
 - The reported **noise floor** is also considered
- ErrorRateModel
 - Input: PHY rate, Frame size, SNR (from real node)
 - Output: FER

Trace-based Propagation Loss Background

- FER causes frame retransmissions → closer to real **throughput and delay**
 - ns-3 Minstrel **auto-rate** adaptation is used

• OK for Single-In Single-Out (SISO), insufficient for Multiple-In Multiple-Out (MIMO)

Problem

- Real World
 - Network interfaces collect the Channel State Information (CSI)
 - Multipath environment influences
 - Number of effective radio streams
 - TX antennas selection
- Pure Simulation
 - Number of radio streams = number of antennas
 - Streams are independent
- Trace-based Simulation
 - SNR trace alone is not enough for MIMO scenarios

Trace-based Wi-Fi Rate Adaptation

- Captures and Reproduces the MCS and number of radio streams used to transmit frames to each of the neighboring nodes
 - Each successfully received frame is a valid sample
 - A Trace-based Wi-Fi Station Manager is used to reproduce the traces
- Resulting auto-rate adaptation is now deterministic, based on the real traces
- Frame losses remain stochastic, based on the ns-3 ErrorRateModel
 - MCS is, however, not affected by MAC layer retransmissions

Experimental Setup

Fed4FIRE+ w-iLab.2 Testbed, used in the context of SIMBED+ Project

- ZOTAC nodes (light blue)
- Varying distance and TX power

Experimental Setup

Zotac nodes

- OS: Ubuntu 14.04 LTS x64
- CPU: Intel D525 (2x 1.8 GHz)
- RAM: 4GB
- NIC1: 802.11abgn 3x3 MIMO Sparklan with AR9280 chipset (ath9k driver)
- NIC2: 802.11a/b/g/n/ac 3x3 MIMO Compex WLE900VX with QCA9880 chipset (ath10k driver)

Configuration

- Channel: 5220 MHz
- TX-Power: 0 to 17 dBm, 1 dBm steps
- IEEE Standard: 802.11a (SISO) / 802.11n/ac (MIMO 3x3), ah-hoc, auto-rate
- BW: 20 / 40 MHz

Network Traffic

- UDP flows with offered load above link capacity
 - Unidirectional (A \rightarrow B and A \leftarrow B) and bi-directional (A $\leftarrow \rightarrow$ B)

Experimentation and Evaluation Methodology Real *vs* Pure Simulation (PS) *vs* Trace-based Simulation (TS)

Trace-based Wi-Fi Rate Adaptation

Evaluation – Static Scenario @ Wi-Lab.2 (SIMBED+ Project) 802.11a, SISO

14

Trace-based Wi-Fi Rate Adaptation

Evaluation – Static Scenario @ Wi-Lab.2 (SIMBED+ Project) 802.11n/ac, MIMO 3x3, 20/40 MHz

Current Limitations

- Lower frame losses and slightly optimistic throughput compared to the real experiment
 - Only successfully received frames are sampled
- Auto-rate adaptation becomes static (i.e. statistically dependent on the real experiment)
- TS depends on direct unicast traffic to sample the PHY rate between the nodes
 - Overhearing ACKs, Beacons, etc., is not enough

Main Conclusions

- The **TS approach** now supports realistic reproduction of **MIMO** experiments
 - SNR (Asymmetric)
 - **MIMO** operation (MCS and number of radio streams)
 - Works even if the real rate-adaptation algorithm is not implemented in ns-3
- TS enable **ns-3** to be used to replay past experiments
 - Saves resources
 - Perpetuates experiments, even if the original testbeds cease to exist
 - Allows Traces to be referenced in scientific publications, e.g.
 - SIMBED: <u>https://doi.org/10.5281/zenodo.2634271</u>
 - SIMBED+: https://doi.org/10.5281/zenodo.3713270

Future work

- Keep improving the TS approach
 - Detection of link failure
 - Dynamically adjust traces resolution to the scenario
 - Add support for beamforming
- Assess TS approach applicability to other wireless technologies
 - E.g., Cellular, IEEE 802.15.4
- Software platform to assist the processes of traces capturing, managing and sharing
 - Share past or real time execution of experiments
- Fine-tune and learn new **path loss** and **mobility** models
 - Accurate simulations with different number of nodes, mobility and duration

Trace-based Simulation Approach

Summary and upcoming ns-3 apps

Trace Type	Trace files and its variables	Trace-based ns-3 model	
	Signal-to-noise ratio (SNR)	TraceBasedPropagationLoss → Validated in SIMBED	Real SNR
Link Quality	Channel occupancy	TraceBasedWiFiChannelOccupancy - "Sender" Model - "Receiver" Model	Shared radio spectrum
	PHY rate/MCS Number of radio streams	 → Validated in SIMBED+ TraceBasedWiFiRateAdaptation → Validated in SIMBED+ 	ΜΙΜΟ
Position of nodes	Cartesian coordinates	WaypointMobilityModel	

Acknowledgments

This work is financed by National Funds through the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia within project: UIDB/50014/2020.

This work is also part of the SIMBED+ project, approved in Fed4FIRE+ Open Call 5.

Thank you!

Questions?

Reproducible MIMO Operation in ns-3 using Trace-based Wi-Fi Rate Adaptation

Workshop on ns-3 2021, Virtual Event, 23rd June 2021

Authors: Vítor Lamela, Helder Fontes, José Ruela, Manuel Ricardo, Rui Campos

Presenter: Helder Fontes – helder.m.fontes@inesctec.pt