

Università degli Studi di Padova

An ns-3 Implementation of a Battery-less Node for Energy-harvesting Internet of Things

Martina Capuzzo capuzzom@dei.unipd.it

Workshop on ns-3 (WNS3) - June 23rd, 2021

Outline

- 1. Context and motivation
- 2. Model of a battery-less device
- 3. LoRaWAN
- 4. Validation results
- 5. Conclusions

Introduction

• Internet of Things (IoT)

BizIntel

Battery-less devices

(solar, wind, thermal, RF, vibrations, ... energy sources)

Model of a battery-less device

- Device will switch off if voltage below V_{th_low}
- It can turn on again if the capacitor recharges enough (above $V_{th\ high}$)

ns-3 implementation

Relation between classes

Relavant attributes of the CapacitorEnergySource class

Attribute	Description	
Capacitance	Capacitance [F]	
CapacitorEnergySourceInitialVoltage	Initial voltage of the capacitor [V]	
CapacitorMaxSupplyVoltage	Maximum supply voltage for the capacitor energy source [V]	
CapacitorLowVoltageThreshold	$V_{th\ low}$, as fraction of the maximum supply voltage	
Capacitor High Voltage Threshold	$V_{th\ high}$, as fraction of the maximum supply voltage	
PeriodicVoltageUpdateInterval	Time interval between periodic voltage updates	

Application to a LoRaWAN node

- Low Power Wide Area Network technology
- Leverages the LoRa modulation
 - Spreading Factor (SF) \in {7, 12} \rightarrow Data Rate \in {5, 0}

Application to a LoRaWAN node

- Low Power Wide Area Network technology
- Leverages the LoRa modulation
 - Spreading Factor (SF) \in {7, 12} \rightarrow Data Rate \in {0, 5}
- Star topology
 - Network Server
 - Gateways
 - End Devices
- Two types of traffic
 - Unconfirmed/confirmed

Application to a LoRaWAN node

[BATTERY-POWERED SENSORS]

Classes of devices

- Class A (all)
 - Mandatory supported by all LoRa devices
 - RX2 uses the lowest DR by default

State	MCU	Radio current	Total current
Off	Standby	0	5.5 μA
Turn On	Active	-	15 mA
Sleep	Active	1 <i>µ</i> A	5.6 µA
Tx	Active	28 mA	28.011 mA
Idle	Standby	1.5 μA	7 μΑ
Standby	Standby	10.5 mA	10.5055 mA
Rx	Active	11 mA	11.011 mA

Preliminary considerations

Voltage depletion during different phases

Preliminary considerations

Voltage for different values of $P_{harvester}$ and capacitance

Validation

Minimum capacity (Cmin) to complete a cycle compared to mathematical results, computed as in [4]

UL cycle

UL and DL cycle

[4] Carmen Delgado, José María Sanz, Chris Blondia Chris, and Jeroen Famaey. 2020. Battery-Less LoRaWAN Communications using Energy Harvesting: Modeling and Characterization. IEEE Internet of Things Journal (Aug 2020).

Performance

Success probability for different communication settings

Conclusions

- Implementation of Capacitor Energy Source
- Comparison with mathematical model from the literature
- Application to LoRaWAN node...
 - ... but it can be modified/extended to work also with other communication technologies
- Tool to help research on Green IoT networks

[1] Martina Capuzzo. 2021. capacitor-ns3. https://github.com/signetlabdei/capacitor-ns3.

Università degli Studi di Padova

An ns-3 Implementation of a Battery-less Node for Energy-harvesting Internet of Things

Martina Capuzzo capuzzom@dei.unipd.it

Workshop on ns-3 (WNS3) - June 23rd, 2021