

Forschungsgemeinschaft German Research Foundation

Deutsche

Funded by

Ministerium für Wirtschaft, Innovation, Digitalisierung und Energie des Landes Nordrhein-Westfalen

Robust Machine Learning-enabled Routing for Highly Mobile Vehicular Networks with PARRoT in ns-3

Cedrik Schüler, Manuel Patchou, Benjamin Sliwa and Christian Wietfeld

Virtual Conference: June 24, 2021

Faculty of Electrical Engineering and Information Technology Communication Networks Institute Prof. Dr.-Ing. Christian Wietfeld

Motivation

- Remotely operated or autonomous robotics
- Spontaneously deployable ad-hoc networks
- High mobility → Dynamically changing networks → Fast adaptation needed
- Reinforcement Learning-based protocols omit complex modeling and learn from context features

- Previous work PARRoT [23]
- ns-3 simulation model as preparation for future HiL simulations and real-world experiments

[23] B. Sliwa, C. Schüler, M. Patchou, C. Wietfeld, "PARRoT: Predictive ad-hoc routing fueled by reinforcement learning and trajectory knowledge", In 2021 Vehicular Technology Conference (VTC-Spring)

HiL – Hardware-in-the-Loop

Robust Machine Learning-enabled Routing for Highly Mobile Vehicular Networks with PARRoT in ns-3

Agenda

- Motivation
- Routing Protocol Structure in ns-3
- PARRoT Fundamentals and ns-3 Implementation
- Simulation Setup for Evaluation
- Results
 - Parameter Optimization of PARRoT
 - Consumption Analysis
- Conclusion and Outlook

Routing Protocol Structure in ns-3

- Subclasses of ns3::Ipv4RoutingProtocol
- Located within the internet protocol (IP) stack
- Closely related to Linux' routing functions
- Required implementations:
 - Notify{InterfaceUp, InterfaceDown, AddAddress, RemoveAddress}
 - RouteInput

technische universität

dortmund

- Processing of incoming packets
- Route Output
 - Route lookup for outgoing packets
- Installed on every ns3::Node

PARRoT Routing Protocol

technische universität

dortmund

- PARRoT: Predictive Ad-hoc Routing Fueled by Reinforcement Learning and Trajectory Knowledge
- Presented and recipient of the best student paper award at VTC-Spring 2021
- Wings: Trajectory prediction by leveraging cross-layer knowledge
- **Chirp:** Cooperative distribution of periodic information to maintain a decentralized network architecture
- Brain: Autonomous forwarding selection based on anticipated topologies and cohesion assessments

Wings: Trajectory Prediction by Leveraging Cross-layer Knowledge

$$\tilde{\mathbf{p}}_{i+1} = \tilde{\mathbf{p}}_i + \frac{t_{i+1} - t_i}{N_e - 1} \sum_{j=0}^{N_e - 2} \frac{\mathbf{p}_{i-j} - \mathbf{p}_{i-j-1}}{t_{i-j} - t_{i-j-1}}$$

(*) B. Sliwa et al., "B.A.T.Mobile: Leveraging mobility control knowledge for efficient routing in mobile robotic networks", IEEE Globecom Workshops (GC Wkshps) 2016

Chirp: Cooperative Distribution of Periodic Information

- 1. Chirp initialization
- 2. Packet processing
- 3. Reinforcement learning
- 4. Forward updated chirp
- 5. Repeat 2. 4.
- 6. Reverse route building
- 7. Greedy hop selection

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
500 ms		ward V	Re			on $\Phi_{\rm Coh}$	Cohesi		TTL		EQ	S	Originator Address			
		ŏ.x	Ŷ			$\mathbf{p}.z$	1		p . <i>y</i>		$\mathbf{p}.x$					
40 Byte ←──									$ ilde{\mathbf{p}}.z$			$ ilde{\mathbf{p}}.y$				

Brain: Autonomous Forwarding Selection

- Routing tables built through Q-Learning
- Metric calculation for destination *d* via neighbor *j*
- Refrain from direct rewards to reduce communication overhead
- Learning from long-term reward
- Multi-metric approach
 - Link expiry time
 - Neighbor cohesion

Destination Learning rate Neighbor-specific metric Temporal difference $Q(d, j) = Q(d, j) + \alpha \begin{bmatrix} R(d, j) + \gamma(j) & max & Q(d', j') - Q(d, j) \end{bmatrix}$ Neighbor Reward Long-term reward

(*) G. Oddi et al., "A proactive link-failure resilient routing protocol for MANETs based on reinforcement learning", 20th Mediterranean Conference on Control & Automation (MED), Barcelona, 2012

Communication Networks Institute Prof. Dr.-Ing. Christian Wietfeld

Methodology

- Aim to reproduce OMNeT++ setup [23]
- 3-dimensional playground with controlled waypoint mobility
- 2 Mbps stream with constant bit rate between two agents
- Data collection with ns3::FlowMonitor
 - Packet delivery ratio
 - End-to-end latency
- Consumption analysis triggered by external Python tool
 - Output and logging disabled
 - Execution time
 - Memory consumption monitored using *pidstat*

Parameter	Value
Runs	25
Simulation time	$900\mathrm{s}$
Start phase duration	$5\mathrm{s}$
MAC	$802.11\mathrm{g}$
Bit Error model	NistErrorModel
Noise Figure	$0\mathrm{dB}$
Rate Control	IdealRateControlManager
Transmission power	$20\mathrm{dBm}$
Receiver sensitivity	$-85\mathrm{dBm}$
Channel model	Friis $(\eta = 2.75)$
Mobility model	Controlled waypoint
Playground size	$500{ m m}{ m x}500{ m m}{ m x}250{ m m}$
Number of hosts	10
Speed	$50\frac{km}{h}$
Traffic	UDP constant bit rate (2 Mbps)

Sensitivity Analysis of Assumed Communication Range

- A range of $r_c \approx 230m$ is assumed
- Applying a range budget of -30mleads to a range estimation of $r_c \approx 200m$
- By range overestimation, links are falsely assumed to be available

Range overestimation leads to performance drains

Optimization of the Reinforcement Learning Parameters

Similar hyperparameters for reinforcement learning components

Robust Machine Learning-enabled Routing for Highly Mobile Vehicular Networks with PARRoT in ns-3

Prediction Widths for Different Speed Profiles

• Prediction width τ represents:

technische universität

dortmund

- Not only the width of mobility prediction
- But also the time constraint for routing entries
- Different speed profiles considered: 50km/h and 250km/h
- Higher agent speed decreases reliability
- Early plateauing for smaller τ

Suitable prediction width is function of movement speed

Robust Machine Learning-enabled Routing for Highly Mobile Vehicular Networks with PARRoT in ns-3

Analysis of Time and Memory Consumption for PARRoT Scenarios

- 15 minutes of simulated time
- Scaling up the simulation by increasing agent count

technische universität

dortmund

- ➡ More generated events
- Smaller and nearly constant memory usage for ns-3
- Sustainable increase of execution time

Communication Networks Institute Prof. Dr.-Ing. Christian Wietfeld

Conclusion and Outlook

Proposal: Implementation of PARRoT in ns-3

- Derived from existing implementation in OMNeT++
- Parameter optimization analysis
- Comparative resource consumption analysis

Future Work

- Hardware in the simulation loop evaluations to further approach real-world performance
- Integration with robotics simulations

Communication Networks Institute Prof. Dr.-Ing. Christian Wietfeld

Thank you for your attention!

Head of Institute Prof. Dr.-Ing. Christian Wietfeld

Point of Contact (POC)

Cedrik Schüler fax: +49 231 755 6136 e-mail: cedrik.schueler@tu-dortmund.de internet: https://www.cni.tu-dortmund.de

Address:

TU Dortmund Communication Networks Institute Otto-Hahn-Str. 6 44227 Dortmund

Germany

Ministerium für Wirtschaft, Innovation, des Landes Nordrhein-Westfalen

Digitalisierung und Energie