
Units background

Summary of past decisions
• Agreement that ns-3 would benefit from strongly typed units and

quantities
• Agreement to take an interim step in the wifi module to introduce

"weak types" (aliasing of C++ double type)
• Maintenance and usability tradeoffs exist among the possible

solutions (existing libraries vs. custom)
• Two alternatives have been developed with ns-3 code: Jiwoong Lee's

custom library (MR !1887) and adaptation of existing nholthaus/units
library (MR !2085)

• In August 2024, we agreed to further explore nholthaus-units on an
experimental branch, with these open questions:

– Compatibility with Python API
– Extensions to unsupported units (dBr_u, dBm_per_MHz)
– Port more of the existing code

maintainers meeting October 2025 1

https://gitlab.com/nsnam/ns-3-dev/-/merge_requests/1887
https://gitlab.com/nsnam/ns-3-dev/-/merge_requests/2085

Updates in early 2025

• Some additional development of Jiwoong's approach has occurred
(not reflected in the current GitLab.com MR)

• Some discussion in the tracker about whether we would alias
nholthous/units types into ns3 namespace; i.e.
namespace ns3{

using Hz_t = units::frequency::hertz_t;

} // namespace ns3

– Current branch supports this, aligning with strong type (e.g., dBm_u -> dBm_t)

• Gabriel experimented with the Python API and options to inject into
ns3 namespace

• Sebastien suggested to fully port both power and frequency variables
in the wifi module to fully evaluate suitability

maintainers meeting October 2025 2

https://gitlab.com/nsnam/ns-3-dev/-/merge_requests/2085

Recent updates

• Converted all power quantities from weak to strong type in the src/wifi
directory only

– dBr_u, dBm_u, dB_u, dBW_u, Watt_u
– At interfaces to the wifi module (propagation, spectrum, Wi-Fi trace

sources), the double value is still used
– This was very tedious work (~2600 LOC changed) and Claude Code was

surprisingly poor at assisting (I also tried Google Gemini)
– Reviewed/updated 47 comments in MR !2085

• Most tests pass– all remaining test failures are not units related but
are problems with the tests and can be reproduced outside of this
branch

– Try test.py after restricting the build to –enable-modules=wifi
• Added support for 'dBm_per_MHz' and 'dBm_per_Hz' units, which

were not in the nholthaus/units library

maintainers meeting October 2025 3

Highlights

• Run and read the units-example.cc program to get a flavor
for it

• Key core files to look at:
– src/core/model/units.h
– src/core/model/units-nholthaus.h
– src/core/model/decibel.{cc,h}
– src/core/mode/dbm.{cc,h}

• Good example wifi model file to look at the diff:
– wifi-phy.cc

maintainers meeting October 2025 4

https://gitlab.com/nsnam/ns-3-dev/-/merge_requests/2085/diffs
https://gitlab.com/nsnam/ns-3-dev/-/merge_requests/2085/diffs
https://gitlab.com/nsnam/ns-3-dev/-/merge_requests/2085/diffs
https://gitlab.com/nsnam/ns-3-dev/-/merge_requests/2085/diffs

My impressions

• This still seems to me to be the best way forward
– This library has been in wide use in the C++ ecosystem
– I think that it would be low friction for users and maintainers
– Unit errors are caught at compile time (except for callback

signature mismatches) and tend to be pretty obvious
– Highest payoff is likely to be in avoiding logarithmic/linear

mistakes for power quantities
– Compatible with command-line arguments and attribute values

• Sebastien's interim weak types port (double type to aliases such as
dB_u) was very valuable in helping to port

• A major tedious job remains to convert the rest of the codebase

maintainers meeting October 2025 5

Next steps

• Frequency quantities (primarily MHz) is the other
significant port remaining for wifi module

– Should be easier than power quantities
– I already tested some frequency examples in the units-example.cc
– There are some energy related port (e.g., current in amperes) also

needed

• Rebase to latest ns-3-dev (and port new wifi code that
was added shortly before the ns-3.46 release)

• Enable all modules in the build
– mesh module needs conversion, and some examples and tests are not

covered by --enable-modules=wifi

• Start to convert lte, zigbee, lr-wpan, spectrum,
propagation, nr, ... ?

maintainers meeting October 2025 6

Open issues

• Would we eventually want to break trace source backward
compatibility to impose strongly typed units on those
parameters?

• Upstream (nholthaus/units) has basically gone
unmaintained; is it an issue for us?

– I think not, but just mentioning this

• Would we port the boost::units (length) code in src/core?
– I think yes, since it is lightly used

• Jiwoong has an open comment on ARM macros that I did
not address

maintainers meeting October 2025 7

https://gitlab.com/nsnam/ns-3-dev/-/merge_requests/2085

Backup
(slides from August 2024 meeting)

maintainers meeting October
2025

8

Units background

• There seems to be consensus for adopting strongly-typed
units and quantities

• No consensus reached for whether to adopt double type
aliases (weak types) as an interim step

– Sebastien's MR proposal !2068

• No consensus on the actual implementation
– Jiwoong proposed a new units library and volunteered to maintain

it
– I have been working with wrapping nholthaus/units library as a

possible alternative
– Peter expressed interest in aligning with mp-units because of

possible future standard library inclusion

maintainers meeting October 2025 9

https://gitlab.com/nsnam/ns-3-dev/-/merge_requests/2068
https://gitlab.com/nsnam/ns-3-dev/-/merge_requests/1887
https://gitlab.com/nsnam/ns-3-dev/-/merge_requests/2085
https://github.com/mpusz/mp-units
https://github.com/mpusz/mp-units
https://github.com/mpusz/mp-units

My concerns with various proposals

• The choice involves a complicated tradeoff between
safety, usability, and API consistency

• Writing and maintaining a custom units library is a lot of
work

• mp-units seems to have some current momentum but
appears to be many years out, and relies heavily on C++
20/23 features and concepts

• Of widely adopted libraries, only nholthaus/units has
support for logarithmic units (power) needed in ns-3

– Good comparison summary here

maintainers meeting October 2025 10

https://aurora-opensource.github.io/au/main/alternatives/

SI units

• Pros
– Uses mainly basic C++ constructs (good for new users, Python

bindings)
– Jiwoong volunteered to maintain it

• Cons
– Not aligned with ns3::Time design (API discontinuity)
– Does not conform to ns-3 naming style
– Combinatorial explosion of operators/converters possible

maintainers meeting October
2025

11

nholthaus/units

• Pros
– Drops into core module pretty easily
– Probably much less maintenance burden
– Seems to work as advertised
– Unit conversions happen implicitly and automatically at compile

time

• Cons
– Likely to cause problems (be incompatible with?) Python

bindings
– Does not align with ns3::Time design (API discontinuity)
– Creates a bit more friction for users (multiple namespaces,

template compilation errors)

maintainers meeting October
2025

12

Weak types

• Do not see enough benefit over the cost of supporting
• Main benefits appear to be:

1) "better-than-nothing" until we have strong types
2) unit hints for IDEs for trace source parameters that remain double
type (for backward compatibility)

• Costs are additional typedefs to manage and distinguish
from strong units

– user question: when should I use meter_t vs. Meter vs. double?
– aliases will bleed into ns3 namespace in general and may be long-

lasting

• Variable naming may provide similar/better benefits
– e.g., spotting errors in GitLab.com code reviews

maintainers meeting October 2025 13

Extending the ns-3 Time pattern

• ns3::Time class adopts the paradigm that the dimension
is the type, with a (configurable) base unit, an
underlying integer type, converters to export/import
double type, and scaling converters to print different
units

• We could do similar with Frequency, Power, LogPower,
Energy, etc. as needed; e.g.

Frequency f = MegaHertz(10) + MilliHertz(20);

std::cout << f.GetHertz() << std::endl;

 prints: 10000000.02
std::cout << f.As(Frequency::KHZ) << std::endl;

 prints: +1000.00002kHz

maintainers meeting October 2025 14

My preferences

• No change for ns-3.43 release (Sept)
• Investigate whether nholthaus/units can work with Python
• If yes? See if people can live with nholthaus/units

– Develop and maintain branch based on wrapping nholthaus/units,
to merge immediately after ns-3.43

– Copy units.h into src/core/model, as in current MR
– Port Wi-Fi power and frequency types for the initial MR
– Convert to double type at wifi module boundaries
– Use weak types MR as a porting guide (the compiler will tell us if

we missed any)
– Keep ns3::Time and ns3::DataRate for backward compat.
– Eventually replace Boost::Length (only lightly used)
– Grow outward (other modules, other types) from there

maintainers meeting October 2025 15

My preferences (cont.)

• If no? Develop custom solution for power and frequency
units that is aligned with ns3::Time

– Use weak types MR as a porting guide

maintainers meeting October 2025 16

Peter's proposal

• Adopt weak types now in wifi module only, not in user
code or other modules for now

• Further explore nholthaus/units in a branch
– For ns-3.43 (October?) if it works out

maintainers meeting October 2025 17

nholthaus/units

• Types are the units themselves (e.g., Meters)
• Types of different units (scales), but the same

dimension (e.g., Time, Power), are related
• Types wrap underlying double values
• Unit conversions happen implicitly and automatically

at compile time
– Disallowed conversions will not compile

maintainers meeting October 2025 18

Steps to support nholthaus/units

• Added units.h to src/core/model, with linting guards
– had to also convert from DOS to Unix file type
– at the moment, I am extending units.h with ns-3 specific things,

but could move them to another header (e.g. units-ns3.h)

• Added two new macros for Attribute helpers, to enable
support for DoubleValue configuration and for bounds
checking

• CommandLine needed stream extraction operators
(operator>>) for each unit– added to units.h

maintainers meeting October 2025 19

Steps to support nholthaus/units

• Need to declare/define "Value" class for attributes
– Option 1: Define value class for each unit used in attributes

(e.g., Watt, MilliWatt, etc.)
– Option 2: Define value class for each dimension (e.g., Power)

• fewer classes, but DoubleValue will only convert to one unit type
• I have this option in my branch now, but may switch to or consider option 1

• Need to include namespaces of interest:
using units::power::dBm_t;

• and probably add aliases; e.g.
using Dbm = units::power::dBm_t;

maintainers meeting October 2025 20

