A Discrete-Event Network Simulator
API
Loading...
Searching...
No Matches
wifi-aggregation.cc
Go to the documentation of this file.
1/*
2 * Copyright (c) 2016 Sébastien Deronne
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation;
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
16 *
17 * Author: Sébastien Deronne <sebastien.deronne@gmail.com>
18 */
19
20#include "ns3/boolean.h"
21#include "ns3/command-line.h"
22#include "ns3/config.h"
23#include "ns3/internet-stack-helper.h"
24#include "ns3/ipv4-address-helper.h"
25#include "ns3/log.h"
26#include "ns3/mobility-helper.h"
27#include "ns3/packet-sink-helper.h"
28#include "ns3/ssid.h"
29#include "ns3/string.h"
30#include "ns3/udp-client-server-helper.h"
31#include "ns3/udp-server.h"
32#include "ns3/uinteger.h"
33#include "ns3/wifi-mac.h"
34#include "ns3/wifi-net-device.h"
35#include "ns3/yans-wifi-channel.h"
36#include "ns3/yans-wifi-helper.h"
37
38// This is an example that illustrates how 802.11n aggregation is configured.
39// It defines 4 independent Wi-Fi networks (working on different channels).
40// Each network contains one access point and one station. Each station
41// continuously transmits data packets to its respective AP.
42//
43// Network topology (numbers in parentheses are channel numbers):
44//
45// Network A (36) Network B (40) Network C (44) Network D (48)
46// * * * * * * * *
47// | | | | | | | |
48// AP A STA A AP B STA B AP C STA C AP D STA D
49//
50// The aggregation parameters are configured differently on the 4 stations:
51// - station A uses default aggregation parameter values (A-MSDU disabled, A-MPDU enabled with
52// maximum size of 65 kB);
53// - station B doesn't use aggregation (both A-MPDU and A-MSDU are disabled);
54// - station C enables A-MSDU (with maximum size of 8 kB) but disables A-MPDU;
55// - station D uses two-level aggregation (A-MPDU with maximum size of 32 kB and A-MSDU with maximum
56// size of 4 kB).
57//
58// Packets in this simulation belong to BestEffort Access Class (AC_BE).
59//
60// The user can select the distance between the stations and the APs and can enable/disable the
61// RTS/CTS mechanism. Example: ./ns3 run "wifi-aggregation --distance=10 --enableRts=0
62// --simulationTime=20"
63//
64// The output prints the throughput measured for the 4 cases/networks described above. When default
65// aggregation parameters are enabled, the maximum A-MPDU size is 65 kB and the throughput is
66// maximal. When aggregation is disabled, the throughput is about the half of the physical bitrate.
67// When only A-MSDU is enabled, the throughput is increased but is not maximal, since the maximum
68// A-MSDU size is limited to 7935 bytes (whereas the maximum A-MPDU size is limited to 65535 bytes).
69// When A-MSDU and A-MPDU are both enabled (= two-level aggregation), the throughput is slightly
70// smaller than the first scenario since we set a smaller maximum A-MPDU size.
71//
72// When the distance is increased, the frame error rate gets higher, and the output shows how it
73// affects the throughput for the 4 networks. Even through A-MSDU has less overheads than A-MPDU,
74// A-MSDU is less robust against transmission errors than A-MPDU. When the distance is augmented,
75// the throughput for the third scenario is more affected than the throughput obtained in other
76// networks.
77
78using namespace ns3;
79
80NS_LOG_COMPONENT_DEFINE("SimpleMpduAggregation");
81
82int
83main(int argc, char* argv[])
84{
85 uint32_t payloadSize = 1472; // bytes
86 double simulationTime = 10; // seconds
87 double distance = 5; // meters
88 bool enableRts = false;
89 bool enablePcap = false;
90 bool verifyResults = false; // used for regression
91
92 CommandLine cmd(__FILE__);
93 cmd.AddValue("payloadSize", "Payload size in bytes", payloadSize);
94 cmd.AddValue("enableRts", "Enable or disable RTS/CTS", enableRts);
95 cmd.AddValue("simulationTime", "Simulation time in seconds", simulationTime);
96 cmd.AddValue("distance",
97 "Distance in meters between the station and the access point",
98 distance);
99 cmd.AddValue("enablePcap", "Enable/disable pcap file generation", enablePcap);
100 cmd.AddValue("verifyResults",
101 "Enable/disable results verification at the end of the simulation",
102 verifyResults);
103 cmd.Parse(argc, argv);
104
105 Config::SetDefault("ns3::WifiRemoteStationManager::RtsCtsThreshold",
106 enableRts ? StringValue("0") : StringValue("999999"));
107
109 wifiStaNodes.Create(4);
110 NodeContainer wifiApNodes;
111 wifiApNodes.Create(4);
112
115 phy.SetPcapDataLinkType(WifiPhyHelper::DLT_IEEE802_11_RADIO);
116 phy.SetChannel(channel.Create());
117
119 wifi.SetStandard(WIFI_STANDARD_80211n);
120 wifi.SetRemoteStationManager("ns3::ConstantRateWifiManager",
121 "DataMode",
122 StringValue("HtMcs7"),
123 "ControlMode",
124 StringValue("HtMcs0"));
126
127 NetDeviceContainer staDeviceA;
128 NetDeviceContainer staDeviceB;
129 NetDeviceContainer staDeviceC;
130 NetDeviceContainer staDeviceD;
131 NetDeviceContainer apDeviceA;
132 NetDeviceContainer apDeviceB;
133 NetDeviceContainer apDeviceC;
134 NetDeviceContainer apDeviceD;
135 Ssid ssid;
136
137 // Network A
138 ssid = Ssid("network-A");
139 phy.Set("ChannelSettings", StringValue("{36, 0, BAND_5GHZ, 0}"));
140 mac.SetType("ns3::StaWifiMac", "Ssid", SsidValue(ssid));
141 staDeviceA = wifi.Install(phy, mac, wifiStaNodes.Get(0));
142
143 mac.SetType("ns3::ApWifiMac",
144 "Ssid",
145 SsidValue(ssid),
146 "EnableBeaconJitter",
147 BooleanValue(false));
148 apDeviceA = wifi.Install(phy, mac, wifiApNodes.Get(0));
149
150 // Network B
151 ssid = Ssid("network-B");
152 phy.Set("ChannelSettings", StringValue("{40, 0, BAND_5GHZ, 0}"));
153 mac.SetType("ns3::StaWifiMac", "Ssid", SsidValue(ssid));
154
155 staDeviceB = wifi.Install(phy, mac, wifiStaNodes.Get(1));
156
157 // Disable A-MPDU
158 Ptr<NetDevice> dev = wifiStaNodes.Get(1)->GetDevice(0);
159 Ptr<WifiNetDevice> wifi_dev = DynamicCast<WifiNetDevice>(dev);
160 wifi_dev->GetMac()->SetAttribute("BE_MaxAmpduSize", UintegerValue(0));
161
162 mac.SetType("ns3::ApWifiMac",
163 "Ssid",
164 SsidValue(ssid),
165 "EnableBeaconJitter",
166 BooleanValue(false));
167 apDeviceB = wifi.Install(phy, mac, wifiApNodes.Get(1));
168
169 // Disable A-MPDU
170 dev = wifiApNodes.Get(1)->GetDevice(0);
171 wifi_dev = DynamicCast<WifiNetDevice>(dev);
172 wifi_dev->GetMac()->SetAttribute("BE_MaxAmpduSize", UintegerValue(0));
173
174 // Network C
175 ssid = Ssid("network-C");
176 phy.Set("ChannelSettings", StringValue("{44, 0, BAND_5GHZ, 0}"));
177 mac.SetType("ns3::StaWifiMac", "Ssid", SsidValue(ssid));
178
179 staDeviceC = wifi.Install(phy, mac, wifiStaNodes.Get(2));
180
181 // Disable A-MPDU and enable A-MSDU with the highest maximum size allowed by the standard (7935
182 // bytes)
183 dev = wifiStaNodes.Get(2)->GetDevice(0);
184 wifi_dev = DynamicCast<WifiNetDevice>(dev);
185 wifi_dev->GetMac()->SetAttribute("BE_MaxAmpduSize", UintegerValue(0));
186 wifi_dev->GetMac()->SetAttribute("BE_MaxAmsduSize", UintegerValue(7935));
187
188 mac.SetType("ns3::ApWifiMac",
189 "Ssid",
190 SsidValue(ssid),
191 "EnableBeaconJitter",
192 BooleanValue(false));
193 apDeviceC = wifi.Install(phy, mac, wifiApNodes.Get(2));
194
195 // Disable A-MPDU and enable A-MSDU with the highest maximum size allowed by the standard (7935
196 // bytes)
197 dev = wifiApNodes.Get(2)->GetDevice(0);
198 wifi_dev = DynamicCast<WifiNetDevice>(dev);
199 wifi_dev->GetMac()->SetAttribute("BE_MaxAmpduSize", UintegerValue(0));
200 wifi_dev->GetMac()->SetAttribute("BE_MaxAmsduSize", UintegerValue(7935));
201
202 // Network D
203 ssid = Ssid("network-D");
204 phy.Set("ChannelSettings", StringValue("{48, 0, BAND_5GHZ, 0}"));
205 mac.SetType("ns3::StaWifiMac", "Ssid", SsidValue(ssid));
206
207 staDeviceD = wifi.Install(phy, mac, wifiStaNodes.Get(3));
208
209 // Enable A-MPDU with a smaller size than the default one and
210 // enable A-MSDU with the smallest maximum size allowed by the standard (3839 bytes)
211 dev = wifiStaNodes.Get(3)->GetDevice(0);
212 wifi_dev = DynamicCast<WifiNetDevice>(dev);
213 wifi_dev->GetMac()->SetAttribute("BE_MaxAmpduSize", UintegerValue(32768));
214 wifi_dev->GetMac()->SetAttribute("BE_MaxAmsduSize", UintegerValue(3839));
215
216 mac.SetType("ns3::ApWifiMac",
217 "Ssid",
218 SsidValue(ssid),
219 "EnableBeaconJitter",
220 BooleanValue(false));
221 apDeviceD = wifi.Install(phy, mac, wifiApNodes.Get(3));
222
223 // Enable A-MPDU with a smaller size than the default one and
224 // enable A-MSDU with the smallest maximum size allowed by the standard (3839 bytes)
225 dev = wifiApNodes.Get(3)->GetDevice(0);
226 wifi_dev = DynamicCast<WifiNetDevice>(dev);
227 wifi_dev->GetMac()->SetAttribute("BE_MaxAmpduSize", UintegerValue(32768));
228 wifi_dev->GetMac()->SetAttribute("BE_MaxAmsduSize", UintegerValue(3839));
229
230 // Setting mobility model
232 Ptr<ListPositionAllocator> positionAlloc = CreateObject<ListPositionAllocator>();
233 mobility.SetMobilityModel("ns3::ConstantPositionMobilityModel");
234
235 // Set position for APs
236 positionAlloc->Add(Vector(0.0, 0.0, 0.0));
237 positionAlloc->Add(Vector(10.0, 0.0, 0.0));
238 positionAlloc->Add(Vector(20.0, 0.0, 0.0));
239 positionAlloc->Add(Vector(30.0, 0.0, 0.0));
240 // Set position for STAs
241 positionAlloc->Add(Vector(distance, 0.0, 0.0));
242 positionAlloc->Add(Vector(10 + distance, 0.0, 0.0));
243 positionAlloc->Add(Vector(20 + distance, 0.0, 0.0));
244 positionAlloc->Add(Vector(30 + distance, 0.0, 0.0));
245
246 mobility.SetPositionAllocator(positionAlloc);
247 mobility.Install(wifiApNodes);
248 mobility.Install(wifiStaNodes);
249
250 // Internet stack
252 stack.Install(wifiApNodes);
253 stack.Install(wifiStaNodes);
254
256 address.SetBase("192.168.1.0", "255.255.255.0");
257 Ipv4InterfaceContainer StaInterfaceA;
258 StaInterfaceA = address.Assign(staDeviceA);
259 Ipv4InterfaceContainer ApInterfaceA;
260 ApInterfaceA = address.Assign(apDeviceA);
261
262 address.SetBase("192.168.2.0", "255.255.255.0");
263 Ipv4InterfaceContainer StaInterfaceB;
264 StaInterfaceB = address.Assign(staDeviceB);
265 Ipv4InterfaceContainer ApInterfaceB;
266 ApInterfaceB = address.Assign(apDeviceB);
267
268 address.SetBase("192.168.3.0", "255.255.255.0");
269 Ipv4InterfaceContainer StaInterfaceC;
270 StaInterfaceC = address.Assign(staDeviceC);
271 Ipv4InterfaceContainer ApInterfaceC;
272 ApInterfaceC = address.Assign(apDeviceC);
273
274 address.SetBase("192.168.4.0", "255.255.255.0");
275 Ipv4InterfaceContainer StaInterfaceD;
276 StaInterfaceD = address.Assign(staDeviceD);
277 Ipv4InterfaceContainer ApInterfaceD;
278 ApInterfaceD = address.Assign(apDeviceD);
279
280 // Setting applications
281 uint16_t port = 9;
282 UdpServerHelper serverA(port);
283 ApplicationContainer serverAppA = serverA.Install(wifiStaNodes.Get(0));
284 serverAppA.Start(Seconds(0.0));
285 serverAppA.Stop(Seconds(simulationTime + 1));
286
287 UdpClientHelper clientA(StaInterfaceA.GetAddress(0), port);
288 clientA.SetAttribute("MaxPackets", UintegerValue(4294967295U));
289 clientA.SetAttribute("Interval", TimeValue(Time("0.0001"))); // packets/s
290 clientA.SetAttribute("PacketSize", UintegerValue(payloadSize));
291
292 ApplicationContainer clientAppA = clientA.Install(wifiApNodes.Get(0));
293 clientAppA.Start(Seconds(1.0));
294 clientAppA.Stop(Seconds(simulationTime + 1));
295
296 UdpServerHelper serverB(port);
297 ApplicationContainer serverAppB = serverB.Install(wifiStaNodes.Get(1));
298 serverAppB.Start(Seconds(0.0));
299 serverAppB.Stop(Seconds(simulationTime + 1));
300
301 UdpClientHelper clientB(StaInterfaceB.GetAddress(0), port);
302 clientB.SetAttribute("MaxPackets", UintegerValue(4294967295U));
303 clientB.SetAttribute("Interval", TimeValue(Time("0.0001"))); // packets/s
304 clientB.SetAttribute("PacketSize", UintegerValue(payloadSize));
305
306 ApplicationContainer clientAppB = clientB.Install(wifiApNodes.Get(1));
307 clientAppB.Start(Seconds(1.0));
308 clientAppB.Stop(Seconds(simulationTime + 1));
309
310 UdpServerHelper serverC(port);
311 ApplicationContainer serverAppC = serverC.Install(wifiStaNodes.Get(2));
312 serverAppC.Start(Seconds(0.0));
313 serverAppC.Stop(Seconds(simulationTime + 1));
314
315 UdpClientHelper clientC(StaInterfaceC.GetAddress(0), port);
316 clientC.SetAttribute("MaxPackets", UintegerValue(4294967295U));
317 clientC.SetAttribute("Interval", TimeValue(Time("0.0001"))); // packets/s
318 clientC.SetAttribute("PacketSize", UintegerValue(payloadSize));
319
320 ApplicationContainer clientAppC = clientC.Install(wifiApNodes.Get(2));
321 clientAppC.Start(Seconds(1.0));
322 clientAppC.Stop(Seconds(simulationTime + 1));
323
324 UdpServerHelper serverD(port);
325 ApplicationContainer serverAppD = serverD.Install(wifiStaNodes.Get(3));
326 serverAppD.Start(Seconds(0.0));
327 serverAppD.Stop(Seconds(simulationTime + 1));
328
329 UdpClientHelper clientD(StaInterfaceD.GetAddress(0), port);
330 clientD.SetAttribute("MaxPackets", UintegerValue(4294967295U));
331 clientD.SetAttribute("Interval", TimeValue(Time("0.0001"))); // packets/s
332 clientD.SetAttribute("PacketSize", UintegerValue(payloadSize));
333
334 ApplicationContainer clientAppD = clientD.Install(wifiApNodes.Get(3));
335 clientAppD.Start(Seconds(1.0));
336 clientAppD.Stop(Seconds(simulationTime + 1));
337
338 if (enablePcap)
339 {
340 phy.EnablePcap("AP_A", apDeviceA.Get(0));
341 phy.EnablePcap("STA_A", staDeviceA.Get(0));
342 phy.EnablePcap("AP_B", apDeviceB.Get(0));
343 phy.EnablePcap("STA_B", staDeviceB.Get(0));
344 phy.EnablePcap("AP_C", apDeviceC.Get(0));
345 phy.EnablePcap("STA_C", staDeviceC.Get(0));
346 phy.EnablePcap("AP_D", apDeviceD.Get(0));
347 phy.EnablePcap("STA_D", staDeviceD.Get(0));
348 }
349
350 Simulator::Stop(Seconds(simulationTime + 1));
352
353 // Show results
354 uint64_t totalPacketsThroughA = DynamicCast<UdpServer>(serverAppA.Get(0))->GetReceived();
355 uint64_t totalPacketsThroughB = DynamicCast<UdpServer>(serverAppB.Get(0))->GetReceived();
356 uint64_t totalPacketsThroughC = DynamicCast<UdpServer>(serverAppC.Get(0))->GetReceived();
357 uint64_t totalPacketsThroughD = DynamicCast<UdpServer>(serverAppD.Get(0))->GetReceived();
358
360
361 double throughput = totalPacketsThroughA * payloadSize * 8 / (simulationTime * 1000000.0);
362 std::cout << "Throughput with default configuration (A-MPDU aggregation enabled, 65kB): "
363 << throughput << " Mbit/s" << '\n';
364 if (verifyResults && (throughput < 59.0 || throughput > 60.0))
365 {
366 NS_LOG_ERROR("Obtained throughput " << throughput << " is not in the expected boundaries!");
367 exit(1);
368 }
369
370 throughput = totalPacketsThroughB * payloadSize * 8 / (simulationTime * 1000000.0);
371 std::cout << "Throughput with aggregation disabled: " << throughput << " Mbit/s" << '\n';
372 if (verifyResults && (throughput < 30 || throughput > 31))
373 {
374 NS_LOG_ERROR("Obtained throughput " << throughput << " is not in the expected boundaries!");
375 exit(1);
376 }
377
378 throughput = totalPacketsThroughC * payloadSize * 8 / (simulationTime * 1000000.0);
379 std::cout << "Throughput with A-MPDU disabled and A-MSDU enabled (8kB): " << throughput
380 << " Mbit/s" << '\n';
381 if (verifyResults && (throughput < 51 || throughput > 52))
382 {
383 NS_LOG_ERROR("Obtained throughput " << throughput << " is not in the expected boundaries!");
384 exit(1);
385 }
386
387 throughput = totalPacketsThroughD * payloadSize * 8 / (simulationTime * 1000000.0);
388 std::cout << "Throughput with A-MPDU enabled (32kB) and A-MSDU enabled (4kB): " << throughput
389 << " Mbit/s" << '\n';
390 if (verifyResults && (throughput < 58 || throughput > 59))
391 {
392 NS_LOG_ERROR("Obtained throughput " << throughput << " is not in the expected boundaries!");
393 exit(1);
394 }
395
396 return 0;
397}
holds a vector of ns3::Application pointers.
void Start(Time start) const
Start all of the Applications in this container at the start time given as a parameter.
Ptr< Application > Get(uint32_t i) const
Get the Ptr<Application> stored in this container at a given index.
void Stop(Time stop) const
Arrange for all of the Applications in this container to Stop() at the Time given as a parameter.
AttributeValue implementation for Boolean.
Definition: boolean.h:37
Parse command-line arguments.
Definition: command-line.h:232
aggregate IP/TCP/UDP functionality to existing Nodes.
A helper class to make life easier while doing simple IPv4 address assignment in scripts.
holds a vector of std::pair of Ptr<Ipv4> and interface index.
Ipv4Address GetAddress(uint32_t i, uint32_t j=0) const
Helper class used to assign positions and mobility models to nodes.
holds a vector of ns3::NetDevice pointers
Ptr< NetDevice > Get(uint32_t i) const
Get the Ptr<NetDevice> stored in this container at a given index.
keep track of a set of node pointers.
void Create(uint32_t n)
Create n nodes and append pointers to them to the end of this NodeContainer.
Ptr< Node > Get(uint32_t i) const
Get the Ptr<Node> stored in this container at a given index.
Ptr< NetDevice > GetDevice(uint32_t index) const
Retrieve the index-th NetDevice associated to this node.
Definition: node.cc:149
Smart pointer class similar to boost::intrusive_ptr.
Definition: ptr.h:77
static void Destroy()
Execute the events scheduled with ScheduleDestroy().
Definition: simulator.cc:142
static void Run()
Run the simulation.
Definition: simulator.cc:178
static void Stop()
Tell the Simulator the calling event should be the last one executed.
Definition: simulator.cc:186
The IEEE 802.11 SSID Information Element.
Definition: ssid.h:36
AttributeValue implementation for Ssid.
Definition: ssid.h:96
Hold variables of type string.
Definition: string.h:56
Simulation virtual time values and global simulation resolution.
Definition: nstime.h:105
AttributeValue implementation for Time.
Definition: nstime.h:1406
Create a client application which sends UDP packets carrying a 32bit sequence number and a 64 bit tim...
Create a server application which waits for input UDP packets and uses the information carried into t...
Hold an unsigned integer type.
Definition: uinteger.h:45
helps to create WifiNetDevice objects
Definition: wifi-helper.h:324
create MAC layers for a ns3::WifiNetDevice.
@ DLT_IEEE802_11_RADIO
Include Radiotap link layer information.
Definition: wifi-helper.h:178
manage and create wifi channel objects for the YANS model.
static YansWifiChannelHelper Default()
Create a channel helper in a default working state.
Make it easy to create and manage PHY objects for the YANS model.
uint16_t port
Definition: dsdv-manet.cc:44
void SetDefault(std::string name, const AttributeValue &value)
Definition: config.cc:894
#define NS_LOG_ERROR(msg)
Use NS_LOG to output a message of level LOG_ERROR.
Definition: log.h:254
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:202
Time Seconds(double value)
Construct a Time in the indicated unit.
Definition: nstime.h:1319
@ WIFI_STANDARD_80211n
ns address
Definition: first.py:47
ns stack
Definition: first.py:44
Every class exported by the ns3 library is enclosed in the ns3 namespace.
ns cmd
Definition: second.py:40
ns wifi
Definition: third.py:95
ns ssid
Definition: third.py:93
ns mac
Definition: third.py:92
ns channel
Definition: third.py:88
ns mobility
Definition: third.py:105
ns wifiStaNodes
Definition: third.py:84
ns phy
Definition: third.py:89
std::ofstream throughput