A Discrete-Event Network Simulator
API
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Groups Pages
fdmt-ff-mac-scheduler.cc
Go to the documentation of this file.
1 /* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
2 /*
3  * Copyright (c) 2011 Centre Tecnologic de Telecomunicacions de Catalunya (CTTC)
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation;
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Author: Marco Miozzo <marco.miozzo@cttc.es>
19  * Modification: Dizhi Zhou <dizhi.zhou@gmail.com> // modify codes related to downlink scheduler
20  */
21 
22 #include <ns3/log.h>
23 #include <ns3/pointer.h>
24 #include <ns3/math.h>
25 
26 #include <ns3/simulator.h>
27 #include <ns3/lte-amc.h>
28 #include <ns3/fdmt-ff-mac-scheduler.h>
29 #include <ns3/lte-vendor-specific-parameters.h>
30 #include <ns3/boolean.h>
31 #include <set>
32 #include <cfloat>
33 
34 NS_LOG_COMPONENT_DEFINE ("FdMtFfMacScheduler");
35 
36 namespace ns3 {
37 
39  10, // RGB size 1
40  26, // RGB size 2
41  63, // RGB size 3
42  110 // RGB size 4
43 }; // see table 7.1.6.1-1 of 36.213
44 
45 
46 NS_OBJECT_ENSURE_REGISTERED (FdMtFfMacScheduler);
47 
48 
49 
51 {
52 public:
54 
55  // inherited from FfMacCschedSapProvider
56  virtual void CschedCellConfigReq (const struct CschedCellConfigReqParameters& params);
57  virtual void CschedUeConfigReq (const struct CschedUeConfigReqParameters& params);
58  virtual void CschedLcConfigReq (const struct CschedLcConfigReqParameters& params);
59  virtual void CschedLcReleaseReq (const struct CschedLcReleaseReqParameters& params);
60  virtual void CschedUeReleaseReq (const struct CschedUeReleaseReqParameters& params);
61 
62 private:
65 };
66 
68 {
69 }
70 
72 {
73 }
74 
75 
76 void
78 {
80 }
81 
82 void
84 {
86 }
87 
88 
89 void
91 {
93 }
94 
95 void
97 {
99 }
100 
101 void
103 {
105 }
106 
107 
108 
109 
111 {
112 public:
114 
115  // inherited from FfMacSchedSapProvider
116  virtual void SchedDlRlcBufferReq (const struct SchedDlRlcBufferReqParameters& params);
117  virtual void SchedDlPagingBufferReq (const struct SchedDlPagingBufferReqParameters& params);
118  virtual void SchedDlMacBufferReq (const struct SchedDlMacBufferReqParameters& params);
119  virtual void SchedDlTriggerReq (const struct SchedDlTriggerReqParameters& params);
120  virtual void SchedDlRachInfoReq (const struct SchedDlRachInfoReqParameters& params);
121  virtual void SchedDlCqiInfoReq (const struct SchedDlCqiInfoReqParameters& params);
122  virtual void SchedUlTriggerReq (const struct SchedUlTriggerReqParameters& params);
123  virtual void SchedUlNoiseInterferenceReq (const struct SchedUlNoiseInterferenceReqParameters& params);
124  virtual void SchedUlSrInfoReq (const struct SchedUlSrInfoReqParameters& params);
125  virtual void SchedUlMacCtrlInfoReq (const struct SchedUlMacCtrlInfoReqParameters& params);
126  virtual void SchedUlCqiInfoReq (const struct SchedUlCqiInfoReqParameters& params);
127 
128 
129 private:
132 };
133 
134 
135 
137 {
138 }
139 
140 
142  : m_scheduler (scheduler)
143 {
144 }
145 
146 void
148 {
150 }
151 
152 void
154 {
156 }
157 
158 void
160 {
162 }
163 
164 void
166 {
168 }
169 
170 void
172 {
174 }
175 
176 void
178 {
180 }
181 
182 void
184 {
186 }
187 
188 void
190 {
192 }
193 
194 void
196 {
198 }
199 
200 void
202 {
204 }
205 
206 void
208 {
210 }
211 
212 
213 
214 
215 
217  : m_cschedSapUser (0),
218  m_schedSapUser (0),
219  m_nextRntiUl (0)
220 {
221  m_amc = CreateObject <LteAmc> ();
224 }
225 
227 {
228  NS_LOG_FUNCTION (this);
229 }
230 
231 void
233 {
234  NS_LOG_FUNCTION (this);
236  m_dlHarqProcessesTimer.clear ();
238  m_dlInfoListBuffered.clear ();
239  m_ulHarqCurrentProcessId.clear ();
240  m_ulHarqProcessesStatus.clear ();
242  delete m_cschedSapProvider;
243  delete m_schedSapProvider;
244 }
245 
246 TypeId
248 {
249  static TypeId tid = TypeId ("ns3::FdMtFfMacScheduler")
251  .AddConstructor<FdMtFfMacScheduler> ()
252  .AddAttribute ("CqiTimerThreshold",
253  "The number of TTIs a CQI is valid (default 1000 - 1 sec.)",
254  UintegerValue (1000),
255  MakeUintegerAccessor (&FdMtFfMacScheduler::m_cqiTimersThreshold),
256  MakeUintegerChecker<uint32_t> ())
257  .AddAttribute ("HarqEnabled",
258  "Activate/Deactivate the HARQ [by default is active].",
259  BooleanValue (true),
260  MakeBooleanAccessor (&FdMtFfMacScheduler::m_harqOn),
261  MakeBooleanChecker ())
262  .AddAttribute ("UlGrantMcs",
263  "The MCS of the UL grant, must be [0..15] (default 0)",
264  UintegerValue (0),
265  MakeUintegerAccessor (&FdMtFfMacScheduler::m_ulGrantMcs),
266  MakeUintegerChecker<uint8_t> ())
267  ;
268  return tid;
269 }
270 
271 
272 
273 void
275 {
276  m_cschedSapUser = s;
277 }
278 
279 void
281 {
282  m_schedSapUser = s;
283 }
284 
287 {
288  return m_cschedSapProvider;
289 }
290 
293 {
294  return m_schedSapProvider;
295 }
296 
297 void
299 {
300  NS_LOG_FUNCTION (this);
301  // Read the subset of parameters used
302  m_cschedCellConfig = params;
305  cnf.m_result = SUCCESS;
307  return;
308 }
309 
310 void
312 {
313  NS_LOG_FUNCTION (this << " RNTI " << params.m_rnti << " txMode " << (uint16_t)params.m_transmissionMode);
314  std::map <uint16_t,uint8_t>::iterator it = m_uesTxMode.find (params.m_rnti);
315  if (it == m_uesTxMode.end ())
316  {
317  m_uesTxMode.insert (std::pair <uint16_t, double> (params.m_rnti, params.m_transmissionMode));
318  // generate HARQ buffers
319  m_dlHarqCurrentProcessId.insert (std::pair <uint16_t,uint8_t > (params.m_rnti, 0));
320  DlHarqProcessesStatus_t dlHarqPrcStatus;
321  dlHarqPrcStatus.resize (8,0);
322  m_dlHarqProcessesStatus.insert (std::pair <uint16_t, DlHarqProcessesStatus_t> (params.m_rnti, dlHarqPrcStatus));
323  DlHarqProcessesTimer_t dlHarqProcessesTimer;
324  dlHarqProcessesTimer.resize (8,0);
325  m_dlHarqProcessesTimer.insert (std::pair <uint16_t, DlHarqProcessesTimer_t> (params.m_rnti, dlHarqProcessesTimer));
326  DlHarqProcessesDciBuffer_t dlHarqdci;
327  dlHarqdci.resize (8);
328  m_dlHarqProcessesDciBuffer.insert (std::pair <uint16_t, DlHarqProcessesDciBuffer_t> (params.m_rnti, dlHarqdci));
329  DlHarqRlcPduListBuffer_t dlHarqRlcPdu;
330  dlHarqRlcPdu.resize (2);
331  dlHarqRlcPdu.at (0).resize (8);
332  dlHarqRlcPdu.at (1).resize (8);
333  m_dlHarqProcessesRlcPduListBuffer.insert (std::pair <uint16_t, DlHarqRlcPduListBuffer_t> (params.m_rnti, dlHarqRlcPdu));
334  m_ulHarqCurrentProcessId.insert (std::pair <uint16_t,uint8_t > (params.m_rnti, 0));
335  UlHarqProcessesStatus_t ulHarqPrcStatus;
336  ulHarqPrcStatus.resize (8,0);
337  m_ulHarqProcessesStatus.insert (std::pair <uint16_t, UlHarqProcessesStatus_t> (params.m_rnti, ulHarqPrcStatus));
338  UlHarqProcessesDciBuffer_t ulHarqdci;
339  ulHarqdci.resize (8);
340  m_ulHarqProcessesDciBuffer.insert (std::pair <uint16_t, UlHarqProcessesDciBuffer_t> (params.m_rnti, ulHarqdci));
341  }
342  else
343  {
344  (*it).second = params.m_transmissionMode;
345  }
346  return;
347 }
348 
349 void
351 {
352  NS_LOG_FUNCTION (this << " New LC, rnti: " << params.m_rnti);
353 
354  std::set <uint16_t>::iterator it;
355  for (uint16_t i = 0; i < params.m_logicalChannelConfigList.size (); i++)
356  {
357  it = m_flowStatsDl.find (params.m_rnti);
358 
359  if (it == m_flowStatsDl.end ())
360  {
361  m_flowStatsDl.insert (params.m_rnti);
362  m_flowStatsUl.insert (params.m_rnti);
363  }
364  }
365 
366  return;
367 }
368 
369 void
371 {
372  NS_LOG_FUNCTION (this);
373  for (uint16_t i = 0; i < params.m_logicalChannelIdentity.size (); i++)
374  {
375  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it = m_rlcBufferReq.begin ();
376  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator temp;
377  while (it!=m_rlcBufferReq.end ())
378  {
379  if (((*it).first.m_rnti == params.m_rnti) && ((*it).first.m_lcId == params.m_logicalChannelIdentity.at (i)))
380  {
381  temp = it;
382  it++;
383  m_rlcBufferReq.erase (temp);
384  }
385  else
386  {
387  it++;
388  }
389  }
390  }
391  return;
392 }
393 
394 void
396 {
397  NS_LOG_FUNCTION (this);
398 
399  m_uesTxMode.erase (params.m_rnti);
400  m_dlHarqCurrentProcessId.erase (params.m_rnti);
401  m_dlHarqProcessesStatus.erase (params.m_rnti);
402  m_dlHarqProcessesTimer.erase (params.m_rnti);
403  m_dlHarqProcessesDciBuffer.erase (params.m_rnti);
405  m_ulHarqCurrentProcessId.erase (params.m_rnti);
406  m_ulHarqProcessesStatus.erase (params.m_rnti);
407  m_ulHarqProcessesDciBuffer.erase (params.m_rnti);
408  m_flowStatsDl.erase (params.m_rnti);
409  m_flowStatsUl.erase (params.m_rnti);
410  m_ceBsrRxed.erase (params.m_rnti);
411  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it = m_rlcBufferReq.begin ();
412  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator temp;
413  while (it!=m_rlcBufferReq.end ())
414  {
415  if ((*it).first.m_rnti == params.m_rnti)
416  {
417  temp = it;
418  it++;
419  m_rlcBufferReq.erase (temp);
420  }
421  else
422  {
423  it++;
424  }
425  }
426  if (m_nextRntiUl == params.m_rnti)
427  {
428  m_nextRntiUl = 0;
429  }
430 
431  return;
432 }
433 
434 
435 void
437 {
438  NS_LOG_FUNCTION (this << params.m_rnti << (uint32_t) params.m_logicalChannelIdentity);
439  // API generated by RLC for updating RLC parameters on a LC (tx and retx queues)
440 
441  std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
442 
443  LteFlowId_t flow (params.m_rnti, params.m_logicalChannelIdentity);
444 
445  it = m_rlcBufferReq.find (flow);
446 
447  if (it == m_rlcBufferReq.end ())
448  {
449  m_rlcBufferReq.insert (std::pair <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters> (flow, params));
450  }
451  else
452  {
453  (*it).second = params;
454  }
455 
456  return;
457 }
458 
459 void
461 {
462  NS_LOG_FUNCTION (this);
463  NS_FATAL_ERROR ("method not implemented");
464  return;
465 }
466 
467 void
469 {
470  NS_LOG_FUNCTION (this);
471  NS_FATAL_ERROR ("method not implemented");
472  return;
473 }
474 
475 int
477 {
478  for (int i = 0; i < 4; i++)
479  {
480  if (dlbandwidth < FdMtType0AllocationRbg[i])
481  {
482  return (i + 1);
483  }
484  }
485 
486  return (-1);
487 }
488 
489 
490 int
492 {
493  std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
494  int lcActive = 0;
495  for (it = m_rlcBufferReq.begin (); it != m_rlcBufferReq.end (); it++)
496  {
497  if (((*it).first.m_rnti == rnti) && (((*it).second.m_rlcTransmissionQueueSize > 0)
498  || ((*it).second.m_rlcRetransmissionQueueSize > 0)
499  || ((*it).second.m_rlcStatusPduSize > 0) ))
500  {
501  lcActive++;
502  }
503  if ((*it).first.m_rnti > rnti)
504  {
505  break;
506  }
507  }
508  return (lcActive);
509 
510 }
511 
512 
513 uint8_t
515 {
516  NS_LOG_FUNCTION (this << rnti);
517 
518  std::map <uint16_t, uint8_t>::iterator it = m_dlHarqCurrentProcessId.find (rnti);
519  if (it == m_dlHarqCurrentProcessId.end ())
520  {
521  NS_FATAL_ERROR ("No Process Id found for this RNTI " << rnti);
522  }
523  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find (rnti);
524  if (itStat == m_dlHarqProcessesStatus.end ())
525  {
526  NS_FATAL_ERROR ("No Process Id Statusfound for this RNTI " << rnti);
527  }
528  uint8_t i = (*it).second;
529  do
530  {
531  i = (i + 1) % HARQ_PROC_NUM;
532  }
533  while ( ((*itStat).second.at (i) != 0)&&(i != (*it).second));
534  if ((*itStat).second.at (i) == 0)
535  {
536  return (true);
537  }
538  else
539  {
540  return (false); // return a not valid harq proc id
541  }
542 }
543 
544 
545 
546 uint8_t
548 {
549  NS_LOG_FUNCTION (this << rnti);
550 
551  if (m_harqOn == false)
552  {
553  return (0);
554  }
555 
556 
557  std::map <uint16_t, uint8_t>::iterator it = m_dlHarqCurrentProcessId.find (rnti);
558  if (it == m_dlHarqCurrentProcessId.end ())
559  {
560  NS_FATAL_ERROR ("No Process Id found for this RNTI " << rnti);
561  }
562  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find (rnti);
563  if (itStat == m_dlHarqProcessesStatus.end ())
564  {
565  NS_FATAL_ERROR ("No Process Id Statusfound for this RNTI " << rnti);
566  }
567  uint8_t i = (*it).second;
568  do
569  {
570  i = (i + 1) % HARQ_PROC_NUM;
571  }
572  while ( ((*itStat).second.at (i) != 0)&&(i != (*it).second));
573  if ((*itStat).second.at (i) == 0)
574  {
575  (*it).second = i;
576  (*itStat).second.at (i) = 1;
577  }
578  else
579  {
580  NS_FATAL_ERROR ("No HARQ process available for RNTI " << rnti << " check before update with HarqProcessAvailability");
581  }
582 
583  return ((*it).second);
584 }
585 
586 
587 void
589 {
590  NS_LOG_FUNCTION (this);
591 
592  std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itTimers;
593  for (itTimers = m_dlHarqProcessesTimer.begin (); itTimers != m_dlHarqProcessesTimer.end (); itTimers ++)
594  {
595  for (uint16_t i = 0; i < HARQ_PROC_NUM; i++)
596  {
597  if ((*itTimers).second.at (i) == HARQ_DL_TIMEOUT)
598  {
599  // reset HARQ process
600 
601  NS_LOG_DEBUG (this << " Reset HARQ proc " << i << " for RNTI " << (*itTimers).first);
602  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find ((*itTimers).first);
603  if (itStat == m_dlHarqProcessesStatus.end ())
604  {
605  NS_FATAL_ERROR ("No Process Id Status found for this RNTI " << (*itTimers).first);
606  }
607  (*itStat).second.at (i) = 0;
608  (*itTimers).second.at (i) = 0;
609  }
610  else
611  {
612  (*itTimers).second.at (i)++;
613  }
614  }
615  }
616 
617 }
618 
619 
620 void
622 {
623  NS_LOG_FUNCTION (this << " Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf));
624  // API generated by RLC for triggering the scheduling of a DL subframe
625 
626 
627  // evaluate the relative channel quality indicator for each UE per each RBG
628  // (since we are using allocation type 0 the small unit of allocation is RBG)
629  // Resource allocation type 0 (see sec 7.1.6.1 of 36.213)
630 
631  RefreshDlCqiMaps ();
632 
634  int rbgNum = m_cschedCellConfig.m_dlBandwidth / rbgSize;
635  std::map <uint16_t, std::vector <uint16_t> > allocationMap; // RBs map per RNTI
636  std::vector <bool> rbgMap; // global RBGs map
637  uint16_t rbgAllocatedNum = 0;
638  std::set <uint16_t> rntiAllocated;
639  rbgMap.resize (m_cschedCellConfig.m_dlBandwidth / rbgSize, false);
641 
642  // RACH Allocation
644  uint16_t rbStart = 0;
645  std::vector <struct RachListElement_s>::iterator itRach;
646  for (itRach = m_rachList.begin (); itRach != m_rachList.end (); itRach++)
647  {
648  NS_ASSERT_MSG (m_amc->GetTbSizeFromMcs (m_ulGrantMcs, m_cschedCellConfig.m_ulBandwidth) > (*itRach).m_estimatedSize, " Default UL Grant MCS does not allow to send RACH messages");
649  BuildRarListElement_s newRar;
650  newRar.m_rnti = (*itRach).m_rnti;
651  // DL-RACH Allocation
652  // Ideal: no needs of configuring m_dci
653  // UL-RACH Allocation
654  newRar.m_grant.m_rnti = newRar.m_rnti;
655  newRar.m_grant.m_mcs = m_ulGrantMcs;
656  uint16_t rbLen = 1;
657  uint16_t tbSizeBits = 0;
658  // find lowest TB size that fits UL grant estimated size
659  while ((tbSizeBits < (*itRach).m_estimatedSize) && (rbStart + rbLen < m_cschedCellConfig.m_ulBandwidth))
660  {
661  rbLen++;
662  tbSizeBits = m_amc->GetTbSizeFromMcs (m_ulGrantMcs, rbLen);
663  }
664  if (tbSizeBits < (*itRach).m_estimatedSize)
665  {
666  // no more allocation space: finish allocation
667  break;
668  }
669  newRar.m_grant.m_rbStart = rbStart;
670  newRar.m_grant.m_rbLen = rbLen;
671  newRar.m_grant.m_tbSize = tbSizeBits / 8;
672  newRar.m_grant.m_hopping = false;
673  newRar.m_grant.m_tpc = 0;
674  newRar.m_grant.m_cqiRequest = false;
675  newRar.m_grant.m_ulDelay = false;
676  NS_LOG_INFO (this << " UL grant allocated to RNTI " << (*itRach).m_rnti << " rbStart " << rbStart << " rbLen " << rbLen << " MCS " << m_ulGrantMcs << " tbSize " << newRar.m_grant.m_tbSize);
677  for (uint16_t i = rbStart; i < rbStart + rbLen; i++)
678  {
679  m_rachAllocationMap.at (i) = (*itRach).m_rnti;
680  }
681  rbStart = rbStart + rbLen;
682 
683  ret.m_buildRarList.push_back (newRar);
684  }
685  m_rachList.clear ();
686 
687 
688  // Process DL HARQ feedback
690  // retrieve past HARQ retx buffered
691  if (m_dlInfoListBuffered.size () > 0)
692  {
693  if (params.m_dlInfoList.size () > 0)
694  {
695  NS_LOG_INFO (this << " Received DL-HARQ feedback");
696  m_dlInfoListBuffered.insert (m_dlInfoListBuffered.end (), params.m_dlInfoList.begin (), params.m_dlInfoList.end ());
697  }
698  }
699  else
700  {
701  if (params.m_dlInfoList.size () > 0)
702  {
704  }
705  }
706  if (m_harqOn == false)
707  {
708  // Ignore HARQ feedback
709  m_dlInfoListBuffered.clear ();
710  }
711  std::vector <struct DlInfoListElement_s> dlInfoListUntxed;
712  for (uint16_t i = 0; i < m_dlInfoListBuffered.size (); i++)
713  {
714  std::set <uint16_t>::iterator itRnti = rntiAllocated.find (m_dlInfoListBuffered.at (i).m_rnti);
715  if (itRnti != rntiAllocated.end ())
716  {
717  // RNTI already allocated for retx
718  continue;
719  }
720  uint8_t nLayers = m_dlInfoListBuffered.at (i).m_harqStatus.size ();
721  std::vector <bool> retx;
722  NS_LOG_INFO (this << " Processing DLHARQ feedback");
723  if (nLayers == 1)
724  {
725  retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (0) == DlInfoListElement_s::NACK);
726  retx.push_back (false);
727  }
728  else
729  {
730  retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (0) == DlInfoListElement_s::NACK);
731  retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (1) == DlInfoListElement_s::NACK);
732  }
733  if (retx.at (0) || retx.at (1))
734  {
735  // retrieve HARQ process information
736  uint16_t rnti = m_dlInfoListBuffered.at (i).m_rnti;
737  uint8_t harqId = m_dlInfoListBuffered.at (i).m_harqProcessId;
738  NS_LOG_INFO (this << " HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId);
739  std::map <uint16_t, DlHarqProcessesDciBuffer_t>::iterator itHarq = m_dlHarqProcessesDciBuffer.find (rnti);
740  if (itHarq == m_dlHarqProcessesDciBuffer.end ())
741  {
742  NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << rnti);
743  }
744 
745  DlDciListElement_s dci = (*itHarq).second.at (harqId);
746  int rv = 0;
747  if (dci.m_rv.size () == 1)
748  {
749  rv = dci.m_rv.at (0);
750  }
751  else
752  {
753  rv = (dci.m_rv.at (0) > dci.m_rv.at (1) ? dci.m_rv.at (0) : dci.m_rv.at (1));
754  }
755 
756  if (rv == 3)
757  {
758  // maximum number of retx reached -> drop process
759  NS_LOG_INFO ("Maximum number of retransmissions reached -> drop process");
760  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator it = m_dlHarqProcessesStatus.find (rnti);
761  if (it == m_dlHarqProcessesStatus.end ())
762  {
763  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << m_dlInfoListBuffered.at (i).m_rnti);
764  }
765  (*it).second.at (harqId) = 0;
766  std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (rnti);
767  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
768  {
769  NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << m_dlInfoListBuffered.at (i).m_rnti);
770  }
771  for (uint16_t k = 0; k < (*itRlcPdu).second.size (); k++)
772  {
773  (*itRlcPdu).second.at (k).at (harqId).clear ();
774  }
775  continue;
776  }
777  // check the feasibility of retransmitting on the same RBGs
778  // translate the DCI to Spectrum framework
779  std::vector <int> dciRbg;
780  uint32_t mask = 0x1;
781  NS_LOG_INFO ("Original RBGs " << dci.m_rbBitmap << " rnti " << dci.m_rnti);
782  for (int j = 0; j < 32; j++)
783  {
784  if (((dci.m_rbBitmap & mask) >> j) == 1)
785  {
786  dciRbg.push_back (j);
787  NS_LOG_INFO ("\t" << j);
788  }
789  mask = (mask << 1);
790  }
791  bool free = true;
792  for (uint8_t j = 0; j < dciRbg.size (); j++)
793  {
794  if (rbgMap.at (dciRbg.at (j)) == true)
795  {
796  free = false;
797  break;
798  }
799  }
800  if (free)
801  {
802  // use the same RBGs for the retx
803  // reserve RBGs
804  for (uint8_t j = 0; j < dciRbg.size (); j++)
805  {
806  rbgMap.at (dciRbg.at (j)) = true;
807  NS_LOG_INFO ("RBG " << dciRbg.at (j) << " assigned");
808  rbgAllocatedNum++;
809  }
810 
811  NS_LOG_INFO (this << " Send retx in the same RBGs");
812  }
813  else
814  {
815  // find RBGs for sending HARQ retx
816  uint8_t j = 0;
817  uint8_t rbgId = (dciRbg.at (dciRbg.size () - 1) + 1) % rbgNum;
818  uint8_t startRbg = dciRbg.at (dciRbg.size () - 1);
819  std::vector <bool> rbgMapCopy = rbgMap;
820  while ((j < dciRbg.size ())&&(startRbg != rbgId))
821  {
822  if (rbgMapCopy.at (rbgId) == false)
823  {
824  rbgMapCopy.at (rbgId) = true;
825  dciRbg.at (j) = rbgId;
826  j++;
827  }
828  rbgId++;
829  }
830  if (j == dciRbg.size ())
831  {
832  // find new RBGs -> update DCI map
833  uint32_t rbgMask = 0;
834  for (uint16_t k = 0; k < dciRbg.size (); k++)
835  {
836  rbgMask = rbgMask + (0x1 << dciRbg.at (k));
837  rbgAllocatedNum++;
838  }
839  dci.m_rbBitmap = rbgMask;
840  rbgMap = rbgMapCopy;
841  NS_LOG_INFO (this << " Move retx in RBGs " << dciRbg.size ());
842  }
843  else
844  {
845  // HARQ retx cannot be performed on this TTI -> store it
846  dlInfoListUntxed.push_back (params.m_dlInfoList.at (i));
847  NS_LOG_INFO (this << " No resource for this retx -> buffer it");
848  }
849  }
850  // retrieve RLC PDU list for retx TBsize and update DCI
852  std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (rnti);
853  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
854  {
855  NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << rnti);
856  }
857  for (uint8_t j = 0; j < nLayers; j++)
858  {
859  if (retx.at (j))
860  {
861  if (j >= dci.m_ndi.size ())
862  {
863  // for avoiding errors in MIMO transient phases
864  dci.m_ndi.push_back (0);
865  dci.m_rv.push_back (0);
866  dci.m_mcs.push_back (0);
867  dci.m_tbsSize.push_back (0);
868  NS_LOG_INFO (this << " layer " << (uint16_t)j << " no txed (MIMO transition)");
869  }
870  else
871  {
872  dci.m_ndi.at (j) = 0;
873  dci.m_rv.at (j)++;
874  (*itHarq).second.at (harqId).m_rv.at (j)++;
875  NS_LOG_INFO (this << " layer " << (uint16_t)j << " RV " << (uint16_t)dci.m_rv.at (j));
876  }
877  }
878  else
879  {
880  // empty TB of layer j
881  dci.m_ndi.at (j) = 0;
882  dci.m_rv.at (j) = 0;
883  dci.m_mcs.at (j) = 0;
884  dci.m_tbsSize.at (j) = 0;
885  NS_LOG_INFO (this << " layer " << (uint16_t)j << " no retx");
886  }
887  }
888  for (uint16_t k = 0; k < (*itRlcPdu).second.at (0).at (dci.m_harqProcess).size (); k++)
889  {
890  std::vector <struct RlcPduListElement_s> rlcPduListPerLc;
891  for (uint8_t j = 0; j < nLayers; j++)
892  {
893  if (retx.at (j))
894  {
895  if (j < dci.m_ndi.size ())
896  {
897  rlcPduListPerLc.push_back ((*itRlcPdu).second.at (j).at (dci.m_harqProcess).at (k));
898  }
899  }
900  }
901 
902  if (rlcPduListPerLc.size () > 0)
903  {
904  newEl.m_rlcPduList.push_back (rlcPduListPerLc);
905  }
906  }
907  newEl.m_rnti = rnti;
908  newEl.m_dci = dci;
909  (*itHarq).second.at (harqId).m_rv = dci.m_rv;
910  // refresh timer
911  std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itHarqTimer = m_dlHarqProcessesTimer.find (rnti);
912  if (itHarqTimer== m_dlHarqProcessesTimer.end ())
913  {
914  NS_FATAL_ERROR ("Unable to find HARQ timer for RNTI " << (uint16_t)rnti);
915  }
916  (*itHarqTimer).second.at (harqId) = 0;
917  ret.m_buildDataList.push_back (newEl);
918  rntiAllocated.insert (rnti);
919  }
920  else
921  {
922  // update HARQ process status
923  NS_LOG_INFO (this << " HARQ received ACK for UE " << m_dlInfoListBuffered.at (i).m_rnti);
924  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator it = m_dlHarqProcessesStatus.find (m_dlInfoListBuffered.at (i).m_rnti);
925  if (it == m_dlHarqProcessesStatus.end ())
926  {
927  NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << m_dlInfoListBuffered.at (i).m_rnti);
928  }
929  (*it).second.at (m_dlInfoListBuffered.at (i).m_harqProcessId) = 0;
930  std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (m_dlInfoListBuffered.at (i).m_rnti);
931  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
932  {
933  NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << m_dlInfoListBuffered.at (i).m_rnti);
934  }
935  for (uint16_t k = 0; k < (*itRlcPdu).second.size (); k++)
936  {
937  (*itRlcPdu).second.at (k).at (m_dlInfoListBuffered.at (i).m_harqProcessId).clear ();
938  }
939  }
940  }
941  m_dlInfoListBuffered.clear ();
942  m_dlInfoListBuffered = dlInfoListUntxed;
943 
944 
945 
946  for (int i = 0; i < rbgNum; i++)
947  {
948  NS_LOG_INFO (this << " ALLOCATION for RBG " << i << " of " << rbgNum);
949  if (rbgMap.at (i) == false)
950  {
951  std::set <uint16_t>::iterator it;
952  std::set <uint16_t>::iterator itMax = m_flowStatsDl.end ();
953  double rcqiMax = 0.0;
954  for (it = m_flowStatsDl.begin (); it != m_flowStatsDl.end (); it++)
955  {
956  std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it));
957  if ((itRnti != rntiAllocated.end ())||(!HarqProcessAvailability ((*it))))
958  {
959  // UE already allocated for HARQ or without HARQ process available -> drop it
960  if (itRnti != rntiAllocated.end ())
961  {
962  NS_LOG_DEBUG (this << " RNTI discared for HARQ tx" << (uint16_t)(*it));
963  }
964  if (!HarqProcessAvailability ((*it)))
965  {
966  NS_LOG_DEBUG (this << " RNTI discared for HARQ id" << (uint16_t)(*it));
967  }
968  continue;
969  }
970 
971  std::map <uint16_t,SbMeasResult_s>::iterator itCqi;
972  itCqi = m_a30CqiRxed.find ((*it));
973  std::map <uint16_t,uint8_t>::iterator itTxMode;
974  itTxMode = m_uesTxMode.find ((*it));
975  if (itTxMode == m_uesTxMode.end ())
976  {
977  NS_FATAL_ERROR ("No Transmission Mode info on user " << (*it));
978  }
979  int nLayer = TransmissionModesLayers::TxMode2LayerNum ((*itTxMode).second);
980  std::vector <uint8_t> sbCqi;
981  if (itCqi == m_a30CqiRxed.end ())
982  {
983  for (uint8_t k = 0; k < nLayer; k++)
984  {
985  sbCqi.push_back (1); // start with lowest value
986  }
987  }
988  else
989  {
990  sbCqi = (*itCqi).second.m_higherLayerSelected.at (i).m_sbCqi;
991  }
992  uint8_t cqi1 = sbCqi.at (0);
993  uint8_t cqi2 = 1;
994  if (sbCqi.size () > 1)
995  {
996  cqi2 = sbCqi.at (1);
997  }
998  if ((cqi1 > 0)||(cqi2 > 0)) // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
999  {
1000  if (LcActivePerFlow ((*it)) > 0)
1001  {
1002  // this UE has data to transmit
1003  double achievableRate = 0.0;
1004  uint8_t mcs = 0;
1005  for (uint8_t k = 0; k < nLayer; k++)
1006  {
1007  if (sbCqi.size () > k)
1008  {
1009  mcs = m_amc->GetMcsFromCqi (sbCqi.at (k));
1010  }
1011  else
1012  {
1013  // no info on this subband -> worst MCS
1014  mcs = 0;
1015  }
1016  achievableRate += ((m_amc->GetTbSizeFromMcs (mcs, rbgSize) / 8) / 0.001); // = TB size / TTI
1017  }
1018 
1019  double rcqi = achievableRate;
1020  NS_LOG_INFO (this << " RNTI " << (*it) << " MCS " << (uint32_t)mcs << " achievableRate " << achievableRate << " RCQI " << rcqi);
1021 
1022  if (rcqi > rcqiMax)
1023  {
1024  rcqiMax = rcqi;
1025  itMax = it;
1026  }
1027  }
1028  } // end if cqi
1029 
1030  } // end for m_rlcBufferReq
1031 
1032  if (itMax == m_flowStatsDl.end ())
1033  {
1034  // no UE available for this RB
1035  NS_LOG_INFO (this << " any UE found");
1036  }
1037  else
1038  {
1039  rbgMap.at (i) = true;
1040  std::map <uint16_t, std::vector <uint16_t> >::iterator itMap;
1041  itMap = allocationMap.find ((*itMax));
1042  if (itMap == allocationMap.end ())
1043  {
1044  // insert new element
1045  std::vector <uint16_t> tempMap;
1046  tempMap.push_back (i);
1047  allocationMap.insert (std::pair <uint16_t, std::vector <uint16_t> > ((*itMax), tempMap));
1048  }
1049  else
1050  {
1051  (*itMap).second.push_back (i);
1052  }
1053  NS_LOG_INFO (this << " UE assigned " << (*itMax));
1054  }
1055  } // end for RBG free
1056  } // end for RBGs
1057 
1058  // generate the transmission opportunities by grouping the RBGs of the same RNTI and
1059  // creating the correspondent DCIs
1060  std::map <uint16_t, std::vector <uint16_t> >::iterator itMap = allocationMap.begin ();
1061  while (itMap != allocationMap.end ())
1062  {
1063  // create new BuildDataListElement_s for this LC
1064  BuildDataListElement_s newEl;
1065  newEl.m_rnti = (*itMap).first;
1066  // create the DlDciListElement_s
1067  DlDciListElement_s newDci;
1068  newDci.m_rnti = (*itMap).first;
1069  newDci.m_harqProcess = UpdateHarqProcessId ((*itMap).first);
1070 
1071  uint16_t lcActives = LcActivePerFlow ((*itMap).first);
1072  NS_LOG_INFO (this << "Allocate user " << newEl.m_rnti << " rbg " << lcActives);
1073  if (lcActives == 0)
1074  {
1075  // Set to max value, to avoid divide by 0 below
1076  lcActives = (uint16_t)65535; // UINT16_MAX;
1077  }
1078  uint16_t RgbPerRnti = (*itMap).second.size ();
1079  std::map <uint16_t,SbMeasResult_s>::iterator itCqi;
1080  itCqi = m_a30CqiRxed.find ((*itMap).first);
1081  std::map <uint16_t,uint8_t>::iterator itTxMode;
1082  itTxMode = m_uesTxMode.find ((*itMap).first);
1083  if (itTxMode == m_uesTxMode.end ())
1084  {
1085  NS_FATAL_ERROR ("No Transmission Mode info on user " << (*itMap).first);
1086  }
1087  int nLayer = TransmissionModesLayers::TxMode2LayerNum ((*itTxMode).second);
1088  std::vector <uint8_t> worstCqi (2, 15);
1089  if (itCqi != m_a30CqiRxed.end ())
1090  {
1091  for (uint16_t k = 0; k < (*itMap).second.size (); k++)
1092  {
1093  if ((*itCqi).second.m_higherLayerSelected.size () > (*itMap).second.at (k))
1094  {
1095  NS_LOG_INFO (this << " RBG " << (*itMap).second.at (k) << " CQI " << (uint16_t)((*itCqi).second.m_higherLayerSelected.at ((*itMap).second.at (k)).m_sbCqi.at (0)) );
1096  for (uint8_t j = 0; j < nLayer; j++)
1097  {
1098  if ((*itCqi).second.m_higherLayerSelected.at ((*itMap).second.at (k)).m_sbCqi.size () > j)
1099  {
1100  if (((*itCqi).second.m_higherLayerSelected.at ((*itMap).second.at (k)).m_sbCqi.at (j)) < worstCqi.at (j))
1101  {
1102  worstCqi.at (j) = ((*itCqi).second.m_higherLayerSelected.at ((*itMap).second.at (k)).m_sbCqi.at (j));
1103  }
1104  }
1105  else
1106  {
1107  // no CQI for this layer of this suband -> worst one
1108  worstCqi.at (j) = 1;
1109  }
1110  }
1111  }
1112  else
1113  {
1114  for (uint8_t j = 0; j < nLayer; j++)
1115  {
1116  worstCqi.at (j) = 1; // try with lowest MCS in RBG with no info on channel
1117  }
1118  }
1119  }
1120  }
1121  else
1122  {
1123  for (uint8_t j = 0; j < nLayer; j++)
1124  {
1125  worstCqi.at (j) = 1; // try with lowest MCS in RBG with no info on channel
1126  }
1127  }
1128  for (uint8_t j = 0; j < nLayer; j++)
1129  {
1130  NS_LOG_INFO (this << " Layer " << (uint16_t)j << " CQI selected " << (uint16_t)worstCqi.at (j));
1131  }
1132  uint32_t bytesTxed = 0;
1133  for (uint8_t j = 0; j < nLayer; j++)
1134  {
1135  newDci.m_mcs.push_back (m_amc->GetMcsFromCqi (worstCqi.at (j)));
1136  int tbSize = (m_amc->GetTbSizeFromMcs (newDci.m_mcs.at (j), RgbPerRnti * rbgSize) / 8); // (size of TB in bytes according to table 7.1.7.2.1-1 of 36.213)
1137  newDci.m_tbsSize.push_back (tbSize);
1138  NS_LOG_INFO (this << " Layer " << (uint16_t)j << " MCS selected" << m_amc->GetMcsFromCqi (worstCqi.at (j)));
1139  bytesTxed += tbSize;
1140  }
1141 
1142  newDci.m_resAlloc = 0; // only allocation type 0 at this stage
1143  newDci.m_rbBitmap = 0; // TBD (32 bit bitmap see 7.1.6 of 36.213)
1144  uint32_t rbgMask = 0;
1145  for (uint16_t k = 0; k < (*itMap).second.size (); k++)
1146  {
1147  rbgMask = rbgMask + (0x1 << (*itMap).second.at (k));
1148  NS_LOG_INFO (this << " Allocated RBG " << (*itMap).second.at (k));
1149  }
1150  newDci.m_rbBitmap = rbgMask; // (32 bit bitmap see 7.1.6 of 36.213)
1151 
1152  // create the rlc PDUs -> equally divide resources among actives LCs
1153  std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator itBufReq;
1154  for (itBufReq = m_rlcBufferReq.begin (); itBufReq != m_rlcBufferReq.end (); itBufReq++)
1155  {
1156  if (((*itBufReq).first.m_rnti == (*itMap).first)
1157  && (((*itBufReq).second.m_rlcTransmissionQueueSize > 0)
1158  || ((*itBufReq).second.m_rlcRetransmissionQueueSize > 0)
1159  || ((*itBufReq).second.m_rlcStatusPduSize > 0) ))
1160  {
1161  std::vector <struct RlcPduListElement_s> newRlcPduLe;
1162  for (uint8_t j = 0; j < nLayer; j++)
1163  {
1164  RlcPduListElement_s newRlcEl;
1165  newRlcEl.m_logicalChannelIdentity = (*itBufReq).first.m_lcId;
1166  newRlcEl.m_size = newDci.m_tbsSize.at (j) / lcActives;
1167  NS_LOG_INFO (this << " LCID " << (uint32_t) newRlcEl.m_logicalChannelIdentity << " size " << newRlcEl.m_size << " layer " << (uint16_t)j);
1168  newRlcPduLe.push_back (newRlcEl);
1169  UpdateDlRlcBufferInfo (newDci.m_rnti, newRlcEl.m_logicalChannelIdentity, newRlcEl.m_size);
1170  if (m_harqOn == true)
1171  {
1172  // store RLC PDU list for HARQ
1173  std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find ((*itMap).first);
1174  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
1175  {
1176  NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << (*itMap).first);
1177  }
1178  (*itRlcPdu).second.at (j).at (newDci.m_harqProcess).push_back (newRlcEl);
1179  }
1180  }
1181  newEl.m_rlcPduList.push_back (newRlcPduLe);
1182  }
1183  if ((*itBufReq).first.m_rnti > (*itMap).first)
1184  {
1185  break;
1186  }
1187  }
1188  for (uint8_t j = 0; j < nLayer; j++)
1189  {
1190  newDci.m_ndi.push_back (1);
1191  newDci.m_rv.push_back (0);
1192  }
1193 
1194  newEl.m_dci = newDci;
1195 
1196  if (m_harqOn == true)
1197  {
1198  // store DCI for HARQ
1199  std::map <uint16_t, DlHarqProcessesDciBuffer_t>::iterator itDci = m_dlHarqProcessesDciBuffer.find (newEl.m_rnti);
1200  if (itDci == m_dlHarqProcessesDciBuffer.end ())
1201  {
1202  NS_FATAL_ERROR ("Unable to find RNTI entry in DCI HARQ buffer for RNTI " << newEl.m_rnti);
1203  }
1204  (*itDci).second.at (newDci.m_harqProcess) = newDci;
1205  // refresh timer
1206  std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itHarqTimer = m_dlHarqProcessesTimer.find (newEl.m_rnti);
1207  if (itHarqTimer== m_dlHarqProcessesTimer.end ())
1208  {
1209  NS_FATAL_ERROR ("Unable to find HARQ timer for RNTI " << (uint16_t)newEl.m_rnti);
1210  }
1211  (*itHarqTimer).second.at (newDci.m_harqProcess) = 0;
1212  }
1213 
1214  // ...more parameters -> ingored in this version
1215 
1216  ret.m_buildDataList.push_back (newEl);
1217 
1218  itMap++;
1219  } // end while allocation
1220  ret.m_nrOfPdcchOfdmSymbols = 1;
1221 
1223 
1224 
1225  return;
1226 }
1227 
1228 void
1230 {
1231  NS_LOG_FUNCTION (this);
1232 
1233  m_rachList = params.m_rachList;
1234 
1235  return;
1236 }
1237 
1238 void
1240 {
1241  NS_LOG_FUNCTION (this);
1242 
1243  for (unsigned int i = 0; i < params.m_cqiList.size (); i++)
1244  {
1245  if ( params.m_cqiList.at (i).m_cqiType == CqiListElement_s::P10 )
1246  {
1247  // wideband CQI reporting
1248  std::map <uint16_t,uint8_t>::iterator it;
1249  uint16_t rnti = params.m_cqiList.at (i).m_rnti;
1250  it = m_p10CqiRxed.find (rnti);
1251  if (it == m_p10CqiRxed.end ())
1252  {
1253  // create the new entry
1254  m_p10CqiRxed.insert ( std::pair<uint16_t, uint8_t > (rnti, params.m_cqiList.at (i).m_wbCqi.at (0)) ); // only codeword 0 at this stage (SISO)
1255  // generate correspondent timer
1256  m_p10CqiTimers.insert ( std::pair<uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1257  }
1258  else
1259  {
1260  // update the CQI value and refresh correspondent timer
1261  (*it).second = params.m_cqiList.at (i).m_wbCqi.at (0);
1262  // update correspondent timer
1263  std::map <uint16_t,uint32_t>::iterator itTimers;
1264  itTimers = m_p10CqiTimers.find (rnti);
1265  (*itTimers).second = m_cqiTimersThreshold;
1266  }
1267  }
1268  else if ( params.m_cqiList.at (i).m_cqiType == CqiListElement_s::A30 )
1269  {
1270  // subband CQI reporting high layer configured
1271  std::map <uint16_t,SbMeasResult_s>::iterator it;
1272  uint16_t rnti = params.m_cqiList.at (i).m_rnti;
1273  it = m_a30CqiRxed.find (rnti);
1274  if (it == m_a30CqiRxed.end ())
1275  {
1276  // create the new entry
1277  m_a30CqiRxed.insert ( std::pair<uint16_t, SbMeasResult_s > (rnti, params.m_cqiList.at (i).m_sbMeasResult) );
1278  m_a30CqiTimers.insert ( std::pair<uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1279  }
1280  else
1281  {
1282  // update the CQI value and refresh correspondent timer
1283  (*it).second = params.m_cqiList.at (i).m_sbMeasResult;
1284  std::map <uint16_t,uint32_t>::iterator itTimers;
1285  itTimers = m_a30CqiTimers.find (rnti);
1286  (*itTimers).second = m_cqiTimersThreshold;
1287  }
1288  }
1289  else
1290  {
1291  NS_LOG_ERROR (this << " CQI type unknown");
1292  }
1293  }
1294 
1295  return;
1296 }
1297 
1298 
1299 double
1300 FdMtFfMacScheduler::EstimateUlSinr (uint16_t rnti, uint16_t rb)
1301 {
1302  std::map <uint16_t, std::vector <double> >::iterator itCqi = m_ueCqi.find (rnti);
1303  if (itCqi == m_ueCqi.end ())
1304  {
1305  // no cqi info about this UE
1306  return (NO_SINR);
1307 
1308  }
1309  else
1310  {
1311  // take the average SINR value among the available
1312  double sinrSum = 0;
1313  int sinrNum = 0;
1314  for (uint32_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1315  {
1316  double sinr = (*itCqi).second.at (i);
1317  if (sinr != NO_SINR)
1318  {
1319  sinrSum += sinr;
1320  sinrNum++;
1321  }
1322  }
1323  double estimatedSinr = (sinrNum > 0) ? (sinrSum / sinrNum) : DBL_MAX;
1324  // store the value
1325  (*itCqi).second.at (rb) = estimatedSinr;
1326  return (estimatedSinr);
1327  }
1328 }
1329 
1330 void
1332 {
1333  NS_LOG_FUNCTION (this << " UL - Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf) << " size " << params.m_ulInfoList.size ());
1334 
1335  RefreshUlCqiMaps ();
1336 
1337  // Generate RBs map
1339  std::vector <bool> rbMap;
1340  uint16_t rbAllocatedNum = 0;
1341  std::set <uint16_t> rntiAllocated;
1342  std::vector <uint16_t> rbgAllocationMap;
1343  // update with RACH allocation map
1344  rbgAllocationMap = m_rachAllocationMap;
1345  //rbgAllocationMap.resize (m_cschedCellConfig.m_ulBandwidth, 0);
1346  m_rachAllocationMap.clear ();
1348 
1349  rbMap.resize (m_cschedCellConfig.m_ulBandwidth, false);
1350  // remove RACH allocation
1351  for (uint16_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1352  {
1353  if (rbgAllocationMap.at (i) != 0)
1354  {
1355  rbMap.at (i) = true;
1356  NS_LOG_DEBUG (this << " Allocated for RACH " << i);
1357  }
1358  }
1359 
1360 
1361  if (m_harqOn == true)
1362  {
1363  // Process UL HARQ feedback
1364  // update UL HARQ proc id
1365  std::map <uint16_t, uint8_t>::iterator itProcId;
1366  for (itProcId = m_ulHarqCurrentProcessId.begin (); itProcId != m_ulHarqCurrentProcessId.end (); itProcId++)
1367  {
1368  (*itProcId).second = ((*itProcId).second + 1) % HARQ_PROC_NUM;
1369  }
1370 
1371  for (uint16_t i = 0; i < params.m_ulInfoList.size (); i++)
1372  {
1373  if (params.m_ulInfoList.at (i).m_receptionStatus == UlInfoListElement_s::NotOk)
1374  {
1375  // retx correspondent block: retrieve the UL-DCI
1376  uint16_t rnti = params.m_ulInfoList.at (i).m_rnti;
1377  itProcId = m_ulHarqCurrentProcessId.find (rnti);
1378  if (itProcId == m_ulHarqCurrentProcessId.end ())
1379  {
1380  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1381  }
1382  uint8_t harqId = (uint8_t)((*itProcId).second - HARQ_PERIOD) % HARQ_PROC_NUM;
1383  NS_LOG_INFO (this << " UL-HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId << " i " << i << " size " << params.m_ulInfoList.size ());
1384  std::map <uint16_t, UlHarqProcessesDciBuffer_t>::iterator itHarq = m_ulHarqProcessesDciBuffer.find (rnti);
1385  if (itHarq == m_ulHarqProcessesDciBuffer.end ())
1386  {
1387  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1388  continue;
1389  }
1390  UlDciListElement_s dci = (*itHarq).second.at (harqId);
1391  std::map <uint16_t, UlHarqProcessesStatus_t>::iterator itStat = m_ulHarqProcessesStatus.find (rnti);
1392  if (itStat == m_ulHarqProcessesStatus.end ())
1393  {
1394  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1395  }
1396  if ((*itStat).second.at (harqId) >= 3)
1397  {
1398  NS_LOG_INFO ("Max number of retransmissions reached (UL)-> drop process");
1399  continue;
1400  }
1401  bool free = true;
1402  for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1403  {
1404  if (rbMap.at (j) == true)
1405  {
1406  free = false;
1407  NS_LOG_INFO (this << " BUSY " << j);
1408  }
1409  }
1410  if (free)
1411  {
1412  // retx on the same RBs
1413  for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1414  {
1415  rbMap.at (j) = true;
1416  rbgAllocationMap.at (j) = dci.m_rnti;
1417  NS_LOG_INFO ("\tRB " << j);
1418  rbAllocatedNum++;
1419  }
1420  NS_LOG_INFO (this << " Send retx in the same RBs " << (uint16_t)dci.m_rbStart << " to " << dci.m_rbStart + dci.m_rbLen << " RV " << (*itStat).second.at (harqId) + 1);
1421  }
1422  else
1423  {
1424  NS_LOG_INFO ("Cannot allocate retx due to RACH allocations for UE " << rnti);
1425  continue;
1426  }
1427  dci.m_ndi = 0;
1428  // Update HARQ buffers with new HarqId
1429  (*itStat).second.at ((*itProcId).second) = (*itStat).second.at (harqId) + 1;
1430  (*itStat).second.at (harqId) = 0;
1431  (*itHarq).second.at ((*itProcId).second) = dci;
1432  ret.m_dciList.push_back (dci);
1433  rntiAllocated.insert (dci.m_rnti);
1434  }
1435  else
1436  {
1437  NS_LOG_INFO (this << " HARQ-ACK feedback from RNTI " << params.m_ulInfoList.at (i).m_rnti);
1438  }
1439  }
1440  }
1441 
1442  std::map <uint16_t,uint32_t>::iterator it;
1443  int nflows = 0;
1444 
1445  for (it = m_ceBsrRxed.begin (); it != m_ceBsrRxed.end (); it++)
1446  {
1447  std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it).first);
1448  // select UEs with queues not empty and not yet allocated for HARQ
1449  if (((*it).second > 0)&&(itRnti == rntiAllocated.end ()))
1450  {
1451  nflows++;
1452  }
1453  }
1454 
1455  if (nflows == 0)
1456  {
1457  if (ret.m_dciList.size () > 0)
1458  {
1460  }
1461 
1462  return; // no flows to be scheduled
1463  }
1464 
1465 
1466  // Divide the remaining resources equally among the active users starting from the subsequent one served last scheduling trigger
1467  uint16_t rbPerFlow = (m_cschedCellConfig.m_ulBandwidth) / (nflows + rntiAllocated.size ());
1468  if (rbPerFlow < 3)
1469  {
1470  rbPerFlow = 3; // at least 3 rbg per flow (till available resource) to ensure TxOpportunity >= 7 bytes
1471  }
1472  int rbAllocated = 0;
1473 
1474  if (m_nextRntiUl != 0)
1475  {
1476  for (it = m_ceBsrRxed.begin (); it != m_ceBsrRxed.end (); it++)
1477  {
1478  if ((*it).first == m_nextRntiUl)
1479  {
1480  break;
1481  }
1482  }
1483  if (it == m_ceBsrRxed.end ())
1484  {
1485  NS_LOG_ERROR (this << " no user found");
1486  }
1487  }
1488  else
1489  {
1490  it = m_ceBsrRxed.begin ();
1491  m_nextRntiUl = (*it).first;
1492  }
1493  do
1494  {
1495  std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it).first);
1496  if ((itRnti != rntiAllocated.end ())||((*it).second == 0))
1497  {
1498  // UE already allocated for UL-HARQ -> skip it
1499  NS_LOG_DEBUG (this << " UE already allocated in HARQ -> discared, RNTI " << (*it).first);
1500  it++;
1501  if (it == m_ceBsrRxed.end ())
1502  {
1503  // restart from the first
1504  it = m_ceBsrRxed.begin ();
1505  }
1506  continue;
1507  }
1508  if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1509  {
1510  // limit to physical resources last resource assignment
1511  rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1512  // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1513  if (rbPerFlow < 3)
1514  {
1515  // terminate allocation
1516  rbPerFlow = 0;
1517  }
1518  }
1519 
1520  UlDciListElement_s uldci;
1521  uldci.m_rnti = (*it).first;
1522  uldci.m_rbLen = rbPerFlow;
1523  bool allocated = false;
1524  NS_LOG_INFO (this << " RB Allocated " << rbAllocated << " rbPerFlow " << rbPerFlow << " flows " << nflows);
1525  while ((!allocated)&&((rbAllocated + rbPerFlow - 1) < m_cschedCellConfig.m_ulBandwidth) && (rbPerFlow != 0))
1526  {
1527  // check availability
1528  bool free = true;
1529  for (uint16_t j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1530  {
1531  if (rbMap.at (j) == true)
1532  {
1533  free = false;
1534  break;
1535  }
1536  }
1537  if (free)
1538  {
1539  uldci.m_rbStart = rbAllocated;
1540 
1541  for (uint16_t j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1542  {
1543  rbMap.at (j) = true;
1544  // store info on allocation for managing ul-cqi interpretation
1545  rbgAllocationMap.at (j) = (*it).first;
1546  }
1547  rbAllocated += rbPerFlow;
1548  allocated = true;
1549  break;
1550  }
1551  rbAllocated++;
1552  if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1553  {
1554  // limit to physical resources last resource assignment
1555  rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1556  // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1557  if (rbPerFlow < 3)
1558  {
1559  // terminate allocation
1560  rbPerFlow = 0;
1561  }
1562  }
1563  }
1564  if (!allocated)
1565  {
1566  // unable to allocate new resource: finish scheduling
1567  m_nextRntiUl = (*it).first;
1568  if (ret.m_dciList.size () > 0)
1569  {
1571  }
1572  m_allocationMaps.insert (std::pair <uint16_t, std::vector <uint16_t> > (params.m_sfnSf, rbgAllocationMap));
1573  return;
1574  }
1575 
1576 
1577 
1578  std::map <uint16_t, std::vector <double> >::iterator itCqi = m_ueCqi.find ((*it).first);
1579  int cqi = 0;
1580  if (itCqi == m_ueCqi.end ())
1581  {
1582  // no cqi info about this UE
1583  uldci.m_mcs = 0; // MCS 0 -> UL-AMC TBD
1584  }
1585  else
1586  {
1587  // take the lowest CQI value (worst RB)
1588  double minSinr = (*itCqi).second.at (uldci.m_rbStart);
1589  if (minSinr == NO_SINR)
1590  {
1591  minSinr = EstimateUlSinr ((*it).first, uldci.m_rbStart);
1592  }
1593  for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1594  {
1595  double sinr = (*itCqi).second.at (i);
1596  if (sinr == NO_SINR)
1597  {
1598  sinr = EstimateUlSinr ((*it).first, i);
1599  }
1600  if ((*itCqi).second.at (i) < minSinr)
1601  {
1602  minSinr = (*itCqi).second.at (i);
1603  }
1604  }
1605 
1606  // translate SINR -> cqi: WILD ACK: same as DL
1607  double s = log2 ( 1 + (
1608  std::pow (10, minSinr / 10 ) /
1609  ( (-std::log (5.0 * 0.00005 )) / 1.5) ));
1610  cqi = m_amc->GetCqiFromSpectralEfficiency (s);
1611  if (cqi == 0)
1612  {
1613  it++;
1614  if (it == m_ceBsrRxed.end ())
1615  {
1616  // restart from the first
1617  it = m_ceBsrRxed.begin ();
1618  }
1619  NS_LOG_DEBUG (this << " UE discared for CQI=0, RNTI " << uldci.m_rnti);
1620  // remove UE from allocation map
1621  for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1622  {
1623  rbgAllocationMap.at (i) = 0;
1624  }
1625  continue; // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
1626  }
1627  uldci.m_mcs = m_amc->GetMcsFromCqi (cqi);
1628  }
1629 
1630  uldci.m_tbSize = (m_amc->GetTbSizeFromMcs (uldci.m_mcs, rbPerFlow) / 8);
1631  UpdateUlRlcBufferInfo (uldci.m_rnti, uldci.m_tbSize);
1632  uldci.m_ndi = 1;
1633  uldci.m_cceIndex = 0;
1634  uldci.m_aggrLevel = 1;
1635  uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
1636  uldci.m_hopping = false;
1637  uldci.m_n2Dmrs = 0;
1638  uldci.m_tpc = 0; // no power control
1639  uldci.m_cqiRequest = false; // only period CQI at this stage
1640  uldci.m_ulIndex = 0; // TDD parameter
1641  uldci.m_dai = 1; // TDD parameter
1642  uldci.m_freqHopping = 0;
1643  uldci.m_pdcchPowerOffset = 0; // not used
1644  ret.m_dciList.push_back (uldci);
1645  // store DCI for HARQ_PERIOD
1646  uint8_t harqId = 0;
1647  if (m_harqOn == true)
1648  {
1649  std::map <uint16_t, uint8_t>::iterator itProcId;
1650  itProcId = m_ulHarqCurrentProcessId.find (uldci.m_rnti);
1651  if (itProcId == m_ulHarqCurrentProcessId.end ())
1652  {
1653  NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << uldci.m_rnti);
1654  }
1655  harqId = (*itProcId).second;
1656  std::map <uint16_t, UlHarqProcessesDciBuffer_t>::iterator itDci = m_ulHarqProcessesDciBuffer.find (uldci.m_rnti);
1657  if (itDci == m_ulHarqProcessesDciBuffer.end ())
1658  {
1659  NS_FATAL_ERROR ("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI " << uldci.m_rnti);
1660  }
1661  (*itDci).second.at (harqId) = uldci;
1662  }
1663 
1664  NS_LOG_INFO (this << " UE Allocation RNTI " << (*it).first << " startPRB " << (uint32_t)uldci.m_rbStart << " nPRB " << (uint32_t)uldci.m_rbLen << " CQI " << cqi << " MCS " << (uint32_t)uldci.m_mcs << " TBsize " << uldci.m_tbSize << " RbAlloc " << rbAllocated << " harqId " << (uint16_t)harqId);
1665 
1666 
1667  it++;
1668  if (it == m_ceBsrRxed.end ())
1669  {
1670  // restart from the first
1671  it = m_ceBsrRxed.begin ();
1672  }
1673  if ((rbAllocated == m_cschedCellConfig.m_ulBandwidth) || (rbPerFlow == 0))
1674  {
1675  // Stop allocation: no more PRBs
1676  m_nextRntiUl = (*it).first;
1677  break;
1678  }
1679  }
1680  while (((*it).first != m_nextRntiUl)&&(rbPerFlow!=0));
1681 
1682 
1683  m_allocationMaps.insert (std::pair <uint16_t, std::vector <uint16_t> > (params.m_sfnSf, rbgAllocationMap));
1685 
1686  return;
1687 }
1688 
1689 void
1691 {
1692  NS_LOG_FUNCTION (this);
1693  return;
1694 }
1695 
1696 void
1698 {
1699  NS_LOG_FUNCTION (this);
1700  return;
1701 }
1702 
1703 void
1705 {
1706  NS_LOG_FUNCTION (this);
1707 
1708  std::map <uint16_t,uint32_t>::iterator it;
1709 
1710  for (unsigned int i = 0; i < params.m_macCeList.size (); i++)
1711  {
1712  if ( params.m_macCeList.at (i).m_macCeType == MacCeListElement_s::BSR )
1713  {
1714  // buffer status report
1715  // note that this scheduler does not differentiate the
1716  // allocation according to which LCGs have more/less bytes
1717  // to send.
1718  // Hence the BSR of different LCGs are just summed up to get
1719  // a total queue size that is used for allocation purposes.
1720 
1721  uint32_t buffer = 0;
1722  for (uint8_t lcg = 0; lcg < 4; ++lcg)
1723  {
1724  uint8_t bsrId = params.m_macCeList.at (i).m_macCeValue.m_bufferStatus.at (lcg);
1725  buffer += BufferSizeLevelBsr::BsrId2BufferSize (bsrId);
1726  }
1727 
1728  uint16_t rnti = params.m_macCeList.at (i).m_rnti;
1729  NS_LOG_LOGIC (this << "RNTI=" << rnti << " buffer=" << buffer);
1730  it = m_ceBsrRxed.find (rnti);
1731  if (it == m_ceBsrRxed.end ())
1732  {
1733  // create the new entry
1734  m_ceBsrRxed.insert ( std::pair<uint16_t, uint32_t > (rnti, buffer));
1735  }
1736  else
1737  {
1738  // update the buffer size value
1739  (*it).second = buffer;
1740  }
1741  }
1742  }
1743 
1744  return;
1745 }
1746 
1747 void
1749 {
1750  NS_LOG_FUNCTION (this);
1751 // retrieve the allocation for this subframe
1752  switch (m_ulCqiFilter)
1753  {
1755  {
1756  // filter all the CQIs that are not SRS based
1757  if (params.m_ulCqi.m_type != UlCqi_s::SRS)
1758  {
1759  return;
1760  }
1761  }
1762  break;
1764  {
1765  // filter all the CQIs that are not SRS based
1766  if (params.m_ulCqi.m_type != UlCqi_s::PUSCH)
1767  {
1768  return;
1769  }
1770  }
1772  break;
1773 
1774  default:
1775  NS_FATAL_ERROR ("Unknown UL CQI type");
1776  }
1777 
1778  switch (params.m_ulCqi.m_type)
1779  {
1780  case UlCqi_s::PUSCH:
1781  {
1782  std::map <uint16_t, std::vector <uint16_t> >::iterator itMap;
1783  std::map <uint16_t, std::vector <double> >::iterator itCqi;
1784  NS_LOG_DEBUG (this << " Collect PUSCH CQIs of Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf));
1785  itMap = m_allocationMaps.find (params.m_sfnSf);
1786  if (itMap == m_allocationMaps.end ())
1787  {
1788  return;
1789  }
1790  for (uint32_t i = 0; i < (*itMap).second.size (); i++)
1791  {
1792  // convert from fixed point notation Sxxxxxxxxxxx.xxx to double
1793  double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (i));
1794  itCqi = m_ueCqi.find ((*itMap).second.at (i));
1795  if (itCqi == m_ueCqi.end ())
1796  {
1797  // create a new entry
1798  std::vector <double> newCqi;
1799  for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1800  {
1801  if (i == j)
1802  {
1803  newCqi.push_back (sinr);
1804  }
1805  else
1806  {
1807  // initialize with NO_SINR value.
1808  newCqi.push_back (NO_SINR);
1809  }
1810 
1811  }
1812  m_ueCqi.insert (std::pair <uint16_t, std::vector <double> > ((*itMap).second.at (i), newCqi));
1813  // generate correspondent timer
1814  m_ueCqiTimers.insert (std::pair <uint16_t, uint32_t > ((*itMap).second.at (i), m_cqiTimersThreshold));
1815  }
1816  else
1817  {
1818  // update the value
1819  (*itCqi).second.at (i) = sinr;
1820  NS_LOG_DEBUG (this << " RNTI " << (*itMap).second.at (i) << " RB " << i << " SINR " << sinr);
1821  // update correspondent timer
1822  std::map <uint16_t, uint32_t>::iterator itTimers;
1823  itTimers = m_ueCqiTimers.find ((*itMap).second.at (i));
1824  (*itTimers).second = m_cqiTimersThreshold;
1825 
1826  }
1827 
1828  }
1829  // remove obsolete info on allocation
1830  m_allocationMaps.erase (itMap);
1831  }
1832  break;
1833  case UlCqi_s::SRS:
1834  {
1835  // get the RNTI from vendor specific parameters
1836  uint16_t rnti = 0;
1837  NS_ASSERT (params.m_vendorSpecificList.size () > 0);
1838  for (uint16_t i = 0; i < params.m_vendorSpecificList.size (); i++)
1839  {
1840  if (params.m_vendorSpecificList.at (i).m_type == SRS_CQI_RNTI_VSP)
1841  {
1842  Ptr<SrsCqiRntiVsp> vsp = DynamicCast<SrsCqiRntiVsp> (params.m_vendorSpecificList.at (i).m_value);
1843  rnti = vsp->GetRnti ();
1844  }
1845  }
1846  std::map <uint16_t, std::vector <double> >::iterator itCqi;
1847  itCqi = m_ueCqi.find (rnti);
1848  if (itCqi == m_ueCqi.end ())
1849  {
1850  // create a new entry
1851  std::vector <double> newCqi;
1852  for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1853  {
1854  double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (j));
1855  newCqi.push_back (sinr);
1856  NS_LOG_INFO (this << " RNTI " << rnti << " new SRS-CQI for RB " << j << " value " << sinr);
1857 
1858  }
1859  m_ueCqi.insert (std::pair <uint16_t, std::vector <double> > (rnti, newCqi));
1860  // generate correspondent timer
1861  m_ueCqiTimers.insert (std::pair <uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1862  }
1863  else
1864  {
1865  // update the values
1866  for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1867  {
1868  double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (j));
1869  (*itCqi).second.at (j) = sinr;
1870  NS_LOG_INFO (this << " RNTI " << rnti << " update SRS-CQI for RB " << j << " value " << sinr);
1871  }
1872  // update correspondent timer
1873  std::map <uint16_t, uint32_t>::iterator itTimers;
1874  itTimers = m_ueCqiTimers.find (rnti);
1875  (*itTimers).second = m_cqiTimersThreshold;
1876 
1877  }
1878 
1879 
1880  }
1881  break;
1882  case UlCqi_s::PUCCH_1:
1883  case UlCqi_s::PUCCH_2:
1884  case UlCqi_s::PRACH:
1885  {
1886  NS_FATAL_ERROR ("FdMtFfMacScheduler supports only PUSCH and SRS UL-CQIs");
1887  }
1888  break;
1889  default:
1890  NS_FATAL_ERROR ("Unknown type of UL-CQI");
1891  }
1892  return;
1893 }
1894 
1895 void
1897 {
1898  // refresh DL CQI P01 Map
1899  std::map <uint16_t,uint32_t>::iterator itP10 = m_p10CqiTimers.begin ();
1900  while (itP10 != m_p10CqiTimers.end ())
1901  {
1902  NS_LOG_INFO (this << " P10-CQI for user " << (*itP10).first << " is " << (uint32_t)(*itP10).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1903  if ((*itP10).second == 0)
1904  {
1905  // delete correspondent entries
1906  std::map <uint16_t,uint8_t>::iterator itMap = m_p10CqiRxed.find ((*itP10).first);
1907  NS_ASSERT_MSG (itMap != m_p10CqiRxed.end (), " Does not find CQI report for user " << (*itP10).first);
1908  NS_LOG_INFO (this << " P10-CQI expired for user " << (*itP10).first);
1909  m_p10CqiRxed.erase (itMap);
1910  std::map <uint16_t,uint32_t>::iterator temp = itP10;
1911  itP10++;
1912  m_p10CqiTimers.erase (temp);
1913  }
1914  else
1915  {
1916  (*itP10).second--;
1917  itP10++;
1918  }
1919  }
1920 
1921  // refresh DL CQI A30 Map
1922  std::map <uint16_t,uint32_t>::iterator itA30 = m_a30CqiTimers.begin ();
1923  while (itA30 != m_a30CqiTimers.end ())
1924  {
1925  NS_LOG_INFO (this << " A30-CQI for user " << (*itA30).first << " is " << (uint32_t)(*itA30).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1926  if ((*itA30).second == 0)
1927  {
1928  // delete correspondent entries
1929  std::map <uint16_t,SbMeasResult_s>::iterator itMap = m_a30CqiRxed.find ((*itA30).first);
1930  NS_ASSERT_MSG (itMap != m_a30CqiRxed.end (), " Does not find CQI report for user " << (*itA30).first);
1931  NS_LOG_INFO (this << " A30-CQI expired for user " << (*itA30).first);
1932  m_a30CqiRxed.erase (itMap);
1933  std::map <uint16_t,uint32_t>::iterator temp = itA30;
1934  itA30++;
1935  m_a30CqiTimers.erase (temp);
1936  }
1937  else
1938  {
1939  (*itA30).second--;
1940  itA30++;
1941  }
1942  }
1943 
1944  return;
1945 }
1946 
1947 
1948 void
1950 {
1951  // refresh UL CQI Map
1952  std::map <uint16_t,uint32_t>::iterator itUl = m_ueCqiTimers.begin ();
1953  while (itUl != m_ueCqiTimers.end ())
1954  {
1955  NS_LOG_INFO (this << " UL-CQI for user " << (*itUl).first << " is " << (uint32_t)(*itUl).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1956  if ((*itUl).second == 0)
1957  {
1958  // delete correspondent entries
1959  std::map <uint16_t, std::vector <double> >::iterator itMap = m_ueCqi.find ((*itUl).first);
1960  NS_ASSERT_MSG (itMap != m_ueCqi.end (), " Does not find CQI report for user " << (*itUl).first);
1961  NS_LOG_INFO (this << " UL-CQI exired for user " << (*itUl).first);
1962  (*itMap).second.clear ();
1963  m_ueCqi.erase (itMap);
1964  std::map <uint16_t,uint32_t>::iterator temp = itUl;
1965  itUl++;
1966  m_ueCqiTimers.erase (temp);
1967  }
1968  else
1969  {
1970  (*itUl).second--;
1971  itUl++;
1972  }
1973  }
1974 
1975  return;
1976 }
1977 
1978 void
1979 FdMtFfMacScheduler::UpdateDlRlcBufferInfo (uint16_t rnti, uint8_t lcid, uint16_t size)
1980 {
1981  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
1982  LteFlowId_t flow (rnti, lcid);
1983  it = m_rlcBufferReq.find (flow);
1984  if (it != m_rlcBufferReq.end ())
1985  {
1986  NS_LOG_INFO (this << " UE " << rnti << " LC " << (uint16_t)lcid << " txqueue " << (*it).second.m_rlcTransmissionQueueSize << " retxqueue " << (*it).second.m_rlcRetransmissionQueueSize << " status " << (*it).second.m_rlcStatusPduSize << " decrease " << size);
1987  // Update queues: RLC tx order Status, ReTx, Tx
1988  // Update status queue
1989  if (((*it).second.m_rlcStatusPduSize > 0) && (size >= (*it).second.m_rlcStatusPduSize))
1990  {
1991  (*it).second.m_rlcStatusPduSize = 0;
1992  }
1993  else if (((*it).second.m_rlcRetransmissionQueueSize > 0) && (size >= (*it).second.m_rlcRetransmissionQueueSize))
1994  {
1995  (*it).second.m_rlcRetransmissionQueueSize = 0;
1996  }
1997  else if ((*it).second.m_rlcTransmissionQueueSize > 0)
1998  {
1999  uint32_t rlcOverhead;
2000  if (lcid == 1)
2001  {
2002  // for SRB1 (using RLC AM) it's better to
2003  // overestimate RLC overhead rather than
2004  // underestimate it and risk unneeded
2005  // segmentation which increases delay
2006  rlcOverhead = 4;
2007  }
2008  else
2009  {
2010  // minimum RLC overhead due to header
2011  rlcOverhead = 2;
2012  }
2013  // update transmission queue
2014  if ((*it).second.m_rlcTransmissionQueueSize <= size - rlcOverhead)
2015  {
2016  (*it).second.m_rlcTransmissionQueueSize = 0;
2017  }
2018  else
2019  {
2020  (*it).second.m_rlcTransmissionQueueSize -= size - rlcOverhead;
2021  }
2022  }
2023  }
2024  else
2025  {
2026  NS_LOG_ERROR (this << " Does not find DL RLC Buffer Report of UE " << rnti);
2027  }
2028 }
2029 
2030 void
2031 FdMtFfMacScheduler::UpdateUlRlcBufferInfo (uint16_t rnti, uint16_t size)
2032 {
2033 
2034  size = size - 2; // remove the minimum RLC overhead
2035  std::map <uint16_t,uint32_t>::iterator it = m_ceBsrRxed.find (rnti);
2036  if (it != m_ceBsrRxed.end ())
2037  {
2038  NS_LOG_INFO (this << " UE " << rnti << " size " << size << " BSR " << (*it).second);
2039  if ((*it).second >= size)
2040  {
2041  (*it).second -= size;
2042  }
2043  else
2044  {
2045  (*it).second = 0;
2046  }
2047  }
2048  else
2049  {
2050  NS_LOG_ERROR (this << " Does not find BSR report info of UE " << rnti);
2051  }
2052 
2053 }
2054 
2055 void
2057 {
2058  NS_LOG_FUNCTION (this << " RNTI " << rnti << " txMode " << (uint16_t)txMode);
2060  params.m_rnti = rnti;
2061  params.m_transmissionMode = txMode;
2063 }
2064 
2065 
2066 }
std::vector< struct UlInfoListElement_s > m_ulInfoList
See section 4.3.1 dlDciListElement.
Definition: ff-mac-common.h:88
int LcActivePerFlow(uint16_t rnti)
void UpdateDlRlcBufferInfo(uint16_t rnti, uint8_t lcid, uint16_t size)
virtual void CschedLcReleaseReq(const struct CschedLcReleaseReqParameters &params)
smart pointer class similar to boost::intrusive_ptr
Definition: ptr.h:59
#define NS_LOG_FUNCTION(parameters)
Definition: log.h:311
#define HARQ_PERIOD
Definition: lte-common.h:30
Hold a bool native type.
Definition: boolean.h:38
void DoCschedUeReleaseReq(const struct FfMacCschedSapProvider::CschedUeReleaseReqParameters &params)
void DoSchedDlCqiInfoReq(const struct FfMacSchedSapProvider::SchedDlCqiInfoReqParameters &params)
uint8_t HarqProcessAvailability(uint16_t rnti)
Return the availability of free process for the RNTI specified.
NS_LOG_COMPONENT_DEFINE("FdMtFfMacScheduler")
void DoSchedDlMacBufferReq(const struct FfMacSchedSapProvider::SchedDlMacBufferReqParameters &params)
void TransmissionModeConfigurationUpdate(uint16_t rnti, uint8_t txMode)
virtual void SetFfMacCschedSapUser(FfMacCschedSapUser *s)
enum ns3::UlCqi_s::Type_e m_type
std::vector< UlDciListElement_s > UlHarqProcessesDciBuffer_t
virtual void CschedUeConfigReq(const struct CschedUeConfigReqParameters &params)
void DoSchedUlCqiInfoReq(const struct FfMacSchedSapProvider::SchedUlCqiInfoReqParameters &params)
std::vector< struct LogicalChannelConfigListElement_s > m_logicalChannelConfigList
std::vector< uint16_t > m_sinr
std::vector< uint8_t > DlHarqProcessesTimer_t
#define NO_SINR
#define NS_ASSERT(condition)
Definition: assert.h:64
std::vector< uint16_t > m_rachAllocationMap
std::vector< uint8_t > m_mcs
Definition: ff-mac-common.h:95
See section 4.3.2 ulDciListElement.
Provides the CSCHED SAP.
void DoCschedLcConfigReq(const struct FfMacCschedSapProvider::CschedLcConfigReqParameters &params)
std::vector< struct UlDciListElement_s > m_dciList
#define NS_LOG_INFO(msg)
Definition: log.h:264
See section 4.3.10 buildRARListElement.
void RefreshHarqProcesses()
Refresh HARQ processes according to the timers.
std::vector< std::vector< struct RlcPduListElement_s > > m_rlcPduList
virtual void SchedUlCqiInfoReq(const struct SchedUlCqiInfoReqParameters &params)
Implements the SCHED SAP and CSCHED SAP for a Frequency Domain Maximize Throughput scheduler...
virtual void CschedCellConfigReq(const struct CschedCellConfigReqParameters &params)
CSCHED_CELL_CONFIG_REQ.
std::map< uint16_t, DlHarqRlcPduListBuffer_t > m_dlHarqProcessesRlcPduListBuffer
std::vector< struct RachListElement_s > m_rachList
#define NS_FATAL_ERROR(msg)
fatal error handling
Definition: fatal-error.h:72
std::map< uint16_t, DlHarqProcessesStatus_t > m_dlHarqProcessesStatus
void DoCschedUeConfigReq(const struct FfMacCschedSapProvider::CschedUeConfigReqParameters &params)
friend class FdMtSchedulerMemberSchedSapProvider
std::vector< RlcPduList_t > DlHarqRlcPduListBuffer_t
virtual void CschedUeConfigUpdateInd(const struct CschedUeConfigUpdateIndParameters &params)=0
std::map< uint16_t, DlHarqProcessesDciBuffer_t > m_dlHarqProcessesDciBuffer
std::vector< struct VendorSpecificListElement_s > m_vendorSpecificList
std::vector< DlInfoListElement_s > m_dlInfoListBuffered
int GetRbgSize(int dlbandwidth)
void DoSchedDlRlcBufferReq(const struct FfMacSchedSapProvider::SchedDlRlcBufferReqParameters &params)
void DoSchedUlTriggerReq(const struct FfMacSchedSapProvider::SchedUlTriggerReqParameters &params)
Hold an unsigned integer type.
Definition: uinteger.h:46
static uint8_t TxMode2LayerNum(uint8_t txMode)
Definition: lte-common.cc:170
Ptr< SampleEmitter > s
NS_OBJECT_ENSURE_REGISTERED(AntennaModel)
double EstimateUlSinr(uint16_t rnti, uint16_t rb)
std::vector< uint8_t > m_ndi
Definition: ff-mac-common.h:96
virtual void SchedUlNoiseInterferenceReq(const struct SchedUlNoiseInterferenceReqParameters &params)
Provides the SCHED SAP.
virtual void SchedUlMacCtrlInfoReq(const struct SchedUlMacCtrlInfoReqParameters &params)
FfMacCschedSapProvider * m_cschedSapProvider
virtual void CschedUeConfigCnf(const struct CschedUeConfigCnfParameters &params)=0
#define NS_LOG_LOGIC(msg)
Definition: log.h:334
std::vector< struct CqiListElement_s > m_cqiList
virtual void CschedLcConfigReq(const struct CschedLcConfigReqParameters &params)
std::vector< struct DlInfoListElement_s > m_dlInfoList
void DoSchedUlNoiseInterferenceReq(const struct FfMacSchedSapProvider::SchedUlNoiseInterferenceReqParameters &params)
virtual FfMacSchedSapProvider * GetFfMacSchedSapProvider()
virtual void SchedDlRlcBufferReq(const struct SchedDlRlcBufferReqParameters &params)
virtual void SchedDlConfigInd(const struct SchedDlConfigIndParameters &params)=0
int FdMtType0AllocationRbg[4]
std::map< uint16_t, uint32_t > m_a30CqiTimers
std::set< uint16_t > m_flowStatsDl
virtual FfMacCschedSapProvider * GetFfMacCschedSapProvider()
std::vector< uint16_t > m_tbsSize
Definition: ff-mac-common.h:94
See section 4.3.9 rlcPDU_ListElement.
std::set< uint16_t > m_flowStatsUl
void DoCschedLcReleaseReq(const struct FfMacCschedSapProvider::CschedLcReleaseReqParameters &params)
std::map< uint16_t, uint8_t > m_dlHarqCurrentProcessId
friend class FdMtSchedulerMemberCschedSapProvider
std::map< uint16_t, UlHarqProcessesDciBuffer_t > m_ulHarqProcessesDciBuffer
std::vector< DlDciListElement_s > DlHarqProcessesDciBuffer_t
std::map< uint16_t, uint8_t > m_ulHarqCurrentProcessId
FfMacSchedSapUser * m_schedSapUser
std::map< uint16_t, SbMeasResult_s > m_a30CqiRxed
std::vector< uint8_t > m_rv
Definition: ff-mac-common.h:97
FfMacCschedSapUser * m_cschedSapUser
std::map< uint16_t, std::vector< double > > m_ueCqi
virtual void SchedUlConfigInd(const struct SchedUlConfigIndParameters &params)=0
std::map< uint16_t, uint8_t > m_uesTxMode
UlCqiFilter_t m_ulCqiFilter
std::map< uint16_t, std::vector< uint16_t > > m_allocationMaps
#define SRS_CQI_RNTI_VSP
virtual void SchedDlPagingBufferReq(const struct SchedDlPagingBufferReqParameters &params)
#define NS_ASSERT_MSG(condition, message)
Definition: assert.h:86
uint8_t UpdateHarqProcessId(uint16_t rnti)
Update and return a new process Id for the RNTI specified.
void UpdateUlRlcBufferInfo(uint16_t rnti, uint16_t size)
std::vector< struct MacCeListElement_s > m_macCeList
std::vector< struct RachListElement_s > m_rachList
static double fpS11dot3toDouble(uint16_t val)
Definition: lte-common.cc:114
#define HARQ_PROC_NUM
std::vector< uint8_t > UlHarqProcessesStatus_t
std::vector< uint8_t > DlHarqProcessesStatus_t
std::map< LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters > m_rlcBufferReq
static uint32_t BsrId2BufferSize(uint8_t val)
Definition: lte-common.cc:142
std::map< uint16_t, uint32_t > m_ueCqiTimers
std::map< uint16_t, uint32_t > m_p10CqiTimers
virtual void SchedUlTriggerReq(const struct SchedUlTriggerReqParameters &params)
virtual void SchedDlRachInfoReq(const struct SchedDlRachInfoReqParameters &params)
virtual void SchedDlMacBufferReq(const struct SchedDlMacBufferReqParameters &params)
FfMacCschedSapProvider::CschedCellConfigReqParameters m_cschedCellConfig
#define NS_LOG_DEBUG(msg)
Definition: log.h:255
std::map< uint16_t, uint8_t > m_p10CqiRxed
std::map< uint16_t, DlHarqProcessesTimer_t > m_dlHarqProcessesTimer
void DoSchedUlSrInfoReq(const struct FfMacSchedSapProvider::SchedUlSrInfoReqParameters &params)
#define NS_LOG_ERROR(msg)
Definition: log.h:237
virtual void SchedDlCqiInfoReq(const struct SchedDlCqiInfoReqParameters &params)
virtual void SchedDlTriggerReq(const struct SchedDlTriggerReqParameters &params)
void DoSchedDlTriggerReq(const struct FfMacSchedSapProvider::SchedDlTriggerReqParameters &params)
virtual void CschedUeReleaseReq(const struct CschedUeReleaseReqParameters &params)
void DoSchedUlMacCtrlInfoReq(const struct FfMacSchedSapProvider::SchedUlMacCtrlInfoReqParameters &params)
struct DlDciListElement_s m_dci
#define HARQ_DL_TIMEOUT
std::vector< struct BuildRarListElement_s > m_buildRarList
void DoSchedDlPagingBufferReq(const struct FfMacSchedSapProvider::SchedDlPagingBufferReqParameters &params)
a unique identifier for an interface.
Definition: type-id.h:49
virtual void SchedUlSrInfoReq(const struct SchedUlSrInfoReqParameters &params)
TypeId SetParent(TypeId tid)
Definition: type-id.cc:610
void DoSchedDlRachInfoReq(const struct FfMacSchedSapProvider::SchedDlRachInfoReqParameters &params)
std::map< uint16_t, uint32_t > m_ceBsrRxed
virtual void SetFfMacSchedSapUser(FfMacSchedSapUser *s)
std::vector< struct BuildDataListElement_s > m_buildDataList
std::map< uint16_t, UlHarqProcessesStatus_t > m_ulHarqProcessesStatus
FfMacSchedSapProvider * m_schedSapProvider
See section 4.3.8 builDataListElement.
void DoCschedCellConfigReq(const struct FfMacCschedSapProvider::CschedCellConfigReqParameters &params)