A Discrete-Event Network Simulator
API
Loading...
Searching...
No Matches
fdbet-ff-mac-scheduler.cc
Go to the documentation of this file.
1/*
2 * Copyright (c) 2011 Centre Tecnologic de Telecomunicacions de Catalunya (CTTC)
3 *
4 * SPDX-License-Identifier: GPL-2.0-only
5 *
6 * Author: Marco Miozzo <marco.miozzo@cttc.es>
7 * Modification: Dizhi Zhou <dizhi.zhou@gmail.com> // modify codes related to downlink scheduler
8 */
9
11
12#include "lte-amc.h"
14
15#include "ns3/boolean.h"
16#include "ns3/log.h"
17#include "ns3/math.h"
18#include "ns3/pointer.h"
19#include "ns3/simulator.h"
20
21#include <cfloat>
22#include <set>
23
24namespace ns3
25{
26
27NS_LOG_COMPONENT_DEFINE("FdBetFfMacScheduler");
28
29/// FdBetType0AllocationRbg array (see table 7.1.6.1-1 of 36.213)
30static const int FdBetType0AllocationRbg[4] = {
31 10, // RBG size 1
32 26, // RBG size 2
33 63, // RBG size 3
34 110, // RBG size 4
35};
36
37NS_OBJECT_ENSURE_REGISTERED(FdBetFfMacScheduler);
38
40 : m_cschedSapUser(nullptr),
41 m_schedSapUser(nullptr),
42 m_timeWindow(99.0),
43 m_nextRntiUl(0)
44{
48}
49
54
55void
69
72{
73 static TypeId tid =
74 TypeId("ns3::FdBetFfMacScheduler")
76 .SetGroupName("Lte")
77 .AddConstructor<FdBetFfMacScheduler>()
78 .AddAttribute("CqiTimerThreshold",
79 "The number of TTIs a CQI is valid (default 1000 - 1 sec.)",
80 UintegerValue(1000),
83 .AddAttribute("HarqEnabled",
84 "Activate/Deactivate the HARQ [by default is active].",
85 BooleanValue(true),
88 .AddAttribute("UlGrantMcs",
89 "The MCS of the UL grant, must be [0..15] (default 0)",
93 return tid;
94}
95
96void
101
102void
107
113
119
120void
125
131
132void
144
145void
148{
149 NS_LOG_FUNCTION(this << " RNTI " << params.m_rnti << " txMode "
150 << (uint16_t)params.m_transmissionMode);
151 auto it = m_uesTxMode.find(params.m_rnti);
152 if (it == m_uesTxMode.end())
153 {
154 m_uesTxMode.insert(std::pair<uint16_t, double>(params.m_rnti, params.m_transmissionMode));
155 // generate HARQ buffers
156 m_dlHarqCurrentProcessId.insert(std::pair<uint16_t, uint8_t>(params.m_rnti, 0));
157 DlHarqProcessesStatus_t dlHarqPrcStatus;
158 dlHarqPrcStatus.resize(8, 0);
159 m_dlHarqProcessesStatus[params.m_rnti] = dlHarqPrcStatus;
160 DlHarqProcessesTimer_t dlHarqProcessesTimer;
161 dlHarqProcessesTimer.resize(8, 0);
162 m_dlHarqProcessesTimer[params.m_rnti] = dlHarqProcessesTimer;
164 dlHarqdci.resize(8);
165 m_dlHarqProcessesDciBuffer[params.m_rnti] = dlHarqdci;
166 DlHarqRlcPduListBuffer_t dlHarqRlcPdu;
167 dlHarqRlcPdu.resize(2);
168 dlHarqRlcPdu.at(0).resize(8);
169 dlHarqRlcPdu.at(1).resize(8);
170 m_dlHarqProcessesRlcPduListBuffer[params.m_rnti] = dlHarqRlcPdu;
171 m_ulHarqCurrentProcessId.insert(std::pair<uint16_t, uint8_t>(params.m_rnti, 0));
172 UlHarqProcessesStatus_t ulHarqPrcStatus;
173 ulHarqPrcStatus.resize(8, 0);
174 m_ulHarqProcessesStatus[params.m_rnti] = ulHarqPrcStatus;
176 ulHarqdci.resize(8);
177 m_ulHarqProcessesDciBuffer[params.m_rnti] = ulHarqdci;
178 }
179 else
180 {
181 (*it).second = params.m_transmissionMode;
182 }
183}
184
185void
188{
189 NS_LOG_FUNCTION(this << " New LC, rnti: " << params.m_rnti);
190
191 for (std::size_t i = 0; i < params.m_logicalChannelConfigList.size(); i++)
192 {
193 auto it = m_flowStatsDl.find(params.m_rnti);
194
195 if (it == m_flowStatsDl.end())
196 {
197 fdbetsFlowPerf_t flowStatsDl;
198 flowStatsDl.flowStart = Simulator::Now();
199 flowStatsDl.totalBytesTransmitted = 0;
200 flowStatsDl.lastTtiBytesTransmitted = 0;
201 flowStatsDl.lastAveragedThroughput = 1;
202 m_flowStatsDl.insert(std::pair<uint16_t, fdbetsFlowPerf_t>(params.m_rnti, flowStatsDl));
203 fdbetsFlowPerf_t flowStatsUl;
204 flowStatsUl.flowStart = Simulator::Now();
205 flowStatsUl.totalBytesTransmitted = 0;
206 flowStatsUl.lastTtiBytesTransmitted = 0;
207 flowStatsUl.lastAveragedThroughput = 1;
208 m_flowStatsUl.insert(std::pair<uint16_t, fdbetsFlowPerf_t>(params.m_rnti, flowStatsUl));
209 }
210 }
211}
212
213void
216{
217 NS_LOG_FUNCTION(this);
218 for (std::size_t i = 0; i < params.m_logicalChannelIdentity.size(); i++)
219 {
220 auto it = m_rlcBufferReq.begin();
221 while (it != m_rlcBufferReq.end())
222 {
223 if (((*it).first.m_rnti == params.m_rnti) &&
224 ((*it).first.m_lcId == params.m_logicalChannelIdentity.at(i)))
225 {
226 auto temp = it;
227 it++;
228 m_rlcBufferReq.erase(temp);
229 }
230 else
231 {
232 it++;
233 }
234 }
235 }
236}
237
238void
241{
242 NS_LOG_FUNCTION(this);
243
244 m_uesTxMode.erase(params.m_rnti);
245 m_dlHarqCurrentProcessId.erase(params.m_rnti);
246 m_dlHarqProcessesStatus.erase(params.m_rnti);
247 m_dlHarqProcessesTimer.erase(params.m_rnti);
248 m_dlHarqProcessesDciBuffer.erase(params.m_rnti);
249 m_dlHarqProcessesRlcPduListBuffer.erase(params.m_rnti);
250 m_ulHarqCurrentProcessId.erase(params.m_rnti);
251 m_ulHarqProcessesStatus.erase(params.m_rnti);
252 m_ulHarqProcessesDciBuffer.erase(params.m_rnti);
253 m_flowStatsDl.erase(params.m_rnti);
254 m_flowStatsUl.erase(params.m_rnti);
255 m_ceBsrRxed.erase(params.m_rnti);
256 auto it = m_rlcBufferReq.begin();
257 while (it != m_rlcBufferReq.end())
258 {
259 if ((*it).first.m_rnti == params.m_rnti)
260 {
261 auto temp = it;
262 it++;
263 m_rlcBufferReq.erase(temp);
264 }
265 else
266 {
267 it++;
268 }
269 }
270 if (m_nextRntiUl == params.m_rnti)
271 {
272 m_nextRntiUl = 0;
273 }
274}
275
276void
279{
280 NS_LOG_FUNCTION(this << params.m_rnti << (uint32_t)params.m_logicalChannelIdentity);
281 // API generated by RLC for updating RLC parameters on a LC (tx and retx queues)
282
283 LteFlowId_t flow(params.m_rnti, params.m_logicalChannelIdentity);
284
285 auto it = m_rlcBufferReq.find(flow);
286
287 if (it == m_rlcBufferReq.end())
288 {
289 m_rlcBufferReq[flow] = params;
290 }
291 else
292 {
293 (*it).second = params;
294 }
295}
296
297void
304
305void
312
313int
315{
316 for (int i = 0; i < 4; i++)
317 {
318 if (dlbandwidth < FdBetType0AllocationRbg[i])
319 {
320 return i + 1;
321 }
322 }
323
324 return -1;
325}
326
327unsigned int
329{
330 unsigned int lcActive = 0;
331 for (auto it = m_rlcBufferReq.begin(); it != m_rlcBufferReq.end(); it++)
332 {
333 if (((*it).first.m_rnti == rnti) && (((*it).second.m_rlcTransmissionQueueSize > 0) ||
334 ((*it).second.m_rlcRetransmissionQueueSize > 0) ||
335 ((*it).second.m_rlcStatusPduSize > 0)))
336 {
337 lcActive++;
338 }
339 if ((*it).first.m_rnti > rnti)
340 {
341 break;
342 }
343 }
344 return lcActive;
345}
346
347bool
349{
350 NS_LOG_FUNCTION(this << rnti);
351
352 auto it = m_dlHarqCurrentProcessId.find(rnti);
353 if (it == m_dlHarqCurrentProcessId.end())
354 {
355 NS_FATAL_ERROR("No Process Id found for this RNTI " << rnti);
356 }
357 auto itStat = m_dlHarqProcessesStatus.find(rnti);
358 if (itStat == m_dlHarqProcessesStatus.end())
359 {
360 NS_FATAL_ERROR("No Process Id Statusfound for this RNTI " << rnti);
361 }
362 uint8_t i = (*it).second;
363 do
364 {
365 i = (i + 1) % HARQ_PROC_NUM;
366 } while (((*itStat).second.at(i) != 0) && (i != (*it).second));
367
368 return (*itStat).second.at(i) == 0;
369}
370
371uint8_t
373{
374 NS_LOG_FUNCTION(this << rnti);
375
376 if (!m_harqOn)
377 {
378 return 0;
379 }
380
381 auto it = m_dlHarqCurrentProcessId.find(rnti);
382 if (it == m_dlHarqCurrentProcessId.end())
383 {
384 NS_FATAL_ERROR("No Process Id found for this RNTI " << rnti);
385 }
386 auto itStat = m_dlHarqProcessesStatus.find(rnti);
387 if (itStat == m_dlHarqProcessesStatus.end())
388 {
389 NS_FATAL_ERROR("No Process Id Statusfound for this RNTI " << rnti);
390 }
391 uint8_t i = (*it).second;
392 do
393 {
394 i = (i + 1) % HARQ_PROC_NUM;
395 } while (((*itStat).second.at(i) != 0) && (i != (*it).second));
396 if ((*itStat).second.at(i) == 0)
397 {
398 (*it).second = i;
399 (*itStat).second.at(i) = 1;
400 }
401 else
402 {
403 NS_FATAL_ERROR("No HARQ process available for RNTI "
404 << rnti << " check before update with HarqProcessAvailability");
405 }
406
407 return (*it).second;
408}
409
410void
412{
413 NS_LOG_FUNCTION(this);
414
415 for (auto itTimers = m_dlHarqProcessesTimer.begin(); itTimers != m_dlHarqProcessesTimer.end();
416 itTimers++)
417 {
418 for (uint16_t i = 0; i < HARQ_PROC_NUM; i++)
419 {
420 if ((*itTimers).second.at(i) == HARQ_DL_TIMEOUT)
421 {
422 // reset HARQ process
423
424 NS_LOG_DEBUG(this << " Reset HARQ proc " << i << " for RNTI " << (*itTimers).first);
425 auto itStat = m_dlHarqProcessesStatus.find((*itTimers).first);
426 if (itStat == m_dlHarqProcessesStatus.end())
427 {
428 NS_FATAL_ERROR("No Process Id Status found for this RNTI "
429 << (*itTimers).first);
430 }
431 (*itStat).second.at(i) = 0;
432 (*itTimers).second.at(i) = 0;
433 }
434 else
435 {
436 (*itTimers).second.at(i)++;
437 }
438 }
439 }
440}
441
442void
445{
446 NS_LOG_FUNCTION(this << " Frame no. " << (params.m_sfnSf >> 4) << " subframe no. "
447 << (0xF & params.m_sfnSf));
448 // API generated by RLC for triggering the scheduling of a DL subframe
449
450 // evaluate the relative channel quality indicator for each UE per each RBG
451 // (since we are using allocation type 0 the small unit of allocation is RBG)
452 // Resource allocation type 0 (see sec 7.1.6.1 of 36.213)
453
455
457 int rbgNum = m_cschedCellConfig.m_dlBandwidth / rbgSize;
458 std::map<uint16_t, std::vector<uint16_t>> allocationMap; // RBs map per RNTI
459 std::vector<bool> rbgMap; // global RBGs map
460 uint16_t rbgAllocatedNum = 0;
461 std::set<uint16_t> rntiAllocated;
462 rbgMap.resize(m_cschedCellConfig.m_dlBandwidth / rbgSize, false);
464
465 // update UL HARQ proc id
466 for (auto itProcId = m_ulHarqCurrentProcessId.begin();
467 itProcId != m_ulHarqCurrentProcessId.end();
468 itProcId++)
469 {
470 (*itProcId).second = ((*itProcId).second + 1) % HARQ_PROC_NUM;
471 }
472
473 // RACH Allocation
475 uint16_t rbStart = 0;
476 for (auto itRach = m_rachList.begin(); itRach != m_rachList.end(); itRach++)
477 {
479 (*itRach).m_estimatedSize,
480 " Default UL Grant MCS does not allow to send RACH messages");
482 newRar.m_rnti = (*itRach).m_rnti;
483 // DL-RACH Allocation
484 // Ideal: no needs of configuring m_dci
485 // UL-RACH Allocation
486 newRar.m_grant.m_rnti = newRar.m_rnti;
487 newRar.m_grant.m_mcs = m_ulGrantMcs;
488 uint16_t rbLen = 1;
489 uint16_t tbSizeBits = 0;
490 // find lowest TB size that fits UL grant estimated size
491 while ((tbSizeBits < (*itRach).m_estimatedSize) &&
492 (rbStart + rbLen < m_cschedCellConfig.m_ulBandwidth))
493 {
494 rbLen++;
495 tbSizeBits = m_amc->GetUlTbSizeFromMcs(m_ulGrantMcs, rbLen);
496 }
497 if (tbSizeBits < (*itRach).m_estimatedSize)
498 {
499 // no more allocation space: finish allocation
500 break;
501 }
502 newRar.m_grant.m_rbStart = rbStart;
503 newRar.m_grant.m_rbLen = rbLen;
504 newRar.m_grant.m_tbSize = tbSizeBits / 8;
505 newRar.m_grant.m_hopping = false;
506 newRar.m_grant.m_tpc = 0;
507 newRar.m_grant.m_cqiRequest = false;
508 newRar.m_grant.m_ulDelay = false;
509 NS_LOG_INFO(this << " UL grant allocated to RNTI " << (*itRach).m_rnti << " rbStart "
510 << rbStart << " rbLen " << rbLen << " MCS " << m_ulGrantMcs << " tbSize "
511 << newRar.m_grant.m_tbSize);
512 for (uint16_t i = rbStart; i < rbStart + rbLen; i++)
513 {
514 m_rachAllocationMap.at(i) = (*itRach).m_rnti;
515 }
516
517 if (m_harqOn)
518 {
519 // generate UL-DCI for HARQ retransmissions
520 UlDciListElement_s uldci;
521 uldci.m_rnti = newRar.m_rnti;
522 uldci.m_rbLen = rbLen;
523 uldci.m_rbStart = rbStart;
524 uldci.m_mcs = m_ulGrantMcs;
525 uldci.m_tbSize = tbSizeBits / 8;
526 uldci.m_ndi = 1;
527 uldci.m_cceIndex = 0;
528 uldci.m_aggrLevel = 1;
529 uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
530 uldci.m_hopping = false;
531 uldci.m_n2Dmrs = 0;
532 uldci.m_tpc = 0; // no power control
533 uldci.m_cqiRequest = false; // only period CQI at this stage
534 uldci.m_ulIndex = 0; // TDD parameter
535 uldci.m_dai = 1; // TDD parameter
536 uldci.m_freqHopping = 0;
537 uldci.m_pdcchPowerOffset = 0; // not used
538
539 uint8_t harqId = 0;
540 auto itProcId = m_ulHarqCurrentProcessId.find(uldci.m_rnti);
541 if (itProcId == m_ulHarqCurrentProcessId.end())
542 {
543 NS_FATAL_ERROR("No info find in HARQ buffer for UE " << uldci.m_rnti);
544 }
545 harqId = (*itProcId).second;
546 auto itDci = m_ulHarqProcessesDciBuffer.find(uldci.m_rnti);
547 if (itDci == m_ulHarqProcessesDciBuffer.end())
548 {
549 NS_FATAL_ERROR("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI "
550 << uldci.m_rnti);
551 }
552 (*itDci).second.at(harqId) = uldci;
553 }
554
555 rbStart = rbStart + rbLen;
556 ret.m_buildRarList.push_back(newRar);
557 }
558 m_rachList.clear();
559
560 // Process DL HARQ feedback
562 // retrieve past HARQ retx buffered
563 if (!m_dlInfoListBuffered.empty())
564 {
565 if (!params.m_dlInfoList.empty())
566 {
567 NS_LOG_INFO(this << " Received DL-HARQ feedback");
569 params.m_dlInfoList.begin(),
570 params.m_dlInfoList.end());
571 }
572 }
573 else
574 {
575 if (!params.m_dlInfoList.empty())
576 {
577 m_dlInfoListBuffered = params.m_dlInfoList;
578 }
579 }
580 if (!m_harqOn)
581 {
582 // Ignore HARQ feedback
583 m_dlInfoListBuffered.clear();
584 }
585 std::vector<DlInfoListElement_s> dlInfoListUntxed;
586 for (std::size_t i = 0; i < m_dlInfoListBuffered.size(); i++)
587 {
588 auto itRnti = rntiAllocated.find(m_dlInfoListBuffered.at(i).m_rnti);
589 if (itRnti != rntiAllocated.end())
590 {
591 // RNTI already allocated for retx
592 continue;
593 }
594 auto nLayers = m_dlInfoListBuffered.at(i).m_harqStatus.size();
595 std::vector<bool> retx;
596 NS_LOG_INFO(this << " Processing DLHARQ feedback");
597 if (nLayers == 1)
598 {
599 retx.push_back(m_dlInfoListBuffered.at(i).m_harqStatus.at(0) ==
601 retx.push_back(false);
602 }
603 else
604 {
605 retx.push_back(m_dlInfoListBuffered.at(i).m_harqStatus.at(0) ==
607 retx.push_back(m_dlInfoListBuffered.at(i).m_harqStatus.at(1) ==
609 }
610 if (retx.at(0) || retx.at(1))
611 {
612 // retrieve HARQ process information
613 uint16_t rnti = m_dlInfoListBuffered.at(i).m_rnti;
614 uint8_t harqId = m_dlInfoListBuffered.at(i).m_harqProcessId;
615 NS_LOG_INFO(this << " HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId);
616 auto itHarq = m_dlHarqProcessesDciBuffer.find(rnti);
617 if (itHarq == m_dlHarqProcessesDciBuffer.end())
618 {
619 NS_FATAL_ERROR("No info find in HARQ buffer for UE " << rnti);
620 }
621
622 DlDciListElement_s dci = (*itHarq).second.at(harqId);
623 int rv = 0;
624 if (dci.m_rv.size() == 1)
625 {
626 rv = dci.m_rv.at(0);
627 }
628 else
629 {
630 rv = (dci.m_rv.at(0) > dci.m_rv.at(1) ? dci.m_rv.at(0) : dci.m_rv.at(1));
631 }
632
633 if (rv == 3)
634 {
635 // maximum number of retx reached -> drop process
636 NS_LOG_INFO("Maximum number of retransmissions reached -> drop process");
637 auto it = m_dlHarqProcessesStatus.find(rnti);
638 if (it == m_dlHarqProcessesStatus.end())
639 {
640 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) "
641 << m_dlInfoListBuffered.at(i).m_rnti);
642 }
643 (*it).second.at(harqId) = 0;
644 auto itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find(rnti);
645 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end())
646 {
647 NS_FATAL_ERROR("Unable to find RlcPdcList in HARQ buffer for RNTI "
648 << m_dlInfoListBuffered.at(i).m_rnti);
649 }
650 for (std::size_t k = 0; k < (*itRlcPdu).second.size(); k++)
651 {
652 (*itRlcPdu).second.at(k).at(harqId).clear();
653 }
654 continue;
655 }
656 // check the feasibility of retransmitting on the same RBGs
657 // translate the DCI to Spectrum framework
658 std::vector<int> dciRbg;
659 uint32_t mask = 0x1;
660 NS_LOG_INFO("Original RBGs " << dci.m_rbBitmap << " rnti " << dci.m_rnti);
661 for (int j = 0; j < 32; j++)
662 {
663 if (((dci.m_rbBitmap & mask) >> j) == 1)
664 {
665 dciRbg.push_back(j);
666 NS_LOG_INFO("\t" << j);
667 }
668 mask = (mask << 1);
669 }
670 bool free = true;
671 for (std::size_t j = 0; j < dciRbg.size(); j++)
672 {
673 if (rbgMap.at(dciRbg.at(j)))
674 {
675 free = false;
676 break;
677 }
678 }
679 if (free)
680 {
681 // use the same RBGs for the retx
682 // reserve RBGs
683 for (std::size_t j = 0; j < dciRbg.size(); j++)
684 {
685 rbgMap.at(dciRbg.at(j)) = true;
686 NS_LOG_INFO("RBG " << dciRbg.at(j) << " assigned");
687 rbgAllocatedNum++;
688 }
689
690 NS_LOG_INFO(this << " Send retx in the same RBGs");
691 }
692 else
693 {
694 // find RBGs for sending HARQ retx
695 uint8_t j = 0;
696 uint8_t rbgId = (dciRbg.at(dciRbg.size() - 1) + 1) % rbgNum;
697 uint8_t startRbg = dciRbg.at(dciRbg.size() - 1);
698 std::vector<bool> rbgMapCopy = rbgMap;
699 while ((j < dciRbg.size()) && (startRbg != rbgId))
700 {
701 if (!rbgMapCopy.at(rbgId))
702 {
703 rbgMapCopy.at(rbgId) = true;
704 dciRbg.at(j) = rbgId;
705 j++;
706 }
707 rbgId = (rbgId + 1) % rbgNum;
708 }
709 if (j == dciRbg.size())
710 {
711 // find new RBGs -> update DCI map
712 uint32_t rbgMask = 0;
713 for (std::size_t k = 0; k < dciRbg.size(); k++)
714 {
715 rbgMask = rbgMask + (0x1 << dciRbg.at(k));
716 rbgAllocatedNum++;
717 }
718 dci.m_rbBitmap = rbgMask;
719 rbgMap = rbgMapCopy;
720 NS_LOG_INFO(this << " Move retx in RBGs " << dciRbg.size());
721 }
722 else
723 {
724 // HARQ retx cannot be performed on this TTI -> store it
725 dlInfoListUntxed.push_back(m_dlInfoListBuffered.at(i));
726 NS_LOG_INFO(this << " No resource for this retx -> buffer it");
727 }
728 }
729 // retrieve RLC PDU list for retx TBsize and update DCI
731 auto itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find(rnti);
732 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end())
733 {
734 NS_FATAL_ERROR("Unable to find RlcPdcList in HARQ buffer for RNTI " << rnti);
735 }
736 for (std::size_t j = 0; j < nLayers; j++)
737 {
738 if (retx.at(j))
739 {
740 if (j >= dci.m_ndi.size())
741 {
742 // for avoiding errors in MIMO transient phases
743 dci.m_ndi.push_back(0);
744 dci.m_rv.push_back(0);
745 dci.m_mcs.push_back(0);
746 dci.m_tbsSize.push_back(0);
747 NS_LOG_INFO(this << " layer " << (uint16_t)j
748 << " no txed (MIMO transition)");
749 }
750 else
751 {
752 dci.m_ndi.at(j) = 0;
753 dci.m_rv.at(j)++;
754 (*itHarq).second.at(harqId).m_rv.at(j)++;
755 NS_LOG_INFO(this << " layer " << (uint16_t)j << " RV "
756 << (uint16_t)dci.m_rv.at(j));
757 }
758 }
759 else
760 {
761 // empty TB of layer j
762 dci.m_ndi.at(j) = 0;
763 dci.m_rv.at(j) = 0;
764 dci.m_mcs.at(j) = 0;
765 dci.m_tbsSize.at(j) = 0;
766 NS_LOG_INFO(this << " layer " << (uint16_t)j << " no retx");
767 }
768 }
769 for (std::size_t k = 0; k < (*itRlcPdu).second.at(0).at(dci.m_harqProcess).size(); k++)
770 {
771 std::vector<RlcPduListElement_s> rlcPduListPerLc;
772 for (std::size_t j = 0; j < nLayers; j++)
773 {
774 if (retx.at(j))
775 {
776 if (j < dci.m_ndi.size())
777 {
778 NS_LOG_INFO(" layer " << (uint16_t)j << " tb size "
779 << dci.m_tbsSize.at(j));
780 rlcPduListPerLc.push_back(
781 (*itRlcPdu).second.at(j).at(dci.m_harqProcess).at(k));
782 }
783 }
784 else
785 { // if no retx needed on layer j, push an RlcPduListElement_s object with
786 // m_size=0 to keep the size of rlcPduListPerLc vector = 2 in case of MIMO
787 NS_LOG_INFO(" layer " << (uint16_t)j << " tb size " << dci.m_tbsSize.at(j));
788 RlcPduListElement_s emptyElement;
789 emptyElement.m_logicalChannelIdentity = (*itRlcPdu)
790 .second.at(j)
791 .at(dci.m_harqProcess)
792 .at(k)
793 .m_logicalChannelIdentity;
794 emptyElement.m_size = 0;
795 rlcPduListPerLc.push_back(emptyElement);
796 }
797 }
798
799 if (!rlcPduListPerLc.empty())
800 {
801 newEl.m_rlcPduList.push_back(rlcPduListPerLc);
802 }
803 }
804 newEl.m_rnti = rnti;
805 newEl.m_dci = dci;
806 (*itHarq).second.at(harqId).m_rv = dci.m_rv;
807 // refresh timer
808 auto itHarqTimer = m_dlHarqProcessesTimer.find(rnti);
809 if (itHarqTimer == m_dlHarqProcessesTimer.end())
810 {
811 NS_FATAL_ERROR("Unable to find HARQ timer for RNTI " << (uint16_t)rnti);
812 }
813 (*itHarqTimer).second.at(harqId) = 0;
814 ret.m_buildDataList.push_back(newEl);
815 rntiAllocated.insert(rnti);
816 }
817 else
818 {
819 // update HARQ process status
820 NS_LOG_INFO(this << " HARQ received ACK for UE " << m_dlInfoListBuffered.at(i).m_rnti);
821 auto it = m_dlHarqProcessesStatus.find(m_dlInfoListBuffered.at(i).m_rnti);
822 if (it == m_dlHarqProcessesStatus.end())
823 {
824 NS_FATAL_ERROR("No info find in HARQ buffer for UE "
825 << m_dlInfoListBuffered.at(i).m_rnti);
826 }
827 (*it).second.at(m_dlInfoListBuffered.at(i).m_harqProcessId) = 0;
828 auto itRlcPdu =
830 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end())
831 {
832 NS_FATAL_ERROR("Unable to find RlcPdcList in HARQ buffer for RNTI "
833 << m_dlInfoListBuffered.at(i).m_rnti);
834 }
835 for (std::size_t k = 0; k < (*itRlcPdu).second.size(); k++)
836 {
837 (*itRlcPdu).second.at(k).at(m_dlInfoListBuffered.at(i).m_harqProcessId).clear();
838 }
839 }
840 }
841 m_dlInfoListBuffered.clear();
842 m_dlInfoListBuffered = dlInfoListUntxed;
843
844 if (rbgAllocatedNum == rbgNum)
845 {
846 // all the RBGs are already allocated -> exit
847 if (!ret.m_buildDataList.empty() || !ret.m_buildRarList.empty())
848 {
850 }
851 return;
852 }
853
854 std::map<uint16_t, double> estAveThr; // store expected average throughput for UE
855 auto itMax = estAveThr.end();
856 std::map<uint16_t, int> rbgPerRntiLog; // record the number of RBG assigned to UE
857 double metricMax = 0.0;
858 for (auto itFlow = m_flowStatsDl.begin(); itFlow != m_flowStatsDl.end(); itFlow++)
859 {
860 auto itRnti = rntiAllocated.find((*itFlow).first);
861 if ((itRnti != rntiAllocated.end()) || (!HarqProcessAvailability((*itFlow).first)))
862 {
863 // UE already allocated for HARQ or without HARQ process available -> drop it
864 if (itRnti != rntiAllocated.end())
865 {
866 NS_LOG_DEBUG(this << " RNTI discarded for HARQ tx" << (uint16_t)(*itFlow).first);
867 }
868 if (!HarqProcessAvailability((*itFlow).first))
869 {
870 NS_LOG_DEBUG(this << " RNTI discarded for HARQ id" << (uint16_t)(*itFlow).first);
871 }
872 continue;
873 }
874
875 // check first what are channel conditions for this UE, if CQI!=0
876 auto itCqi = m_p10CqiRxed.find((*itFlow).first);
877 auto itTxMode = m_uesTxMode.find((*itFlow).first);
878 if (itTxMode == m_uesTxMode.end())
879 {
880 NS_FATAL_ERROR("No Transmission Mode info on user " << (*itFlow).first);
881 }
882 auto nLayer = TransmissionModesLayers::TxMode2LayerNum((*itTxMode).second);
883
884 uint8_t cqiSum = 0;
885 for (uint8_t j = 0; j < nLayer; j++)
886 {
887 if (itCqi == m_p10CqiRxed.end())
888 {
889 cqiSum += 1; // no info on this user -> lowest MCS
890 }
891 else
892 {
893 cqiSum = (*itCqi).second;
894 }
895 }
896 if (cqiSum != 0)
897 {
898 estAveThr.insert(std::pair<uint16_t, double>((*itFlow).first,
899 (*itFlow).second.lastAveragedThroughput));
900 }
901 else
902 {
903 NS_LOG_INFO("Skip this flow, CQI==0, rnti:" << (*itFlow).first);
904 }
905 }
906
907 if (!estAveThr.empty())
908 {
909 // Find UE with largest priority metric
910 for (auto it = estAveThr.begin(); it != estAveThr.end(); it++)
911 {
912 double metric = 1 / (*it).second;
913 if (metric > metricMax)
914 {
915 metricMax = metric;
916 itMax = it;
917 }
918 rbgPerRntiLog.insert(std::pair<uint16_t, int>((*it).first, 1));
919 }
920
921 // The scheduler tries the best to achieve the equal throughput among all UEs
922 int i = 0;
923 do
924 {
925 NS_LOG_INFO(this << " ALLOCATION for RBG " << i << " of " << rbgNum);
926 if (!rbgMap.at(i))
927 {
928 // allocate one RBG to current UE
929 std::vector<uint16_t> tempMap;
930 auto itMap = allocationMap.find((*itMax).first);
931 if (itMap == allocationMap.end())
932 {
933 tempMap.push_back(i);
934 allocationMap[(*itMax).first] = tempMap;
935 }
936 else
937 {
938 (*itMap).second.push_back(i);
939 }
940
941 // calculate expected throughput for current UE
942 auto itCqi = m_p10CqiRxed.find((*itMax).first);
943 auto itTxMode = m_uesTxMode.find((*itMax).first);
944 if (itTxMode == m_uesTxMode.end())
945 {
946 NS_FATAL_ERROR("No Transmission Mode info on user " << (*itMax).first);
947 }
948 auto nLayer = TransmissionModesLayers::TxMode2LayerNum((*itTxMode).second);
949 std::vector<uint8_t> mcs;
950 for (uint8_t j = 0; j < nLayer; j++)
951 {
952 if (itCqi == m_p10CqiRxed.end())
953 {
954 mcs.push_back(0); // no info on this user -> lowest MCS
955 }
956 else
957 {
958 mcs.push_back(m_amc->GetMcsFromCqi((*itCqi).second));
959 }
960 }
961
962 auto itRbgPerRntiLog = rbgPerRntiLog.find((*itMax).first);
963 auto itPastAveThr = m_flowStatsDl.find((*itMax).first);
964 uint32_t bytesTxed = 0;
965 for (uint8_t j = 0; j < nLayer; j++)
966 {
967 int tbSize =
968 (m_amc->GetDlTbSizeFromMcs(mcs.at(0), (*itRbgPerRntiLog).second * rbgSize) /
969 8); // (size of TB in bytes according to table 7.1.7.2.1-1 of 36.213)
970 bytesTxed += tbSize;
971 }
972 double expectedAveThr =
973 ((1.0 - (1.0 / m_timeWindow)) * (*itPastAveThr).second.lastAveragedThroughput) +
974 ((1.0 / m_timeWindow) * (double)(bytesTxed / 0.001));
975
976 int rbgPerRnti = (*itRbgPerRntiLog).second;
977 rbgPerRnti++;
978 rbgPerRntiLog[(*itMax).first] = rbgPerRnti;
979 estAveThr[(*itMax).first] = expectedAveThr;
980
981 // find new UE with largest priority metric
982 metricMax = 0.0;
983 for (auto it = estAveThr.begin(); it != estAveThr.end(); it++)
984 {
985 double metric = 1 / (*it).second;
986 if (metric > metricMax)
987 {
988 itMax = it;
989 metricMax = metric;
990 }
991 }
992
993 rbgMap.at(i) = true;
994 }
995
996 i++;
997
998 } while (i < rbgNum); // end for RBGs
999 }
1000
1001 // reset TTI stats of users
1002 for (auto itStats = m_flowStatsDl.begin(); itStats != m_flowStatsDl.end(); itStats++)
1003 {
1004 (*itStats).second.lastTtiBytesTransmitted = 0;
1005 }
1006
1007 // generate the transmission opportunities by grouping the RBGs of the same RNTI and
1008 // creating the correspondent DCIs
1009 auto itMap = allocationMap.begin();
1010 while (itMap != allocationMap.end())
1011 {
1012 // create new BuildDataListElement_s for this LC
1014 newEl.m_rnti = (*itMap).first;
1015 // create the DlDciListElement_s
1016 DlDciListElement_s newDci;
1017 newDci.m_rnti = (*itMap).first;
1018 newDci.m_harqProcess = UpdateHarqProcessId((*itMap).first);
1019
1020 uint16_t lcActives = LcActivePerFlow((*itMap).first);
1021 NS_LOG_INFO(this << "Allocate user " << newEl.m_rnti << " rbg " << lcActives);
1022 if (lcActives == 0)
1023 {
1024 // Set to max value, to avoid divide by 0 below
1025 lcActives = (uint16_t)65535; // UINT16_MAX;
1026 }
1027 uint16_t RbgPerRnti = (*itMap).second.size();
1028 auto itCqi = m_p10CqiRxed.find((*itMap).first);
1029 auto itTxMode = m_uesTxMode.find((*itMap).first);
1030 if (itTxMode == m_uesTxMode.end())
1031 {
1032 NS_FATAL_ERROR("No Transmission Mode info on user " << (*itMap).first);
1033 }
1034 auto nLayer = TransmissionModesLayers::TxMode2LayerNum((*itTxMode).second);
1035
1036 uint32_t bytesTxed = 0;
1037 for (uint8_t j = 0; j < nLayer; j++)
1038 {
1039 if (itCqi == m_p10CqiRxed.end())
1040 {
1041 newDci.m_mcs.push_back(0); // no info on this user -> lowest MCS
1042 }
1043 else
1044 {
1045 newDci.m_mcs.push_back(m_amc->GetMcsFromCqi((*itCqi).second));
1046 }
1047
1048 int tbSize = (m_amc->GetDlTbSizeFromMcs(newDci.m_mcs.at(j), RbgPerRnti * rbgSize) /
1049 8); // (size of TB in bytes according to table 7.1.7.2.1-1 of 36.213)
1050 newDci.m_tbsSize.push_back(tbSize);
1051 bytesTxed += tbSize;
1052 }
1053
1054 newDci.m_resAlloc = 0; // only allocation type 0 at this stage
1055 newDci.m_rbBitmap = 0; // TBD (32 bit bitmap see 7.1.6 of 36.213)
1056 uint32_t rbgMask = 0;
1057 for (std::size_t k = 0; k < (*itMap).second.size(); k++)
1058 {
1059 rbgMask = rbgMask + (0x1 << (*itMap).second.at(k));
1060 NS_LOG_INFO(this << " Allocated RBG " << (*itMap).second.at(k));
1061 }
1062 newDci.m_rbBitmap = rbgMask; // (32 bit bitmap see 7.1.6 of 36.213)
1063
1064 // create the rlc PDUs -> equally divide resources among actives LCs
1065 for (auto itBufReq = m_rlcBufferReq.begin(); itBufReq != m_rlcBufferReq.end(); itBufReq++)
1066 {
1067 if (((*itBufReq).first.m_rnti == (*itMap).first) &&
1068 (((*itBufReq).second.m_rlcTransmissionQueueSize > 0) ||
1069 ((*itBufReq).second.m_rlcRetransmissionQueueSize > 0) ||
1070 ((*itBufReq).second.m_rlcStatusPduSize > 0)))
1071 {
1072 std::vector<RlcPduListElement_s> newRlcPduLe;
1073 for (uint8_t j = 0; j < nLayer; j++)
1074 {
1075 RlcPduListElement_s newRlcEl;
1076 newRlcEl.m_logicalChannelIdentity = (*itBufReq).first.m_lcId;
1077 newRlcEl.m_size = newDci.m_tbsSize.at(j) / lcActives;
1078 NS_LOG_INFO(this << " LCID " << (uint32_t)newRlcEl.m_logicalChannelIdentity
1079 << " size " << newRlcEl.m_size << " layer " << (uint16_t)j);
1080 newRlcPduLe.push_back(newRlcEl);
1082 newRlcEl.m_logicalChannelIdentity,
1083 newRlcEl.m_size);
1084 if (m_harqOn)
1085 {
1086 // store RLC PDU list for HARQ
1087 auto itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find((*itMap).first);
1088 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end())
1089 {
1090 NS_FATAL_ERROR("Unable to find RlcPdcList in HARQ buffer for RNTI "
1091 << (*itMap).first);
1092 }
1093 (*itRlcPdu).second.at(j).at(newDci.m_harqProcess).push_back(newRlcEl);
1094 }
1095 }
1096 newEl.m_rlcPduList.push_back(newRlcPduLe);
1097 }
1098 if ((*itBufReq).first.m_rnti > (*itMap).first)
1099 {
1100 break;
1101 }
1102 }
1103 for (uint8_t j = 0; j < nLayer; j++)
1104 {
1105 newDci.m_ndi.push_back(1);
1106 newDci.m_rv.push_back(0);
1107 }
1108
1109 newDci.m_tpc = 1; // 1 is mapped to 0 in Accumulated Mode and to -1 in Absolute Mode
1110
1111 newEl.m_dci = newDci;
1112
1113 if (m_harqOn)
1114 {
1115 // store DCI for HARQ
1116 auto itDci = m_dlHarqProcessesDciBuffer.find(newEl.m_rnti);
1117 if (itDci == m_dlHarqProcessesDciBuffer.end())
1118 {
1119 NS_FATAL_ERROR("Unable to find RNTI entry in DCI HARQ buffer for RNTI "
1120 << newEl.m_rnti);
1121 }
1122 (*itDci).second.at(newDci.m_harqProcess) = newDci;
1123 // refresh timer
1124 auto itHarqTimer = m_dlHarqProcessesTimer.find(newEl.m_rnti);
1125 if (itHarqTimer == m_dlHarqProcessesTimer.end())
1126 {
1127 NS_FATAL_ERROR("Unable to find HARQ timer for RNTI " << (uint16_t)newEl.m_rnti);
1128 }
1129 (*itHarqTimer).second.at(newDci.m_harqProcess) = 0;
1130 }
1131
1132 // ...more parameters -> ignored in this version
1133
1134 ret.m_buildDataList.push_back(newEl);
1135 // update UE stats
1136 auto it = m_flowStatsDl.find((*itMap).first);
1137 if (it != m_flowStatsDl.end())
1138 {
1139 (*it).second.lastTtiBytesTransmitted = bytesTxed;
1140 NS_LOG_INFO(this << " UE total bytes txed " << (*it).second.lastTtiBytesTransmitted);
1141 }
1142 else
1143 {
1144 NS_FATAL_ERROR(this << " No Stats for this allocated UE");
1145 }
1146
1147 itMap++;
1148 }
1149 ret.m_nrOfPdcchOfdmSymbols = 1; /// \todo check correct value according the DCIs txed
1150
1151 // update UEs stats
1152 NS_LOG_INFO(this << " Update UEs statistics");
1153 for (auto itStats = m_flowStatsDl.begin(); itStats != m_flowStatsDl.end(); itStats++)
1154 {
1155 (*itStats).second.totalBytesTransmitted += (*itStats).second.lastTtiBytesTransmitted;
1156 // update average throughput (see eq. 12.3 of Sec 12.3.1.2 of LTE – The UMTS Long Term
1157 // Evolution, Ed Wiley)
1158 (*itStats).second.lastAveragedThroughput =
1159 ((1.0 - (1.0 / m_timeWindow)) * (*itStats).second.lastAveragedThroughput) +
1160 ((1.0 / m_timeWindow) * (double)((*itStats).second.lastTtiBytesTransmitted / 0.001));
1161 NS_LOG_INFO(this << " UE total bytes " << (*itStats).second.totalBytesTransmitted);
1162 NS_LOG_INFO(this << " UE average throughput " << (*itStats).second.lastAveragedThroughput);
1163 (*itStats).second.lastTtiBytesTransmitted = 0;
1164 }
1165
1167}
1168
1169void
1177
1178void
1181{
1182 NS_LOG_FUNCTION(this);
1183
1184 for (unsigned int i = 0; i < params.m_cqiList.size(); i++)
1185 {
1186 if (params.m_cqiList.at(i).m_cqiType == CqiListElement_s::P10)
1187 {
1188 NS_LOG_LOGIC("wideband CQI " << (uint32_t)params.m_cqiList.at(i).m_wbCqi.at(0)
1189 << " reported");
1190 uint16_t rnti = params.m_cqiList.at(i).m_rnti;
1191 auto it = m_p10CqiRxed.find(rnti);
1192 if (it == m_p10CqiRxed.end())
1193 {
1194 // create the new entry
1195 m_p10CqiRxed[rnti] =
1196 params.m_cqiList.at(i).m_wbCqi.at(0); // only codeword 0 at this stage (SISO)
1197 // generate correspondent timer
1198 m_p10CqiTimers.insert(std::pair<uint16_t, uint32_t>(rnti, m_cqiTimersThreshold));
1199 }
1200 else
1201 {
1202 // update the CQI value and refresh correspondent timer
1203 (*it).second = params.m_cqiList.at(i).m_wbCqi.at(0);
1204 // update correspondent timer
1205 auto itTimers = m_p10CqiTimers.find(rnti);
1206 (*itTimers).second = m_cqiTimersThreshold;
1207 }
1208 }
1209 else if (params.m_cqiList.at(i).m_cqiType == CqiListElement_s::A30)
1210 {
1211 // subband CQI reporting high layer configured
1212 uint16_t rnti = params.m_cqiList.at(i).m_rnti;
1213 auto it = m_a30CqiRxed.find(rnti);
1214 if (it == m_a30CqiRxed.end())
1215 {
1216 // create the new entry
1217 m_a30CqiRxed[rnti] = params.m_cqiList.at(i).m_sbMeasResult;
1218 m_a30CqiTimers.insert(std::pair<uint16_t, uint32_t>(rnti, m_cqiTimersThreshold));
1219 }
1220 else
1221 {
1222 // update the CQI value and refresh correspondent timer
1223 (*it).second = params.m_cqiList.at(i).m_sbMeasResult;
1224 auto itTimers = m_a30CqiTimers.find(rnti);
1225 (*itTimers).second = m_cqiTimersThreshold;
1226 }
1227 }
1228 else
1229 {
1230 NS_LOG_ERROR(this << " CQI type unknown");
1231 }
1232 }
1233}
1234
1235double
1236FdBetFfMacScheduler::EstimateUlSinr(uint16_t rnti, uint16_t rb)
1237{
1238 auto itCqi = m_ueCqi.find(rnti);
1239 if (itCqi == m_ueCqi.end())
1240 {
1241 // no cqi info about this UE
1242 return NO_SINR;
1243 }
1244 else
1245 {
1246 // take the average SINR value among the available
1247 double sinrSum = 0;
1248 unsigned int sinrNum = 0;
1249 for (uint32_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1250 {
1251 double sinr = (*itCqi).second.at(i);
1252 if (sinr != NO_SINR)
1253 {
1254 sinrSum += sinr;
1255 sinrNum++;
1256 }
1257 }
1258 double estimatedSinr = (sinrNum > 0) ? (sinrSum / sinrNum) : DBL_MAX;
1259 // store the value
1260 (*itCqi).second.at(rb) = estimatedSinr;
1261 return estimatedSinr;
1262 }
1263}
1264
1265void
1268{
1269 NS_LOG_FUNCTION(this << " UL - Frame no. " << (params.m_sfnSf >> 4) << " subframe no. "
1270 << (0xF & params.m_sfnSf) << " size " << params.m_ulInfoList.size());
1271
1273
1274 // Generate RBs map
1276 std::vector<bool> rbMap;
1277 std::set<uint16_t> rntiAllocated;
1278 std::vector<uint16_t> rbgAllocationMap;
1279 // update with RACH allocation map
1280 rbgAllocationMap = m_rachAllocationMap;
1281 // rbgAllocationMap.resize (m_cschedCellConfig.m_ulBandwidth, 0);
1282 m_rachAllocationMap.clear();
1284
1285 rbMap.resize(m_cschedCellConfig.m_ulBandwidth, false);
1286 // remove RACH allocation
1287 for (uint16_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1288 {
1289 if (rbgAllocationMap.at(i) != 0)
1290 {
1291 rbMap.at(i) = true;
1292 NS_LOG_DEBUG(this << " Allocated for RACH " << i);
1293 }
1294 }
1295
1296 if (m_harqOn)
1297 {
1298 // Process UL HARQ feedback
1299 for (std::size_t i = 0; i < params.m_ulInfoList.size(); i++)
1300 {
1301 if (params.m_ulInfoList.at(i).m_receptionStatus == UlInfoListElement_s::NotOk)
1302 {
1303 // retx correspondent block: retrieve the UL-DCI
1304 uint16_t rnti = params.m_ulInfoList.at(i).m_rnti;
1305 auto itProcId = m_ulHarqCurrentProcessId.find(rnti);
1306 if (itProcId == m_ulHarqCurrentProcessId.end())
1307 {
1308 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1309 }
1310 uint8_t harqId = (uint8_t)((*itProcId).second - HARQ_PERIOD) % HARQ_PROC_NUM;
1311 NS_LOG_INFO(this << " UL-HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId
1312 << " i " << i << " size " << params.m_ulInfoList.size());
1313 auto itHarq = m_ulHarqProcessesDciBuffer.find(rnti);
1314 if (itHarq == m_ulHarqProcessesDciBuffer.end())
1315 {
1316 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1317 continue;
1318 }
1319 UlDciListElement_s dci = (*itHarq).second.at(harqId);
1320 auto itStat = m_ulHarqProcessesStatus.find(rnti);
1321 if (itStat == m_ulHarqProcessesStatus.end())
1322 {
1323 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1324 }
1325 if ((*itStat).second.at(harqId) >= 3)
1326 {
1327 NS_LOG_INFO("Max number of retransmissions reached (UL)-> drop process");
1328 continue;
1329 }
1330 bool free = true;
1331 for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1332 {
1333 if (rbMap.at(j))
1334 {
1335 free = false;
1336 NS_LOG_INFO(this << " BUSY " << j);
1337 }
1338 }
1339 if (free)
1340 {
1341 // retx on the same RBs
1342 for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1343 {
1344 rbMap.at(j) = true;
1345 rbgAllocationMap.at(j) = dci.m_rnti;
1346 NS_LOG_INFO("\tRB " << j);
1347 }
1348 NS_LOG_INFO(this << " Send retx in the same RBs " << (uint16_t)dci.m_rbStart
1349 << " to " << dci.m_rbStart + dci.m_rbLen << " RV "
1350 << (*itStat).second.at(harqId) + 1);
1351 }
1352 else
1353 {
1354 NS_LOG_INFO("Cannot allocate retx due to RACH allocations for UE " << rnti);
1355 continue;
1356 }
1357 dci.m_ndi = 0;
1358 // Update HARQ buffers with new HarqId
1359 (*itStat).second.at((*itProcId).second) = (*itStat).second.at(harqId) + 1;
1360 (*itStat).second.at(harqId) = 0;
1361 (*itHarq).second.at((*itProcId).second) = dci;
1362 ret.m_dciList.push_back(dci);
1363 rntiAllocated.insert(dci.m_rnti);
1364 }
1365 else
1366 {
1367 NS_LOG_INFO(this << " HARQ-ACK feedback from RNTI "
1368 << params.m_ulInfoList.at(i).m_rnti);
1369 }
1370 }
1371 }
1372
1373 std::map<uint16_t, uint32_t>::iterator it;
1374 int nflows = 0;
1375
1376 for (it = m_ceBsrRxed.begin(); it != m_ceBsrRxed.end(); it++)
1377 {
1378 auto itRnti = rntiAllocated.find((*it).first);
1379 // select UEs with queues not empty and not yet allocated for HARQ
1380 if (((*it).second > 0) && (itRnti == rntiAllocated.end()))
1381 {
1382 nflows++;
1383 }
1384 }
1385
1386 if (nflows == 0)
1387 {
1388 if (!ret.m_dciList.empty())
1389 {
1390 m_allocationMaps[params.m_sfnSf] = rbgAllocationMap;
1392 }
1393
1394 return; // no flows to be scheduled
1395 }
1396
1397 // Divide the remaining resources equally among the active users starting from the subsequent
1398 // one served last scheduling trigger
1399 uint16_t rbPerFlow = (m_cschedCellConfig.m_ulBandwidth) / (nflows + rntiAllocated.size());
1400 if (rbPerFlow < 3)
1401 {
1402 rbPerFlow = 3; // at least 3 rbg per flow (till available resource) to ensure TxOpportunity
1403 // >= 7 bytes
1404 }
1405 int rbAllocated = 0;
1406
1407 if (m_nextRntiUl != 0)
1408 {
1409 for (it = m_ceBsrRxed.begin(); it != m_ceBsrRxed.end(); it++)
1410 {
1411 if ((*it).first == m_nextRntiUl)
1412 {
1413 break;
1414 }
1415 }
1416 if (it == m_ceBsrRxed.end())
1417 {
1418 NS_LOG_ERROR(this << " no user found");
1419 }
1420 }
1421 else
1422 {
1423 it = m_ceBsrRxed.begin();
1424 m_nextRntiUl = (*it).first;
1425 }
1426 do
1427 {
1428 auto itRnti = rntiAllocated.find((*it).first);
1429 if ((itRnti != rntiAllocated.end()) || ((*it).second == 0))
1430 {
1431 // UE already allocated for UL-HARQ -> skip it
1432 NS_LOG_DEBUG(this << " UE already allocated in HARQ -> discarded, RNTI "
1433 << (*it).first);
1434 it++;
1435 if (it == m_ceBsrRxed.end())
1436 {
1437 // restart from the first
1438 it = m_ceBsrRxed.begin();
1439 }
1440 continue;
1441 }
1442 if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1443 {
1444 // limit to physical resources last resource assignment
1445 rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1446 // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1447 if (rbPerFlow < 3)
1448 {
1449 // terminate allocation
1450 rbPerFlow = 0;
1451 }
1452 }
1453
1454 UlDciListElement_s uldci;
1455 uldci.m_rnti = (*it).first;
1456 uldci.m_rbLen = rbPerFlow;
1457 bool allocated = false;
1458 NS_LOG_INFO(this << " RB Allocated " << rbAllocated << " rbPerFlow " << rbPerFlow
1459 << " flows " << nflows);
1460 while ((!allocated) && ((rbAllocated + rbPerFlow - m_cschedCellConfig.m_ulBandwidth) < 1) &&
1461 (rbPerFlow != 0))
1462 {
1463 // check availability
1464 bool free = true;
1465 for (int j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1466 {
1467 if (rbMap.at(j))
1468 {
1469 free = false;
1470 break;
1471 }
1472 }
1473 if (free)
1474 {
1475 uldci.m_rbStart = rbAllocated;
1476
1477 for (int j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1478 {
1479 rbMap.at(j) = true;
1480 // store info on allocation for managing ul-cqi interpretation
1481 rbgAllocationMap.at(j) = (*it).first;
1482 }
1483 rbAllocated += rbPerFlow;
1484 allocated = true;
1485 break;
1486 }
1487 rbAllocated++;
1488 if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1489 {
1490 // limit to physical resources last resource assignment
1491 rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1492 // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1493 if (rbPerFlow < 3)
1494 {
1495 // terminate allocation
1496 rbPerFlow = 0;
1497 }
1498 }
1499 }
1500 if (!allocated)
1501 {
1502 // unable to allocate new resource: finish scheduling
1503 m_nextRntiUl = (*it).first;
1504 if (!ret.m_dciList.empty())
1505 {
1507 }
1508 m_allocationMaps[params.m_sfnSf] = rbgAllocationMap;
1509 return;
1510 }
1511
1512 auto itCqi = m_ueCqi.find((*it).first);
1513 int cqi = 0;
1514 if (itCqi == m_ueCqi.end())
1515 {
1516 // no cqi info about this UE
1517 uldci.m_mcs = 0; // MCS 0 -> UL-AMC TBD
1518 }
1519 else
1520 {
1521 // take the lowest CQI value (worst RB)
1522 NS_ABORT_MSG_IF((*itCqi).second.empty(),
1523 "CQI of RNTI = " << (*it).first << " has expired");
1524 double minSinr = (*itCqi).second.at(uldci.m_rbStart);
1525 if (minSinr == NO_SINR)
1526 {
1527 minSinr = EstimateUlSinr((*it).first, uldci.m_rbStart);
1528 }
1529 for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1530 {
1531 double sinr = (*itCqi).second.at(i);
1532 if (sinr == NO_SINR)
1533 {
1534 sinr = EstimateUlSinr((*it).first, i);
1535 }
1536 if (sinr < minSinr)
1537 {
1538 minSinr = sinr;
1539 }
1540 }
1541
1542 // translate SINR -> cqi: WILD ACK: same as DL
1543 double s = log2(1 + (std::pow(10, minSinr / 10) / ((-std::log(5.0 * 0.00005)) / 1.5)));
1544 cqi = m_amc->GetCqiFromSpectralEfficiency(s);
1545 if (cqi == 0)
1546 {
1547 it++;
1548 if (it == m_ceBsrRxed.end())
1549 {
1550 // restart from the first
1551 it = m_ceBsrRxed.begin();
1552 }
1553 NS_LOG_DEBUG(this << " UE discarded for CQI = 0, RNTI " << uldci.m_rnti);
1554 // remove UE from allocation map
1555 for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1556 {
1557 rbgAllocationMap.at(i) = 0;
1558 }
1559 continue; // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
1560 }
1561 uldci.m_mcs = m_amc->GetMcsFromCqi(cqi);
1562 }
1563
1564 uldci.m_tbSize = (m_amc->GetUlTbSizeFromMcs(uldci.m_mcs, rbPerFlow) / 8);
1566 uldci.m_ndi = 1;
1567 uldci.m_cceIndex = 0;
1568 uldci.m_aggrLevel = 1;
1569 uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
1570 uldci.m_hopping = false;
1571 uldci.m_n2Dmrs = 0;
1572 uldci.m_tpc = 0; // no power control
1573 uldci.m_cqiRequest = false; // only period CQI at this stage
1574 uldci.m_ulIndex = 0; // TDD parameter
1575 uldci.m_dai = 1; // TDD parameter
1576 uldci.m_freqHopping = 0;
1577 uldci.m_pdcchPowerOffset = 0; // not used
1578 ret.m_dciList.push_back(uldci);
1579 // store DCI for HARQ_PERIOD
1580 uint8_t harqId = 0;
1581 if (m_harqOn)
1582 {
1583 auto itProcId = m_ulHarqCurrentProcessId.find(uldci.m_rnti);
1584 if (itProcId == m_ulHarqCurrentProcessId.end())
1585 {
1586 NS_FATAL_ERROR("No info find in HARQ buffer for UE " << uldci.m_rnti);
1587 }
1588 harqId = (*itProcId).second;
1589 auto itDci = m_ulHarqProcessesDciBuffer.find(uldci.m_rnti);
1590 if (itDci == m_ulHarqProcessesDciBuffer.end())
1591 {
1592 NS_FATAL_ERROR("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI "
1593 << uldci.m_rnti);
1594 }
1595 (*itDci).second.at(harqId) = uldci;
1596 // Update HARQ process status (RV 0)
1597 auto itStat = m_ulHarqProcessesStatus.find(uldci.m_rnti);
1598 if (itStat == m_ulHarqProcessesStatus.end())
1599 {
1600 NS_LOG_ERROR("No info find in HARQ buffer for UE (might change eNB) "
1601 << uldci.m_rnti);
1602 }
1603 (*itStat).second.at(harqId) = 0;
1604 }
1605
1606 NS_LOG_INFO(this << " UE Allocation RNTI " << (*it).first << " startPRB "
1607 << (uint32_t)uldci.m_rbStart << " nPRB " << (uint32_t)uldci.m_rbLen
1608 << " CQI " << cqi << " MCS " << (uint32_t)uldci.m_mcs << " TBsize "
1609 << uldci.m_tbSize << " RbAlloc " << rbAllocated << " harqId "
1610 << (uint16_t)harqId);
1611
1612 // update TTI UE stats
1613 auto itStats = m_flowStatsUl.find((*it).first);
1614 if (itStats != m_flowStatsUl.end())
1615 {
1616 (*itStats).second.lastTtiBytesTransmitted = uldci.m_tbSize;
1617 }
1618 else
1619 {
1620 NS_LOG_DEBUG(this << " No Stats for this allocated UE");
1621 }
1622
1623 it++;
1624 if (it == m_ceBsrRxed.end())
1625 {
1626 // restart from the first
1627 it = m_ceBsrRxed.begin();
1628 }
1629 if ((rbAllocated == m_cschedCellConfig.m_ulBandwidth) || (rbPerFlow == 0))
1630 {
1631 // Stop allocation: no more PRBs
1632 m_nextRntiUl = (*it).first;
1633 break;
1634 }
1635 } while (((*it).first != m_nextRntiUl) && (rbPerFlow != 0));
1636
1637 // Update global UE stats
1638 // update UEs stats
1639 for (auto itStats = m_flowStatsUl.begin(); itStats != m_flowStatsUl.end(); itStats++)
1640 {
1641 (*itStats).second.totalBytesTransmitted += (*itStats).second.lastTtiBytesTransmitted;
1642 // update average throughput (see eq. 12.3 of Sec 12.3.1.2 of LTE – The UMTS Long Term
1643 // Evolution, Ed Wiley)
1644 (*itStats).second.lastAveragedThroughput =
1645 ((1.0 - (1.0 / m_timeWindow)) * (*itStats).second.lastAveragedThroughput) +
1646 ((1.0 / m_timeWindow) * (double)((*itStats).second.lastTtiBytesTransmitted / 0.001));
1647 NS_LOG_INFO(this << " UE total bytes " << (*itStats).second.totalBytesTransmitted);
1648 NS_LOG_INFO(this << " UE average throughput " << (*itStats).second.lastAveragedThroughput);
1649 (*itStats).second.lastTtiBytesTransmitted = 0;
1650 }
1651 m_allocationMaps[params.m_sfnSf] = rbgAllocationMap;
1653}
1654
1655void
1661
1662void
1668
1669void
1672{
1673 NS_LOG_FUNCTION(this);
1674
1675 for (unsigned int i = 0; i < params.m_macCeList.size(); i++)
1676 {
1677 if (params.m_macCeList.at(i).m_macCeType == MacCeListElement_s::BSR)
1678 {
1679 // buffer status report
1680 // note that this scheduler does not differentiate the
1681 // allocation according to which LCGs have more/less bytes
1682 // to send.
1683 // Hence the BSR of different LCGs are just summed up to get
1684 // a total queue size that is used for allocation purposes.
1685
1686 uint32_t buffer = 0;
1687 for (uint8_t lcg = 0; lcg < 4; ++lcg)
1688 {
1689 uint8_t bsrId = params.m_macCeList.at(i).m_macCeValue.m_bufferStatus.at(lcg);
1690 buffer += BufferSizeLevelBsr::BsrId2BufferSize(bsrId);
1691 }
1692
1693 uint16_t rnti = params.m_macCeList.at(i).m_rnti;
1694 NS_LOG_LOGIC(this << "RNTI=" << rnti << " buffer=" << buffer);
1695 auto it = m_ceBsrRxed.find(rnti);
1696 if (it == m_ceBsrRxed.end())
1697 {
1698 // create the new entry
1699 m_ceBsrRxed.insert(std::pair<uint16_t, uint32_t>(rnti, buffer));
1700 }
1701 else
1702 {
1703 // update the buffer size value
1704 (*it).second = buffer;
1705 }
1706 }
1707 }
1708}
1709
1710void
1713{
1714 NS_LOG_FUNCTION(this);
1715 // retrieve the allocation for this subframe
1716 switch (m_ulCqiFilter)
1717 {
1719 // filter all the CQIs that are not SRS based
1720 if (params.m_ulCqi.m_type != UlCqi_s::SRS)
1721 {
1722 return;
1723 }
1724 }
1725 break;
1727 // filter all the CQIs that are not SRS based
1728 if (params.m_ulCqi.m_type != UlCqi_s::PUSCH)
1729 {
1730 return;
1731 }
1732 }
1733 break;
1734 default:
1735 NS_FATAL_ERROR("Unknown UL CQI type");
1736 }
1737
1738 switch (params.m_ulCqi.m_type)
1739 {
1740 case UlCqi_s::PUSCH: {
1741 NS_LOG_DEBUG(this << " Collect PUSCH CQIs of Frame no. " << (params.m_sfnSf >> 4)
1742 << " subframe no. " << (0xF & params.m_sfnSf));
1743 auto itMap = m_allocationMaps.find(params.m_sfnSf);
1744 if (itMap == m_allocationMaps.end())
1745 {
1746 return;
1747 }
1748 for (uint32_t i = 0; i < (*itMap).second.size(); i++)
1749 {
1750 // convert from fixed point notation Sxxxxxxxxxxx.xxx to double
1751 double sinr = LteFfConverter::fpS11dot3toDouble(params.m_ulCqi.m_sinr.at(i));
1752 auto itCqi = m_ueCqi.find((*itMap).second.at(i));
1753 if (itCqi == m_ueCqi.end())
1754 {
1755 // create a new entry
1756 std::vector<double> newCqi;
1757 for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1758 {
1759 if (i == j)
1760 {
1761 newCqi.push_back(sinr);
1762 }
1763 else
1764 {
1765 // initialize with NO_SINR value.
1766 newCqi.push_back(NO_SINR);
1767 }
1768 }
1769 m_ueCqi[(*itMap).second.at(i)] = newCqi;
1770 // generate correspondent timer
1771 m_ueCqiTimers[(*itMap).second.at(i)] = m_cqiTimersThreshold;
1772 }
1773 else
1774 {
1775 // update the value
1776 (*itCqi).second.at(i) = sinr;
1777 NS_LOG_DEBUG(this << " RNTI " << (*itMap).second.at(i) << " RB " << i << " SINR "
1778 << sinr);
1779 // update correspondent timer
1780 auto itTimers = m_ueCqiTimers.find((*itMap).second.at(i));
1781 (*itTimers).second = m_cqiTimersThreshold;
1782 }
1783 }
1784 // remove obsolete info on allocation
1785 m_allocationMaps.erase(itMap);
1786 }
1787 break;
1788 case UlCqi_s::SRS: {
1789 // get the RNTI from vendor specific parameters
1790 uint16_t rnti = 0;
1791 NS_ASSERT(!params.m_vendorSpecificList.empty());
1792 for (std::size_t i = 0; i < params.m_vendorSpecificList.size(); i++)
1793 {
1794 if (params.m_vendorSpecificList.at(i).m_type == SRS_CQI_RNTI_VSP)
1795 {
1796 Ptr<SrsCqiRntiVsp> vsp =
1797 DynamicCast<SrsCqiRntiVsp>(params.m_vendorSpecificList.at(i).m_value);
1798 rnti = vsp->GetRnti();
1799 }
1800 }
1801 auto itCqi = m_ueCqi.find(rnti);
1802 if (itCqi == m_ueCqi.end())
1803 {
1804 // create a new entry
1805 std::vector<double> newCqi;
1806 for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1807 {
1808 double sinr = LteFfConverter::fpS11dot3toDouble(params.m_ulCqi.m_sinr.at(j));
1809 newCqi.push_back(sinr);
1810 NS_LOG_INFO(this << " RNTI " << rnti << " new SRS-CQI for RB " << j << " value "
1811 << sinr);
1812 }
1813 m_ueCqi.insert(std::pair<uint16_t, std::vector<double>>(rnti, newCqi));
1814 // generate correspondent timer
1815 m_ueCqiTimers.insert(std::pair<uint16_t, uint32_t>(rnti, m_cqiTimersThreshold));
1816 }
1817 else
1818 {
1819 // update the values
1820 for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1821 {
1822 double sinr = LteFfConverter::fpS11dot3toDouble(params.m_ulCqi.m_sinr.at(j));
1823 (*itCqi).second.at(j) = sinr;
1824 NS_LOG_INFO(this << " RNTI " << rnti << " update SRS-CQI for RB " << j << " value "
1825 << sinr);
1826 }
1827 // update correspondent timer
1828 auto itTimers = m_ueCqiTimers.find(rnti);
1829 (*itTimers).second = m_cqiTimersThreshold;
1830 }
1831 }
1832 break;
1833 case UlCqi_s::PUCCH_1:
1834 case UlCqi_s::PUCCH_2:
1835 case UlCqi_s::PRACH: {
1836 NS_FATAL_ERROR("FdBetFfMacScheduler supports only PUSCH and SRS UL-CQIs");
1837 }
1838 break;
1839 default:
1840 NS_FATAL_ERROR("Unknown type of UL-CQI");
1841 }
1842}
1843
1844void
1846{
1847 // refresh DL CQI P01 Map
1848 auto itP10 = m_p10CqiTimers.begin();
1849 while (itP10 != m_p10CqiTimers.end())
1850 {
1851 NS_LOG_INFO(this << " P10-CQI for user " << (*itP10).first << " is "
1852 << (uint32_t)(*itP10).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1853 if ((*itP10).second == 0)
1854 {
1855 // delete correspondent entries
1856 auto itMap = m_p10CqiRxed.find((*itP10).first);
1857 NS_ASSERT_MSG(itMap != m_p10CqiRxed.end(),
1858 " Does not find CQI report for user " << (*itP10).first);
1859 NS_LOG_INFO(this << " P10-CQI expired for user " << (*itP10).first);
1860 m_p10CqiRxed.erase(itMap);
1861 auto temp = itP10;
1862 itP10++;
1863 m_p10CqiTimers.erase(temp);
1864 }
1865 else
1866 {
1867 (*itP10).second--;
1868 itP10++;
1869 }
1870 }
1871
1872 // refresh DL CQI A30 Map
1873 auto itA30 = m_a30CqiTimers.begin();
1874 while (itA30 != m_a30CqiTimers.end())
1875 {
1876 NS_LOG_INFO(this << " A30-CQI for user " << (*itA30).first << " is "
1877 << (uint32_t)(*itA30).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1878 if ((*itA30).second == 0)
1879 {
1880 // delete correspondent entries
1881 auto itMap = m_a30CqiRxed.find((*itA30).first);
1882 NS_ASSERT_MSG(itMap != m_a30CqiRxed.end(),
1883 " Does not find CQI report for user " << (*itA30).first);
1884 NS_LOG_INFO(this << " A30-CQI expired for user " << (*itA30).first);
1885 m_a30CqiRxed.erase(itMap);
1886 auto temp = itA30;
1887 itA30++;
1888 m_a30CqiTimers.erase(temp);
1889 }
1890 else
1891 {
1892 (*itA30).second--;
1893 itA30++;
1894 }
1895 }
1896}
1897
1898void
1900{
1901 // refresh UL CQI Map
1902 auto itUl = m_ueCqiTimers.begin();
1903 while (itUl != m_ueCqiTimers.end())
1904 {
1905 NS_LOG_INFO(this << " UL-CQI for user " << (*itUl).first << " is "
1906 << (uint32_t)(*itUl).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1907 if ((*itUl).second == 0)
1908 {
1909 // delete correspondent entries
1910 auto itMap = m_ueCqi.find((*itUl).first);
1911 NS_ASSERT_MSG(itMap != m_ueCqi.end(),
1912 " Does not find CQI report for user " << (*itUl).first);
1913 NS_LOG_INFO(this << " UL-CQI exired for user " << (*itUl).first);
1914 (*itMap).second.clear();
1915 m_ueCqi.erase(itMap);
1916 auto temp = itUl;
1917 itUl++;
1918 m_ueCqiTimers.erase(temp);
1919 }
1920 else
1921 {
1922 (*itUl).second--;
1923 itUl++;
1924 }
1925 }
1926}
1927
1928void
1929FdBetFfMacScheduler::UpdateDlRlcBufferInfo(uint16_t rnti, uint8_t lcid, uint16_t size)
1930{
1931 LteFlowId_t flow(rnti, lcid);
1932 auto it = m_rlcBufferReq.find(flow);
1933 if (it != m_rlcBufferReq.end())
1934 {
1935 NS_LOG_INFO(this << " UE " << rnti << " LC " << (uint16_t)lcid << " txqueue "
1936 << (*it).second.m_rlcTransmissionQueueSize << " retxqueue "
1937 << (*it).second.m_rlcRetransmissionQueueSize << " status "
1938 << (*it).second.m_rlcStatusPduSize << " decrease " << size);
1939 // Update queues: RLC tx order Status, ReTx, Tx
1940 // Update status queue
1941 if (((*it).second.m_rlcStatusPduSize > 0) && (size >= (*it).second.m_rlcStatusPduSize))
1942 {
1943 (*it).second.m_rlcStatusPduSize = 0;
1944 }
1945 else if (((*it).second.m_rlcRetransmissionQueueSize > 0) &&
1946 (size >= (*it).second.m_rlcRetransmissionQueueSize))
1947 {
1948 (*it).second.m_rlcRetransmissionQueueSize = 0;
1949 }
1950 else if ((*it).second.m_rlcTransmissionQueueSize > 0)
1951 {
1952 uint32_t rlcOverhead;
1953 if (lcid == 1)
1954 {
1955 // for SRB1 (using RLC AM) it's better to
1956 // overestimate RLC overhead rather than
1957 // underestimate it and risk unneeded
1958 // segmentation which increases delay
1959 rlcOverhead = 4;
1960 }
1961 else
1962 {
1963 // minimum RLC overhead due to header
1964 rlcOverhead = 2;
1965 }
1966 // update transmission queue
1967 if ((*it).second.m_rlcTransmissionQueueSize <= size - rlcOverhead)
1968 {
1969 (*it).second.m_rlcTransmissionQueueSize = 0;
1970 }
1971 else
1972 {
1973 (*it).second.m_rlcTransmissionQueueSize -= size - rlcOverhead;
1974 }
1975 }
1976 }
1977 else
1978 {
1979 NS_LOG_ERROR(this << " Does not find DL RLC Buffer Report of UE " << rnti);
1980 }
1981}
1982
1983void
1985{
1986 size = size - 2; // remove the minimum RLC overhead
1987 auto it = m_ceBsrRxed.find(rnti);
1988 if (it != m_ceBsrRxed.end())
1989 {
1990 NS_LOG_INFO(this << " UE " << rnti << " size " << size << " BSR " << (*it).second);
1991 if ((*it).second >= size)
1992 {
1993 (*it).second -= size;
1994 }
1995 else
1996 {
1997 (*it).second = 0;
1998 }
1999 }
2000 else
2001 {
2002 NS_LOG_ERROR(this << " Does not find BSR report info of UE " << rnti);
2003 }
2004}
2005
2006void
2008{
2009 NS_LOG_FUNCTION(this << " RNTI " << rnti << " txMode " << (uint16_t)txMode);
2011 params.m_rnti = rnti;
2012 params.m_transmissionMode = txMode;
2014}
2015
2016} // namespace ns3
AttributeValue implementation for Boolean.
Definition boolean.h:26
static uint32_t BsrId2BufferSize(uint8_t val)
Convert BSR ID to buffer size.
Implements the SCHED SAP and CSCHED SAP for a Frequency Domain Blind Equal Throughput scheduler.
std::map< uint16_t, uint8_t > m_uesTxMode
txMode of the UEs
std::vector< RachListElement_s > m_rachList
rach list
void UpdateUlRlcBufferInfo(uint16_t rnti, uint16_t size)
Update UL RLC buffer info.
void DoSchedDlTriggerReq(const FfMacSchedSapProvider::SchedDlTriggerReqParameters &params)
Sched DL trigger request function.
void DoSchedUlSrInfoReq(const FfMacSchedSapProvider::SchedUlSrInfoReqParameters &params)
Sched UL SR info request function.
std::map< uint16_t, uint8_t > m_ulHarqCurrentProcessId
UL HARQ current process ID.
unsigned int LcActivePerFlow(uint16_t rnti)
LC active per flow function.
void DoCschedCellConfigReq(const FfMacCschedSapProvider::CschedCellConfigReqParameters &params)
CSched cell config request function.
void DoDispose() override
Destructor implementation.
void DoCschedLcConfigReq(const FfMacCschedSapProvider::CschedLcConfigReqParameters &params)
Csched LC config request function.
~FdBetFfMacScheduler() override
Destructor.
void DoSchedDlMacBufferReq(const FfMacSchedSapProvider::SchedDlMacBufferReqParameters &params)
Sched DL MAC buffer request function.
FfMacSchedSapProvider * m_schedSapProvider
sched sap provider
std::map< uint16_t, uint8_t > m_p10CqiRxed
Map of UE's DL CQI P01 received.
LteFfrSapUser * m_ffrSapUser
ffr sap user
std::map< uint16_t, fdbetsFlowPerf_t > m_flowStatsDl
Map of UE statistics (per RNTI basis) in downlink.
bool m_harqOn
m_harqOn when false inhibit the HARQ mechanisms (by default active)
void DoSchedUlMacCtrlInfoReq(const FfMacSchedSapProvider::SchedUlMacCtrlInfoReqParameters &params)
Sched UL MAC control info request function.
std::map< uint16_t, uint32_t > m_a30CqiTimers
Map of UE's timers on DL CQI A30 received.
std::map< uint16_t, std::vector< double > > m_ueCqi
Map of UEs' UL-CQI per RBG.
FfMacCschedSapProvider::CschedCellConfigReqParameters m_cschedCellConfig
csched cell config
void SetLteFfrSapProvider(LteFfrSapProvider *s) override
Set the Provider part of the LteFfrSap that this Scheduler will interact with.
LteFfrSapUser * GetLteFfrSapUser() override
void RefreshUlCqiMaps()
Refresh UL CQI maps.
void DoSchedUlTriggerReq(const FfMacSchedSapProvider::SchedUlTriggerReqParameters &params)
Sched UL trigger request function.
void DoSchedUlCqiInfoReq(const FfMacSchedSapProvider::SchedUlCqiInfoReqParameters &params)
Sched UL CGI info request function.
std::map< LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters > m_rlcBufferReq
Vectors of UE's LC info.
std::map< uint16_t, DlHarqProcessesTimer_t > m_dlHarqProcessesTimer
DL HARQ process timer.
friend class MemberSchedSapProvider< FdBetFfMacScheduler >
allow MemberSchedSapProvider<FdBetFfMacScheduler> class friend access
std::map< uint16_t, UlHarqProcessesStatus_t > m_ulHarqProcessesStatus
UL HARQ process status.
std::map< uint16_t, uint8_t > m_dlHarqCurrentProcessId
DL HARQ current process ID.
FfMacCschedSapProvider * GetFfMacCschedSapProvider() override
void TransmissionModeConfigurationUpdate(uint16_t rnti, uint8_t txMode)
Transmission mode configuration update function.
void DoSchedDlCqiInfoReq(const FfMacSchedSapProvider::SchedDlCqiInfoReqParameters &params)
Sched DL CGI info request function.
std::map< uint16_t, DlHarqProcessesStatus_t > m_dlHarqProcessesStatus
DL HARQ process status.
std::map< uint16_t, uint32_t > m_p10CqiTimers
Map of UE's timers on DL CQI P01 received.
std::map< uint16_t, UlHarqProcessesDciBuffer_t > m_ulHarqProcessesDciBuffer
UL HARQ process DCI Buffer.
std::map< uint16_t, uint32_t > m_ceBsrRxed
Map of UE's buffer status reports received.
void DoCschedUeConfigReq(const FfMacCschedSapProvider::CschedUeConfigReqParameters &params)
Csched UE config request function.
bool HarqProcessAvailability(uint16_t rnti)
Return the availability of free process for the RNTI specified.
uint8_t UpdateHarqProcessId(uint16_t rnti)
Update and return a new process Id for the RNTI specified.
void SetFfMacSchedSapUser(FfMacSchedSapUser *s) override
set the user part of the FfMacSchedSap that this Scheduler will interact with.
FfMacCschedSapUser * m_cschedSapUser
csched sap user
void DoSchedDlRachInfoReq(const FfMacSchedSapProvider::SchedDlRachInfoReqParameters &params)
Sched DL RACH info request function.
std::map< uint16_t, fdbetsFlowPerf_t > m_flowStatsUl
Map of UE statistics (per RNTI basis)
LteFfrSapProvider * m_ffrSapProvider
ffr sap provider
double EstimateUlSinr(uint16_t rnti, uint16_t rb)
Estimate UL SNR.
FfMacSchedSapProvider * GetFfMacSchedSapProvider() override
std::vector< uint16_t > m_rachAllocationMap
rach allocation map
void RefreshHarqProcesses()
Refresh HARQ processes according to the timers.
void DoSchedDlPagingBufferReq(const FfMacSchedSapProvider::SchedDlPagingBufferReqParameters &params)
Sched DL paging buffer request function.
std::map< uint16_t, std::vector< uint16_t > > m_allocationMaps
Map of previous allocated UE per RBG (used to retrieve info from UL-CQI)
std::map< uint16_t, DlHarqRlcPduListBuffer_t > m_dlHarqProcessesRlcPduListBuffer
DL HARQ process RLC PDU List.
void DoCschedLcReleaseReq(const FfMacCschedSapProvider::CschedLcReleaseReqParameters &params)
CSched LC release request function.
void DoSchedUlNoiseInterferenceReq(const FfMacSchedSapProvider::SchedUlNoiseInterferenceReqParameters &params)
Sched UL noise interference request function.
void RefreshDlCqiMaps()
Refresh DL CQI maps.
FfMacCschedSapProvider * m_cschedSapProvider
csched sap provider
void SetFfMacCschedSapUser(FfMacCschedSapUser *s) override
set the user part of the FfMacCschedSap that this Scheduler will interact with.
static TypeId GetTypeId()
Get the type ID.
std::map< uint16_t, SbMeasResult_s > m_a30CqiRxed
Map of UE's DL CQI A30 received.
void UpdateDlRlcBufferInfo(uint16_t rnti, uint8_t lcid, uint16_t size)
Update DL RLC buffer info.
uint16_t m_nextRntiUl
RNTI of the next user to be served next scheduling in UL.
uint8_t m_ulGrantMcs
MCS for UL grant (default 0)
std::map< uint16_t, uint32_t > m_ueCqiTimers
Map of UEs' timers on UL-CQI per RBG.
std::vector< DlInfoListElement_s > m_dlInfoListBuffered
DL HARQ retx buffered.
int GetRbgSize(int dlbandwidth)
Get RBG size function.
FfMacSchedSapUser * m_schedSapUser
sched sap user
void DoCschedUeReleaseReq(const FfMacCschedSapProvider::CschedUeReleaseReqParameters &params)
CSched UE release request function.
std::map< uint16_t, DlHarqProcessesDciBuffer_t > m_dlHarqProcessesDciBuffer
DL HARQ process DCI buffer.
friend class MemberCschedSapProvider< FdBetFfMacScheduler >
allow MemberCschedSapProvider<FdBetFfMacScheduler> class friend access
void DoSchedDlRlcBufferReq(const FfMacSchedSapProvider::SchedDlRlcBufferReqParameters &params)
Sched DL RLC buffer request function.
Provides the CSCHED SAP.
FfMacCschedSapUser class.
virtual void CschedUeConfigCnf(const CschedUeConfigCnfParameters &params)=0
CSCHED_UE_CONFIG_CNF.
virtual void CschedUeConfigUpdateInd(const CschedUeConfigUpdateIndParameters &params)=0
CSCHED_UE_UPDATE_IND.
Provides the SCHED SAP.
FfMacSchedSapUser class.
virtual void SchedUlConfigInd(const SchedUlConfigIndParameters &params)=0
SCHED_UL_CONFIG_IND.
virtual void SchedDlConfigInd(const SchedDlConfigIndParameters &params)=0
SCHED_DL_CONFIG_IND.
This abstract base class identifies the interface by means of which the helper object can plug on the...
UlCqiFilter_t m_ulCqiFilter
UL CQI filter.
static double fpS11dot3toDouble(uint16_t val)
Convert from fixed point S11.3 notation to double.
Service Access Point (SAP) offered by the Frequency Reuse algorithm instance to the MAC Scheduler ins...
Definition lte-ffr-sap.h:29
Service Access Point (SAP) offered by the eNodeB RRC instance to the Frequency Reuse algorithm instan...
Smart pointer class similar to boost::intrusive_ptr.
static Time Now()
Return the current simulation virtual time.
Definition simulator.cc:197
static uint8_t TxMode2LayerNum(uint8_t txMode)
Transmit mode 2 layer number.
a unique identifier for an interface.
Definition type-id.h:49
TypeId SetParent(TypeId tid)
Set the parent TypeId.
Definition type-id.cc:1001
Hold an unsigned integer type.
Definition uinteger.h:34
#define NS_ASSERT(condition)
At runtime, in debugging builds, if this condition is not true, the program prints the source file,...
Definition assert.h:55
#define NS_ASSERT_MSG(condition, message)
At runtime, in debugging builds, if this condition is not true, the program prints the message to out...
Definition assert.h:75
Ptr< const AttributeChecker > MakeBooleanChecker()
Definition boolean.cc:113
Ptr< const AttributeAccessor > MakeBooleanAccessor(T1 a1)
Create an AttributeAccessor for a class data member, or a lone class get functor or set method.
Definition boolean.h:70
Ptr< const AttributeChecker > MakeUintegerChecker()
Definition uinteger.h:85
Ptr< const AttributeAccessor > MakeUintegerAccessor(T1 a1)
Create an AttributeAccessor for a class data member, or a lone class get functor or set method.
Definition uinteger.h:35
#define NS_FATAL_ERROR(msg)
Report a fatal error with a message and terminate.
#define NS_ABORT_MSG_IF(cond, msg)
Abnormal program termination if a condition is true, with a message.
Definition abort.h:97
#define NS_LOG_ERROR(msg)
Use NS_LOG to output a message of level LOG_ERROR.
Definition log.h:243
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition log.h:191
#define NS_LOG_DEBUG(msg)
Use NS_LOG to output a message of level LOG_DEBUG.
Definition log.h:257
#define NS_LOG_LOGIC(msg)
Use NS_LOG to output a message of level LOG_LOGIC.
Definition log.h:271
#define NS_LOG_FUNCTION(parameters)
If log level LOG_FUNCTION is enabled, this macro will output all input parameters separated by ",...
#define NS_LOG_INFO(msg)
Use NS_LOG to output a message of level LOG_INFO.
Definition log.h:264
Ptr< T > CreateObject(Args &&... args)
Create an object by type, with varying number of constructor parameters.
Definition object.h:619
#define NS_OBJECT_ENSURE_REGISTERED(type)
Register an Object subclass with the TypeId system.
Definition object-base.h:35
#define HARQ_PERIOD
Definition lte-common.h:19
#define SRS_CQI_RNTI_VSP
Every class exported by the ns3 library is enclosed in the ns3 namespace.
std::vector< uint8_t > DlHarqProcessesTimer_t
DL HARQ process timer vector.
constexpr double NO_SINR
Value for SINR outside the range defined by FF-API, used to indicate that there is no CQI for this el...
std::vector< uint8_t > UlHarqProcessesStatus_t
UL HARQ process status vector.
std::vector< uint8_t > DlHarqProcessesStatus_t
DL HARQ process status vector.
Ptr< T1 > DynamicCast(const Ptr< T2 > &p)
Cast a Ptr.
Definition ptr.h:580
std::vector< DlDciListElement_s > DlHarqProcessesDciBuffer_t
DL HARQ process DCI buffer vector.
@ SUCCESS
constexpr uint32_t HARQ_DL_TIMEOUT
HARQ DL timeout.
constexpr uint32_t HARQ_PROC_NUM
Number of HARQ processes.
std::vector< RlcPduList_t > DlHarqRlcPduListBuffer_t
Vector of the 8 HARQ processes per UE.
std::vector< UlDciListElement_s > UlHarqProcessesDciBuffer_t
UL HARQ process DCI buffer vector.
static const int FdBetType0AllocationRbg[4]
FdBetType0AllocationRbg array (see table 7.1.6.1-1 of 36.213)
See section 4.3.8 buildDataListElement.
std::vector< std::vector< struct RlcPduListElement_s > > m_rlcPduList
RLC PDU list.
struct DlDciListElement_s m_dci
DCI.
See section 4.3.10 buildRARListElement.
See section 4.3.1 dlDciListElement.
std::vector< uint8_t > m_ndi
New data indicator.
uint8_t m_harqProcess
HARQ process.
uint32_t m_rbBitmap
RB bitmap.
std::vector< uint8_t > m_mcs
MCS.
uint8_t m_resAlloc
The type of resource allocation.
std::vector< uint16_t > m_tbsSize
The TBs size.
std::vector< uint8_t > m_rv
Redundancy version.
uint8_t m_tpc
Tx power control command.
Parameters of the CSCHED_LC_CONFIG_REQ primitive.
Parameters of the CSCHED_LC_RELEASE_REQ primitive.
Parameters of the CSCHED_UE_CONFIG_REQ primitive.
Parameters of the CSCHED_UE_RELEASE_REQ primitive.
Parameters of the CSCHED_UE_CONFIG_CNF primitive.
Parameters of the CSCHED_UE_CONFIG_UPDATE_IND primitive.
Parameters of the SCHED_DL_CQI_INFO_REQ primitive.
Parameters of the SCHED_DL_MAC_BUFFER_REQ primitive.
Parameters of the SCHED_DL_PAGING_BUFFER_REQ primitive.
Parameters of the SCHED_DL_RACH_INFO_REQ primitive.
Parameters of the SCHED_DL_TRIGGER_REQ primitive.
Parameters of the SCHED_UL_CQI_INFO_REQ primitive.
Parameters of the SCHED_UL_MAC_CTRL_INFO_REQ primitive.
Parameters of the SCHED_UL_NOISE_INTERFERENCE_REQ primitive.
Parameters of the SCHED_UL_SR_INFO_REQ primitive.
Parameters of the SCHED_UL_TRIGGER_REQ primitive.
std::vector< BuildDataListElement_s > m_buildDataList
build data list
std::vector< BuildRarListElement_s > m_buildRarList
build rar list
uint8_t m_nrOfPdcchOfdmSymbols
number of PDCCH OFDM symbols
Parameters of the SCHED_UL_CONFIG_IND primitive.
std::vector< UlDciListElement_s > m_dciList
DCI list.
LteFlowId structure.
Definition lte-common.h:32
See section 4.3.9 rlcPDU_ListElement.
uint8_t m_logicalChannelIdentity
logical channel identity
See section 4.3.2 ulDciListElement.
int8_t m_pdcchPowerOffset
CCH power offset.
int8_t m_tpc
Tx power control command.
uint8_t m_dai
DL assignment index.
uint8_t m_cceIndex
Control Channel Element index.
uint8_t m_ulIndex
UL index.
uint8_t m_ueTxAntennaSelection
UE antenna selection.
bool m_cqiRequest
CQI request.
uint8_t m_freqHopping
freq hopping
uint8_t m_aggrLevel
The aggregation level.
bool m_ulDelay
UL delay?
int8_t m_tpc
Tx power control command.
bool m_cqiRequest
CQI request?
bool m_hopping
hopping?
uint16_t m_tbSize
size
uint8_t m_rbLen
length
uint8_t m_mcs
MCS.
uint8_t m_rbStart
start
uint16_t m_rnti
RNTI.
fdbetsFlowPerf_t structure
unsigned int lastTtiBytesTransmitted
last total bytes transmitted
double lastAveragedThroughput
last averaged throughput
unsigned long totalBytesTransmitted
total bytes transmitted
Time flowStart
flow start time