A Discrete-Event Network Simulator
API
Loading...
Searching...
No Matches
tap-creator.cc
Go to the documentation of this file.
1/*
2 * Copyright (c) 2009 University of Washington
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation;
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
16 */
17
18#include "tap-encode-decode.h"
19
20#include "ns3/mac48-address.h"
21
22#include <cerrno>
23#include <cstdlib>
24#include <cstring> // for strerror
25#include <fcntl.h>
26#include <iomanip>
27#include <iostream>
28#include <linux/if_tun.h>
29#include <net/if.h>
30#include <net/route.h>
31#include <netinet/in.h>
32#include <sstream>
33#include <stdint.h>
34#include <string>
35#include <sys/ioctl.h>
36#include <sys/socket.h>
37#include <sys/types.h>
38#include <sys/un.h>
39#include <unistd.h>
40
41#define TAP_MAGIC 95549
42
43static bool gVerbose = false; // Set to true to turn on logging messages.
44
45#define LOG(msg) \
46 if (gVerbose) \
47 { \
48 std::cout << __FUNCTION__ << "(): " << msg << std::endl; \
49 }
50
51#define ABORT(msg, printErrno) \
52 std::cout << __FILE__ << ": fatal error at line " << __LINE__ << ": " << __FUNCTION__ \
53 << "(): " << msg << std::endl; \
54 if (printErrno) \
55 { \
56 std::cout << " errno = " << errno << " (" << std::strerror(errno) << ")" << std::endl; \
57 } \
58 std::exit(-1);
59
60#define ABORT_IF(cond, msg, printErrno) \
61 if (cond) \
62 { \
63 ABORT(msg, printErrno); \
64 }
65
66static sockaddr
68{
69 union {
70 struct sockaddr any_socket;
71 struct sockaddr_in si;
72 } s;
73
74 s.si.sin_family = AF_INET;
75 s.si.sin_port = 0; // unused
76 s.si.sin_addr.s_addr = htonl(networkOrder);
77 return s.any_socket;
78}
79
80static void
81SendSocket(const char* path, int fd)
82{
83 //
84 // Open a Unix (local interprocess) socket to call back to the tap bridge
85 //
86 LOG("Create Unix socket");
87 int sock = socket(PF_UNIX, SOCK_DGRAM, 0);
88 ABORT_IF(sock == -1, "Unable to open socket", 1);
89
90 //
91 // We have this string called path, which is really a hex representation
92 // of the endpoint that the tap bridge created. It used a forward encoding
93 // method (TapBufferToString) to take the sockaddr_un it made and passed
94 // the resulting string to us. So we need to take the inverse method
95 // (TapStringToBuffer) and build the same sockaddr_un over here.
96 //
97 socklen_t clientAddrLen;
98 struct sockaddr_un clientAddr;
99
100 LOG("Decode address " << path);
101 bool rc = ns3::TapStringToBuffer(path, (uint8_t*)&clientAddr, &clientAddrLen);
102 ABORT_IF(rc == false, "Unable to decode path", 0);
103
104 LOG("Connect");
105 int status = connect(sock, (struct sockaddr*)&clientAddr, clientAddrLen);
106 ABORT_IF(status == -1, "Unable to connect to tap bridge", 1);
107
108 LOG("Connected");
109
110 //
111 // This is arcane enough that a few words are worthwhile to explain what's
112 // going on here.
113 //
114 // The interesting information (the socket FD) is going to go back to the
115 // tap bridge as an integer of ancillary data. Ancillary data is bits
116 // that are not a part a socket payload (out-of-band data). We're also
117 // going to send one integer back. It's just initialized to a magic number
118 // we use to make sure that the tap bridge is talking to the tap socket
119 // creator and not some other creator process (emu, specifically)
120 //
121 // The struct iovec below is part of a scatter-gather list. It describes a
122 // buffer. In this case, it describes a buffer (an integer) containing the
123 // data that we're going to send back to the tap bridge (that magic number).
124 //
125 struct iovec iov;
126 uint32_t magic = TAP_MAGIC;
127 iov.iov_base = &magic;
128 iov.iov_len = sizeof(magic);
129
130 //
131 // The CMSG macros you'll see below are used to create and access control
132 // messages (which is another name for ancillary data). The ancillary
133 // data is made up of pairs of struct cmsghdr structures and associated
134 // data arrays.
135 //
136 // First, we're going to allocate a buffer on the stack to contain our
137 // data array (that contains the socket). Sometimes you'll see this called
138 // an "ancillary element" but the msghdr uses the control message termimology
139 // so we call it "control."
140 //
141 constexpr size_t msg_size = sizeof(int);
142 char control[CMSG_SPACE(msg_size)];
143
144 //
145 // There is a msghdr that is used to minimize the number of parameters
146 // passed to sendmsg (which we will use to send our ancillary data). This
147 // structure uses terminology corresponding to control messages, so you'll
148 // see msg_control, which is the pointer to the ancillary data and controllen
149 // which is the size of the ancillary data array.
150 //
151 // So, initialize the message header that describes our ancillary/control data
152 // and point it to the control message/ancillary data we just allocated space
153 // for.
154 //
155 struct msghdr msg;
156 msg.msg_name = nullptr;
157 msg.msg_namelen = 0;
158 msg.msg_iov = &iov;
159 msg.msg_iovlen = 1;
160 msg.msg_control = control;
161 msg.msg_controllen = sizeof(control);
162 msg.msg_flags = 0;
163
164 //
165 // A cmsghdr contains a length field that is the length of the header and
166 // the data. It has a cmsg_level field corresponding to the originating
167 // protocol. This takes values which are legal levels for getsockopt and
168 // setsockopt (here SOL_SOCKET). We're going to use the SCM_RIGHTS type of
169 // cmsg, that indicates that the ancillary data array contains access rights
170 // that we are sending back to the tap bridge.
171 //
172 // We have to put together the first (and only) cmsghdr that will describe
173 // the whole package we're sending.
174 //
175 struct cmsghdr* cmsg;
176 cmsg = CMSG_FIRSTHDR(&msg);
177 cmsg->cmsg_level = SOL_SOCKET;
178 cmsg->cmsg_type = SCM_RIGHTS;
179 cmsg->cmsg_len = CMSG_LEN(msg_size);
180 //
181 // We also have to update the controllen in case other stuff is actually
182 // in there we may not be aware of (due to macros).
183 //
184 msg.msg_controllen = cmsg->cmsg_len;
185
186 //
187 // Finally, we get a pointer to the start of the ancillary data array and
188 // put our file descriptor in.
189 //
190 int* fdptr = (int*)(CMSG_DATA(cmsg));
191 *fdptr = fd; //
192
193 //
194 // Actually send the file descriptor back to the tap bridge.
195 //
196 ssize_t len = sendmsg(sock, &msg, 0);
197 ABORT_IF(len == -1, "Could not send socket back to tap bridge", 1);
198
199 LOG("sendmsg complete");
200}
201
202static int
203CreateTap(const char* dev,
204 const char* gw,
205 const char* ip,
206 const char* mac,
207 const char* mode,
208 const char* netmask)
209{
210 //
211 // Creation and management of Tap devices is done via the tun device
212 //
213 int tap = open("/dev/net/tun", O_RDWR);
214 ABORT_IF(tap == -1, "Could not open /dev/net/tun", true);
215
216 //
217 // Allocate a tap device, making sure that it will not send the tun_pi header.
218 // If we provide a null name to the ifr.ifr_name, we tell the kernel to pick
219 // a name for us (i.e., tapn where n = 0..255.
220 //
221 // If the device does not already exist, the system will create one.
222 //
223 struct ifreq ifr;
224 ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
225 strcpy(ifr.ifr_name, dev);
226 int status = ioctl(tap, TUNSETIFF, (void*)&ifr);
227 ABORT_IF(status == -1, "Could not allocate tap device", true);
228
229 std::string tapDeviceName = (char*)ifr.ifr_name;
230 LOG("Allocated TAP device " << tapDeviceName);
231
232 //
233 // Operating mode "2" corresponds to USE_LOCAL and "3" to USE_BRIDGE mode.
234 // This means that we expect that the user will have named, created and
235 // configured a network tap that we are just going to use. So don't mess
236 // up his hard work by changing anything, just return the tap fd.
237 //
238 if (std::string(mode) == "2" || std::string(mode) == "3")
239 {
240 LOG("Returning precreated tap ");
241 return tap;
242 }
243
244 //
245 // Set the hardware (MAC) address of the new device
246 //
247 ifr.ifr_hwaddr.sa_family = 1; // this is ARPHRD_ETHER from if_arp.h
248 ns3::Mac48Address(mac).CopyTo((uint8_t*)ifr.ifr_hwaddr.sa_data);
249 status = ioctl(tap, SIOCSIFHWADDR, &ifr);
250 ABORT_IF(status == -1, "Could not set MAC address", true);
251 LOG("Set device MAC address to " << mac);
252
253 int fd = socket(AF_INET, SOCK_DGRAM, 0);
254
255 //
256 // Bring the interface up.
257 //
258 status = ioctl(fd, SIOCGIFFLAGS, &ifr);
259 ABORT_IF(status == -1, "Could not get flags for interface", true);
260 ifr.ifr_flags |= IFF_UP | IFF_RUNNING;
261 status = ioctl(fd, SIOCSIFFLAGS, &ifr);
262 ABORT_IF(status == -1, "Could not bring interface up", true);
263 LOG("Device is up");
264
265 //
266 // Set the IP address of the new interface/device.
267 //
268 ifr.ifr_addr = CreateInetAddress(ns3::Ipv4Address(ip).Get());
269 status = ioctl(fd, SIOCSIFADDR, &ifr);
270 ABORT_IF(status == -1, "Could not set IP address", true);
271 LOG("Set device IP address to " << ip);
272
273 //
274 // Set the net mask of the new interface/device
275 //
276 ifr.ifr_netmask = CreateInetAddress(ns3::Ipv4Mask(netmask).Get());
277 status = ioctl(fd, SIOCSIFNETMASK, &ifr);
278 ABORT_IF(status == -1, "Could not set net mask", true);
279 LOG("Set device Net Mask to " << netmask);
280
281 return tap;
282}
283
284int
285main(int argc, char* argv[])
286{
287 int c;
288 char* dev = (char*)"";
289 char* gw = nullptr;
290 char* ip = nullptr;
291 char* mac = nullptr;
292 char* netmask = nullptr;
293 char* operatingMode = nullptr;
294 char* path = nullptr;
295
296 opterr = 0;
297
298 while ((c = getopt(argc, argv, "vd:g:i:m:n:o:p:")) != -1)
299 {
300 switch (c)
301 {
302 case 'd':
303 dev = optarg; // name of the new tap device
304 break;
305 case 'g':
306 gw = optarg; // gateway address for the new device
307 break;
308 case 'i':
309 ip = optarg; // ip address of the new device
310 break;
311 case 'm':
312 mac = optarg; // mac address of the new device
313 break;
314 case 'n':
315 netmask = optarg; // net mask for the new device
316 break;
317 case 'o':
318 operatingMode = optarg; // operating mode of tap bridge
319 break;
320 case 'p':
321 path = optarg; // path back to the tap bridge
322 break;
323 case 'v':
324 gVerbose = true;
325 break;
326 }
327 }
328
329 //
330 // We have got to be able to coordinate the name of the tap device we are
331 // going to create and or open with the device that an external Linux host
332 // will use. If this name is provided we use it. If not we let the system
333 // create the device for us. This name is given in dev
334 //
335 LOG("Provided Device Name is \"" << dev << "\"");
336
337 //
338 // We have got to be able to provide a gateway to the external Linux host
339 // so it can talk to the ns-3 network. This ip address is provided in
340 // gw.
341 //
342 ABORT_IF(gw == nullptr, "Gateway Address is a required argument", 0);
343 LOG("Provided Gateway Address is \"" << gw << "\"");
344
345 //
346 // We have got to be able to assign an IP address to the tap device we are
347 // allocating. This address is allocated in the simulation and assigned to
348 // the tap bridge. This address is given in ip.
349 //
350 ABORT_IF(ip == nullptr, "IP Address is a required argument", 0);
351 LOG("Provided IP Address is \"" << ip << "\"");
352
353 //
354 // We have got to be able to assign a Mac address to the tap device we are
355 // allocating. This address is allocated in the simulation and assigned to
356 // the bridged device. This allows packets addressed to the bridged device
357 // to appear in the Linux host as if they were received there.
358 //
359 ABORT_IF(mac == nullptr, "MAC Address is a required argument", 0);
360 LOG("Provided MAC Address is \"" << mac << "\"");
361
362 //
363 // We have got to be able to assign a net mask to the tap device we are
364 // allocating. This mask is allocated in the simulation and given to
365 // the bridged device.
366 //
367 ABORT_IF(netmask == nullptr, "Net Mask is a required argument", 0);
368 LOG("Provided Net Mask is \"" << netmask << "\"");
369
370 //
371 // We have got to know whether or not to create the TAP.
372 //
373 ABORT_IF(operatingMode == nullptr, "Operating Mode is a required argument", 0);
374 LOG("Provided Operating Mode is \"" << operatingMode << "\"");
375
376 //
377 // This program is spawned by a tap bridge running in a simulation. It
378 // wants to create a socket as described below. We are going to do the
379 // work here since we're running suid root. Once we create the socket,
380 // we have to send it back to the tap bridge. We do that over a Unix
381 // (local interprocess) socket. The tap bridge created a socket to
382 // listen for our response on, and it is expected to have encoded the address
383 // information as a string and to have passed that string as an argument to
384 // us. We see it here as the "path" string. We can't do anything useful
385 // unless we have that string.
386 //
387 ABORT_IF(path == nullptr, "path is a required argument", 0);
388 LOG("Provided path is \"" << path << "\"");
389
390 //
391 // The whole reason for all of the hoops we went through to call out to this
392 // program will pay off here. We created this program to run as suid root
393 // in order to keep the main simulation program from having to be run with
394 // root privileges. We need root privileges to be able to futz with the
395 // Tap device underlying all of this. So all of these hoops are to allow
396 // us to execute the following code:
397 //
398 LOG("Creating Tap");
399 int sock = CreateTap(dev, gw, ip, mac, operatingMode, netmask);
400 ABORT_IF(sock == -1, "main(): Unable to create tap socket", 1);
401
402 //
403 // Send the socket back to the tap net device so it can go about its business
404 //
405 SendSocket(path, sock);
406
407 return 0;
408}
Ipv4 addresses are stored in host order in this class.
Definition: ipv4-address.h:42
a class to represent an Ipv4 address mask
Definition: ipv4-address.h:257
an EUI-48 address
Definition: mac48-address.h:46
void CopyTo(uint8_t buffer[6]) const
bool TapStringToBuffer(std::string s, uint8_t *buffer, uint32_t *len)
Convert string encoded by the inverse function (TapBufferToString) back into a byte buffer.
ns mac
Definition: third.py:92
static void SendSocket(const char *path, int fd)
Definition: tap-creator.cc:81
#define LOG(msg)
Definition: tap-creator.cc:45
static sockaddr CreateInetAddress(uint32_t networkOrder)
Definition: tap-creator.cc:67
static bool gVerbose
Definition: tap-creator.cc:43
#define ABORT_IF(cond, msg, printErrno)
Definition: tap-creator.cc:60
static int CreateTap(const char *dev, const char *gw, const char *ip, const char *mac, const char *mode, const char *netmask)
Definition: tap-creator.cc:203
#define TAP_MAGIC
Definition: tap-creator.cc:41