A Discrete-Event Network Simulator
API
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Groups Pages
tdmt-ff-mac-scheduler.cc
Go to the documentation of this file.
1 /* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
2 /*
3  * Copyright (c) 2011 Centre Tecnologic de Telecomunicacions de Catalunya (CTTC)
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation;
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Author: Marco Miozzo <marco.miozzo@cttc.es>
19  * Modification: Dizhi Zhou <dizhi.zhou@gmail.com> // modify codes related to downlink scheduler
20  */
21 
22 #include <ns3/log.h>
23 #include <ns3/pointer.h>
24 #include <ns3/math.h>
25 
26 #include <ns3/simulator.h>
27 #include <ns3/lte-amc.h>
28 #include <ns3/tdmt-ff-mac-scheduler.h>
29 #include <ns3/lte-vendor-specific-parameters.h>
30 #include <ns3/boolean.h>
31 #include <set>
32 #include <cfloat>
33 
34 NS_LOG_COMPONENT_DEFINE ("TdMtFfMacScheduler");
35 
36 namespace ns3 {
37 
38 static const int TdMtType0AllocationRbg[4] = {
39  10, // RGB size 1
40  26, // RGB size 2
41  63, // RGB size 3
42  110 // RGB size 4
43 }; // see table 7.1.6.1-1 of 36.213
44 
45 
46 NS_OBJECT_ENSURE_REGISTERED (TdMtFfMacScheduler);
47 
48 
49 
51 {
52 public:
54 
55  // inherited from FfMacCschedSapProvider
56  virtual void CschedCellConfigReq (const struct CschedCellConfigReqParameters& params);
57  virtual void CschedUeConfigReq (const struct CschedUeConfigReqParameters& params);
58  virtual void CschedLcConfigReq (const struct CschedLcConfigReqParameters& params);
59  virtual void CschedLcReleaseReq (const struct CschedLcReleaseReqParameters& params);
60  virtual void CschedUeReleaseReq (const struct CschedUeReleaseReqParameters& params);
61 
62 private:
65 };
66 
68 {
69 }
70 
72 {
73 }
74 
75 
76 void
78 {
80 }
81 
82 void
84 {
86 }
87 
88 
89 void
91 {
93 }
94 
95 void
97 {
99 }
100 
101 void
103 {
105 }
106 
107 
108 
109 
111 {
112 public:
114 
115  // inherited from FfMacSchedSapProvider
116  virtual void SchedDlRlcBufferReq (const struct SchedDlRlcBufferReqParameters& params);
117  virtual void SchedDlPagingBufferReq (const struct SchedDlPagingBufferReqParameters& params);
118  virtual void SchedDlMacBufferReq (const struct SchedDlMacBufferReqParameters& params);
119  virtual void SchedDlTriggerReq (const struct SchedDlTriggerReqParameters& params);
120  virtual void SchedDlRachInfoReq (const struct SchedDlRachInfoReqParameters& params);
121  virtual void SchedDlCqiInfoReq (const struct SchedDlCqiInfoReqParameters& params);
122  virtual void SchedUlTriggerReq (const struct SchedUlTriggerReqParameters& params);
123  virtual void SchedUlNoiseInterferenceReq (const struct SchedUlNoiseInterferenceReqParameters& params);
124  virtual void SchedUlSrInfoReq (const struct SchedUlSrInfoReqParameters& params);
125  virtual void SchedUlMacCtrlInfoReq (const struct SchedUlMacCtrlInfoReqParameters& params);
126  virtual void SchedUlCqiInfoReq (const struct SchedUlCqiInfoReqParameters& params);
127 
128 
129 private:
132 };
133 
134 
135 
137 {
138 }
139 
140 
142  : m_scheduler (scheduler)
143 {
144 }
145 
146 void
148 {
150 }
151 
152 void
154 {
156 }
157 
158 void
160 {
162 }
163 
164 void
166 {
168 }
169 
170 void
172 {
174 }
175 
176 void
178 {
180 }
181 
182 void
184 {
186 }
187 
188 void
190 {
192 }
193 
194 void
196 {
198 }
199 
200 void
202 {
204 }
205 
206 void
208 {
210 }
211 
212 
213 
214 
215 
217  : m_cschedSapUser (0),
218  m_schedSapUser (0),
219  m_nextRntiUl (0)
220 {
221  m_amc = CreateObject <LteAmc> ();
224 }
225 
227 {
228  NS_LOG_FUNCTION (this);
229 }
230 
231 void
233 {
234  NS_LOG_FUNCTION (this);
236  m_dlHarqProcessesTimer.clear ();
238  m_dlInfoListBuffered.clear ();
239  m_ulHarqCurrentProcessId.clear ();
240  m_ulHarqProcessesStatus.clear ();
242  delete m_cschedSapProvider;
243  delete m_schedSapProvider;
244 }
245 
246 TypeId
248 {
249  static TypeId tid = TypeId ("ns3::TdMtFfMacScheduler")
251  .AddConstructor<TdMtFfMacScheduler> ()
252  .AddAttribute ("CqiTimerThreshold",
253  "The number of TTIs a CQI is valid (default 1000 - 1 sec.)",
254  UintegerValue (1000),
255  MakeUintegerAccessor (&TdMtFfMacScheduler::m_cqiTimersThreshold),
256  MakeUintegerChecker<uint32_t> ())
257  .AddAttribute ("HarqEnabled",
258  "Activate/Deactivate the HARQ [by default is active].",
259  BooleanValue (true),
260  MakeBooleanAccessor (&TdMtFfMacScheduler::m_harqOn),
261  MakeBooleanChecker ())
262  .AddAttribute ("UlGrantMcs",
263  "The MCS of the UL grant, must be [0..15] (default 0)",
264  UintegerValue (0),
265  MakeUintegerAccessor (&TdMtFfMacScheduler::m_ulGrantMcs),
266  MakeUintegerChecker<uint8_t> ())
267  ;
268  return tid;
269 }
270 
271 
272 
273 void
275 {
276  m_cschedSapUser = s;
277 }
278 
279 void
281 {
282  m_schedSapUser = s;
283 }
284 
287 {
288  return m_cschedSapProvider;
289 }
290 
293 {
294  return m_schedSapProvider;
295 }
296 
297 void
299 {
301 }
302 
305 {
306  return m_ffrSapUser;
307 }
308 
309 void
311 {
312  NS_LOG_FUNCTION (this);
313  // Read the subset of parameters used
314  m_cschedCellConfig = params;
317  cnf.m_result = SUCCESS;
319  return;
320 }
321 
322 void
324 {
325  NS_LOG_FUNCTION (this << " RNTI " << params.m_rnti << " txMode " << (uint16_t)params.m_transmissionMode);
326  std::map <uint16_t,uint8_t>::iterator it = m_uesTxMode.find (params.m_rnti);
327  if (it == m_uesTxMode.end ())
328  {
329  m_uesTxMode.insert (std::pair <uint16_t, double> (params.m_rnti, params.m_transmissionMode));
330  // generate HARQ buffers
331  m_dlHarqCurrentProcessId.insert (std::pair <uint16_t,uint8_t > (params.m_rnti, 0));
332  DlHarqProcessesStatus_t dlHarqPrcStatus;
333  dlHarqPrcStatus.resize (8,0);
334  m_dlHarqProcessesStatus.insert (std::pair <uint16_t, DlHarqProcessesStatus_t> (params.m_rnti, dlHarqPrcStatus));
335  DlHarqProcessesTimer_t dlHarqProcessesTimer;
336  dlHarqProcessesTimer.resize (8,0);
337  m_dlHarqProcessesTimer.insert (std::pair <uint16_t, DlHarqProcessesTimer_t> (params.m_rnti, dlHarqProcessesTimer));
338  DlHarqProcessesDciBuffer_t dlHarqdci;
339  dlHarqdci.resize (8);
340  m_dlHarqProcessesDciBuffer.insert (std::pair <uint16_t, DlHarqProcessesDciBuffer_t> (params.m_rnti, dlHarqdci));
341  DlHarqRlcPduListBuffer_t dlHarqRlcPdu;
342  dlHarqRlcPdu.resize (2);
343  dlHarqRlcPdu.at (0).resize (8);
344  dlHarqRlcPdu.at (1).resize (8);
345  m_dlHarqProcessesRlcPduListBuffer.insert (std::pair <uint16_t, DlHarqRlcPduListBuffer_t> (params.m_rnti, dlHarqRlcPdu));
346  m_ulHarqCurrentProcessId.insert (std::pair <uint16_t,uint8_t > (params.m_rnti, 0));
347  UlHarqProcessesStatus_t ulHarqPrcStatus;
348  ulHarqPrcStatus.resize (8,0);
349  m_ulHarqProcessesStatus.insert (std::pair <uint16_t, UlHarqProcessesStatus_t> (params.m_rnti, ulHarqPrcStatus));
350  UlHarqProcessesDciBuffer_t ulHarqdci;
351  ulHarqdci.resize (8);
352  m_ulHarqProcessesDciBuffer.insert (std::pair <uint16_t, UlHarqProcessesDciBuffer_t> (params.m_rnti, ulHarqdci));
353  }
354  else
355  {
356  (*it).second = params.m_transmissionMode;
357  }
358  return;
359 }
360 
361 void
363 {
364  NS_LOG_FUNCTION (this << " New LC, rnti: " << params.m_rnti);
365 
366  std::set <uint16_t>::iterator it;
367  for (uint16_t i = 0; i < params.m_logicalChannelConfigList.size (); i++)
368  {
369  it = m_flowStatsDl.find (params.m_rnti);
370 
371  if (it == m_flowStatsDl.end ())
372  {
373  m_flowStatsDl.insert (params.m_rnti);
374  m_flowStatsUl.insert (params.m_rnti);
375  }
376  }
377 
378  return;
379 }
380 
381 void
383 {
384  NS_LOG_FUNCTION (this);
385  for (uint16_t i = 0; i < params.m_logicalChannelIdentity.size (); i++)
386  {
387  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it = m_rlcBufferReq.begin ();
388  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator temp;
389  while (it!=m_rlcBufferReq.end ())
390  {
391  if (((*it).first.m_rnti == params.m_rnti) && ((*it).first.m_lcId == params.m_logicalChannelIdentity.at (i)))
392  {
393  temp = it;
394  it++;
395  m_rlcBufferReq.erase (temp);
396  }
397  else
398  {
399  it++;
400  }
401  }
402  }
403  return;
404 }
405 
406 void
408 {
409  NS_LOG_FUNCTION (this);
410 
411  m_uesTxMode.erase (params.m_rnti);
412  m_dlHarqCurrentProcessId.erase (params.m_rnti);
413  m_dlHarqProcessesStatus.erase (params.m_rnti);
414  m_dlHarqProcessesTimer.erase (params.m_rnti);
415  m_dlHarqProcessesDciBuffer.erase (params.m_rnti);
417  m_ulHarqCurrentProcessId.erase (params.m_rnti);
418  m_ulHarqProcessesStatus.erase (params.m_rnti);
419  m_ulHarqProcessesDciBuffer.erase (params.m_rnti);
420  m_flowStatsDl.erase (params.m_rnti);
421  m_flowStatsUl.erase (params.m_rnti);
422  m_ceBsrRxed.erase (params.m_rnti);
423  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it = m_rlcBufferReq.begin ();
424  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator temp;
425  while (it!=m_rlcBufferReq.end ())
426  {
427  if ((*it).first.m_rnti == params.m_rnti)
428  {
429  temp = it;
430  it++;
431  m_rlcBufferReq.erase (temp);
432  }
433  else
434  {
435  it++;
436  }
437  }
438  if (m_nextRntiUl == params.m_rnti)
439  {
440  m_nextRntiUl = 0;
441  }
442 
443  return;
444 }
445 
446 
447 void
449 {
450  NS_LOG_FUNCTION (this << params.m_rnti << (uint32_t) params.m_logicalChannelIdentity);
451  // API generated by RLC for updating RLC parameters on a LC (tx and retx queues)
452 
453  std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
454 
455  LteFlowId_t flow (params.m_rnti, params.m_logicalChannelIdentity);
456 
457  it = m_rlcBufferReq.find (flow);
458 
459  if (it == m_rlcBufferReq.end ())
460  {
461  m_rlcBufferReq.insert (std::pair <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters> (flow, params));
462  }
463  else
464  {
465  (*it).second = params;
466  }
467 
468  return;
469 }
470 
471 void
473 {
474  NS_LOG_FUNCTION (this);
475  NS_FATAL_ERROR ("method not implemented");
476  return;
477 }
478 
479 void
481 {
482  NS_LOG_FUNCTION (this);
483  NS_FATAL_ERROR ("method not implemented");
484  return;
485 }
486 
487 int
489 {
490  for (int i = 0; i < 4; i++)
491  {
492  if (dlbandwidth < TdMtType0AllocationRbg[i])
493  {
494  return (i + 1);
495  }
496  }
497 
498  return (-1);
499 }
500 
501 
502 int
504 {
505  std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
506  int lcActive = 0;
507  for (it = m_rlcBufferReq.begin (); it != m_rlcBufferReq.end (); it++)
508  {
509  if (((*it).first.m_rnti == rnti) && (((*it).second.m_rlcTransmissionQueueSize > 0)
510  || ((*it).second.m_rlcRetransmissionQueueSize > 0)
511  || ((*it).second.m_rlcStatusPduSize > 0) ))
512  {
513  lcActive++;
514  }
515  if ((*it).first.m_rnti > rnti)
516  {
517  break;
518  }
519  }
520  return (lcActive);
521 
522 }
523 
524 
525 uint8_t
527 {
528  NS_LOG_FUNCTION (this << rnti);
529 
530  std::map <uint16_t, uint8_t>::iterator it = m_dlHarqCurrentProcessId.find (rnti);
531  if (it == m_dlHarqCurrentProcessId.end ())
532  {
533  NS_FATAL_ERROR ("No Process Id found for this RNTI " << rnti);
534  }
535  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find (rnti);
536  if (itStat == m_dlHarqProcessesStatus.end ())
537  {
538  NS_FATAL_ERROR ("No Process Id Statusfound for this RNTI " << rnti);
539  }
540  uint8_t i = (*it).second;
541  do
542  {
543  i = (i + 1) % HARQ_PROC_NUM;
544  }
545  while ( ((*itStat).second.at (i) != 0)&&(i != (*it).second));
546  if ((*itStat).second.at (i) == 0)
547  {
548  return (true);
549  }
550  else
551  {
552  return (false); // return a not valid harq proc id
553  }
554 }
555 
556 
557 
558 uint8_t
560 {
561  NS_LOG_FUNCTION (this << rnti);
562 
563  if (m_harqOn == false)
564  {
565  return (0);
566  }
567 
568 
569  std::map <uint16_t, uint8_t>::iterator it = m_dlHarqCurrentProcessId.find (rnti);
570  if (it == m_dlHarqCurrentProcessId.end ())
571  {
572  NS_FATAL_ERROR ("No Process Id found for this RNTI " << rnti);
573  }
574  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find (rnti);
575  if (itStat == m_dlHarqProcessesStatus.end ())
576  {
577  NS_FATAL_ERROR ("No Process Id Statusfound for this RNTI " << rnti);
578  }
579  uint8_t i = (*it).second;
580  do
581  {
582  i = (i + 1) % HARQ_PROC_NUM;
583  }
584  while ( ((*itStat).second.at (i) != 0)&&(i != (*it).second));
585  if ((*itStat).second.at (i) == 0)
586  {
587  (*it).second = i;
588  (*itStat).second.at (i) = 1;
589  }
590  else
591  {
592  NS_FATAL_ERROR ("No HARQ process available for RNTI " << rnti << " check before update with HarqProcessAvailability");
593  }
594 
595  return ((*it).second);
596 }
597 
598 
599 void
601 {
602  NS_LOG_FUNCTION (this);
603 
604  std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itTimers;
605  for (itTimers = m_dlHarqProcessesTimer.begin (); itTimers != m_dlHarqProcessesTimer.end (); itTimers ++)
606  {
607  for (uint16_t i = 0; i < HARQ_PROC_NUM; i++)
608  {
609  if ((*itTimers).second.at (i) == HARQ_DL_TIMEOUT)
610  {
611  // reset HARQ process
612 
613  NS_LOG_DEBUG (this << " Reset HARQ proc " << i << " for RNTI " << (*itTimers).first);
614  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find ((*itTimers).first);
615  if (itStat == m_dlHarqProcessesStatus.end ())
616  {
617  NS_FATAL_ERROR ("No Process Id Status found for this RNTI " << (*itTimers).first);
618  }
619  (*itStat).second.at (i) = 0;
620  (*itTimers).second.at (i) = 0;
621  }
622  else
623  {
624  (*itTimers).second.at (i)++;
625  }
626  }
627  }
628 
629 }
630 
631 
632 void
634 {
635  NS_LOG_FUNCTION (this << " Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf));
636  // API generated by RLC for triggering the scheduling of a DL subframe
637 
638 
639  // evaluate the relative channel quality indicator for each UE per each RBG
640  // (since we are using allocation type 0 the small unit of allocation is RBG)
641  // Resource allocation type 0 (see sec 7.1.6.1 of 36.213)
642 
643  RefreshDlCqiMaps ();
644 
646  int rbgNum = m_cschedCellConfig.m_dlBandwidth / rbgSize;
647  std::map <uint16_t, std::vector <uint16_t> > allocationMap; // RBs map per RNTI
648  std::vector <bool> rbgMap; // global RBGs map
649  uint16_t rbgAllocatedNum = 0;
650  std::set <uint16_t> rntiAllocated;
651  rbgMap.resize (m_cschedCellConfig.m_dlBandwidth / rbgSize, false);
653 
654  // update UL HARQ proc id
655  std::map <uint16_t, uint8_t>::iterator itProcId;
656  for (itProcId = m_ulHarqCurrentProcessId.begin (); itProcId != m_ulHarqCurrentProcessId.end (); itProcId++)
657  {
658  (*itProcId).second = ((*itProcId).second + 1) % HARQ_PROC_NUM;
659  }
660 
661  // RACH Allocation
663  uint16_t rbStart = 0;
664  std::vector <struct RachListElement_s>::iterator itRach;
665  for (itRach = m_rachList.begin (); itRach != m_rachList.end (); itRach++)
666  {
667  NS_ASSERT_MSG (m_amc->GetTbSizeFromMcs (m_ulGrantMcs, m_cschedCellConfig.m_ulBandwidth) > (*itRach).m_estimatedSize, " Default UL Grant MCS does not allow to send RACH messages");
668  BuildRarListElement_s newRar;
669  newRar.m_rnti = (*itRach).m_rnti;
670  // DL-RACH Allocation
671  // Ideal: no needs of configuring m_dci
672  // UL-RACH Allocation
673  newRar.m_grant.m_rnti = newRar.m_rnti;
674  newRar.m_grant.m_mcs = m_ulGrantMcs;
675  uint16_t rbLen = 1;
676  uint16_t tbSizeBits = 0;
677  // find lowest TB size that fits UL grant estimated size
678  while ((tbSizeBits < (*itRach).m_estimatedSize) && (rbStart + rbLen < m_cschedCellConfig.m_ulBandwidth))
679  {
680  rbLen++;
681  tbSizeBits = m_amc->GetTbSizeFromMcs (m_ulGrantMcs, rbLen);
682  }
683  if (tbSizeBits < (*itRach).m_estimatedSize)
684  {
685  // no more allocation space: finish allocation
686  break;
687  }
688  newRar.m_grant.m_rbStart = rbStart;
689  newRar.m_grant.m_rbLen = rbLen;
690  newRar.m_grant.m_tbSize = tbSizeBits / 8;
691  newRar.m_grant.m_hopping = false;
692  newRar.m_grant.m_tpc = 0;
693  newRar.m_grant.m_cqiRequest = false;
694  newRar.m_grant.m_ulDelay = false;
695  NS_LOG_INFO (this << " UL grant allocated to RNTI " << (*itRach).m_rnti << " rbStart " << rbStart << " rbLen " << rbLen << " MCS " << m_ulGrantMcs << " tbSize " << newRar.m_grant.m_tbSize);
696  for (uint16_t i = rbStart; i < rbStart + rbLen; i++)
697  {
698  m_rachAllocationMap.at (i) = (*itRach).m_rnti;
699  }
700 
701  if (m_harqOn == true)
702  {
703  // generate UL-DCI for HARQ retransmissions
704  UlDciListElement_s uldci;
705  uldci.m_rnti = newRar.m_rnti;
706  uldci.m_rbLen = rbLen;
707  uldci.m_rbStart = rbStart;
708  uldci.m_mcs = m_ulGrantMcs;
709  uldci.m_tbSize = tbSizeBits / 8;
710  uldci.m_ndi = 1;
711  uldci.m_cceIndex = 0;
712  uldci.m_aggrLevel = 1;
713  uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
714  uldci.m_hopping = false;
715  uldci.m_n2Dmrs = 0;
716  uldci.m_tpc = 0; // no power control
717  uldci.m_cqiRequest = false; // only period CQI at this stage
718  uldci.m_ulIndex = 0; // TDD parameter
719  uldci.m_dai = 1; // TDD parameter
720  uldci.m_freqHopping = 0;
721  uldci.m_pdcchPowerOffset = 0; // not used
722 
723  uint8_t harqId = 0;
724  std::map <uint16_t, uint8_t>::iterator itProcId;
725  itProcId = m_ulHarqCurrentProcessId.find (uldci.m_rnti);
726  if (itProcId == m_ulHarqCurrentProcessId.end ())
727  {
728  NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << uldci.m_rnti);
729  }
730  harqId = (*itProcId).second;
731  std::map <uint16_t, UlHarqProcessesDciBuffer_t>::iterator itDci = m_ulHarqProcessesDciBuffer.find (uldci.m_rnti);
732  if (itDci == m_ulHarqProcessesDciBuffer.end ())
733  {
734  NS_FATAL_ERROR ("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI " << uldci.m_rnti);
735  }
736  (*itDci).second.at (harqId) = uldci;
737  }
738 
739  rbStart = rbStart + rbLen;
740  ret.m_buildRarList.push_back (newRar);
741  }
742  m_rachList.clear ();
743 
744 
745  // Process DL HARQ feedback
747  // retrieve past HARQ retx buffered
748  if (m_dlInfoListBuffered.size () > 0)
749  {
750  if (params.m_dlInfoList.size () > 0)
751  {
752  NS_LOG_INFO (this << " Received DL-HARQ feedback");
753  m_dlInfoListBuffered.insert (m_dlInfoListBuffered.end (), params.m_dlInfoList.begin (), params.m_dlInfoList.end ());
754  }
755  }
756  else
757  {
758  if (params.m_dlInfoList.size () > 0)
759  {
761  }
762  }
763  if (m_harqOn == false)
764  {
765  // Ignore HARQ feedback
766  m_dlInfoListBuffered.clear ();
767  }
768  std::vector <struct DlInfoListElement_s> dlInfoListUntxed;
769  for (uint16_t i = 0; i < m_dlInfoListBuffered.size (); i++)
770  {
771  std::set <uint16_t>::iterator itRnti = rntiAllocated.find (m_dlInfoListBuffered.at (i).m_rnti);
772  if (itRnti != rntiAllocated.end ())
773  {
774  // RNTI already allocated for retx
775  continue;
776  }
777  uint8_t nLayers = m_dlInfoListBuffered.at (i).m_harqStatus.size ();
778  std::vector <bool> retx;
779  NS_LOG_INFO (this << " Processing DLHARQ feedback");
780  if (nLayers == 1)
781  {
782  retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (0) == DlInfoListElement_s::NACK);
783  retx.push_back (false);
784  }
785  else
786  {
787  retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (0) == DlInfoListElement_s::NACK);
788  retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (1) == DlInfoListElement_s::NACK);
789  }
790  if (retx.at (0) || retx.at (1))
791  {
792  // retrieve HARQ process information
793  uint16_t rnti = m_dlInfoListBuffered.at (i).m_rnti;
794  uint8_t harqId = m_dlInfoListBuffered.at (i).m_harqProcessId;
795  NS_LOG_INFO (this << " HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId);
796  std::map <uint16_t, DlHarqProcessesDciBuffer_t>::iterator itHarq = m_dlHarqProcessesDciBuffer.find (rnti);
797  if (itHarq == m_dlHarqProcessesDciBuffer.end ())
798  {
799  NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << rnti);
800  }
801 
802  DlDciListElement_s dci = (*itHarq).second.at (harqId);
803  int rv = 0;
804  if (dci.m_rv.size () == 1)
805  {
806  rv = dci.m_rv.at (0);
807  }
808  else
809  {
810  rv = (dci.m_rv.at (0) > dci.m_rv.at (1) ? dci.m_rv.at (0) : dci.m_rv.at (1));
811  }
812 
813  if (rv == 3)
814  {
815  // maximum number of retx reached -> drop process
816  NS_LOG_INFO ("Maximum number of retransmissions reached -> drop process");
817  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator it = m_dlHarqProcessesStatus.find (rnti);
818  if (it == m_dlHarqProcessesStatus.end ())
819  {
820  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << m_dlInfoListBuffered.at (i).m_rnti);
821  }
822  (*it).second.at (harqId) = 0;
823  std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (rnti);
824  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
825  {
826  NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << m_dlInfoListBuffered.at (i).m_rnti);
827  }
828  for (uint16_t k = 0; k < (*itRlcPdu).second.size (); k++)
829  {
830  (*itRlcPdu).second.at (k).at (harqId).clear ();
831  }
832  continue;
833  }
834  // check the feasibility of retransmitting on the same RBGs
835  // translate the DCI to Spectrum framework
836  std::vector <int> dciRbg;
837  uint32_t mask = 0x1;
838  NS_LOG_INFO ("Original RBGs " << dci.m_rbBitmap << " rnti " << dci.m_rnti);
839  for (int j = 0; j < 32; j++)
840  {
841  if (((dci.m_rbBitmap & mask) >> j) == 1)
842  {
843  dciRbg.push_back (j);
844  NS_LOG_INFO ("\t" << j);
845  }
846  mask = (mask << 1);
847  }
848  bool free = true;
849  for (uint8_t j = 0; j < dciRbg.size (); j++)
850  {
851  if (rbgMap.at (dciRbg.at (j)) == true)
852  {
853  free = false;
854  break;
855  }
856  }
857  if (free)
858  {
859  // use the same RBGs for the retx
860  // reserve RBGs
861  for (uint8_t j = 0; j < dciRbg.size (); j++)
862  {
863  rbgMap.at (dciRbg.at (j)) = true;
864  NS_LOG_INFO ("RBG " << dciRbg.at (j) << " assigned");
865  rbgAllocatedNum++;
866  }
867 
868  NS_LOG_INFO (this << " Send retx in the same RBGs");
869  }
870  else
871  {
872  // find RBGs for sending HARQ retx
873  uint8_t j = 0;
874  uint8_t rbgId = (dciRbg.at (dciRbg.size () - 1) + 1) % rbgNum;
875  uint8_t startRbg = dciRbg.at (dciRbg.size () - 1);
876  std::vector <bool> rbgMapCopy = rbgMap;
877  while ((j < dciRbg.size ())&&(startRbg != rbgId))
878  {
879  if (rbgMapCopy.at (rbgId) == false)
880  {
881  rbgMapCopy.at (rbgId) = true;
882  dciRbg.at (j) = rbgId;
883  j++;
884  }
885  rbgId = (rbgId + 1) % rbgNum;
886  }
887  if (j == dciRbg.size ())
888  {
889  // find new RBGs -> update DCI map
890  uint32_t rbgMask = 0;
891  for (uint16_t k = 0; k < dciRbg.size (); k++)
892  {
893  rbgMask = rbgMask + (0x1 << dciRbg.at (k));
894  rbgAllocatedNum++;
895  }
896  dci.m_rbBitmap = rbgMask;
897  rbgMap = rbgMapCopy;
898  NS_LOG_INFO (this << " Move retx in RBGs " << dciRbg.size ());
899  }
900  else
901  {
902  // HARQ retx cannot be performed on this TTI -> store it
903  dlInfoListUntxed.push_back (m_dlInfoListBuffered.at (i));
904  NS_LOG_INFO (this << " No resource for this retx -> buffer it");
905  }
906  }
907  // retrieve RLC PDU list for retx TBsize and update DCI
909  std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (rnti);
910  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
911  {
912  NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << rnti);
913  }
914  for (uint8_t j = 0; j < nLayers; j++)
915  {
916  if (retx.at (j))
917  {
918  if (j >= dci.m_ndi.size ())
919  {
920  // for avoiding errors in MIMO transient phases
921  dci.m_ndi.push_back (0);
922  dci.m_rv.push_back (0);
923  dci.m_mcs.push_back (0);
924  dci.m_tbsSize.push_back (0);
925  NS_LOG_INFO (this << " layer " << (uint16_t)j << " no txed (MIMO transition)");
926  }
927  else
928  {
929  dci.m_ndi.at (j) = 0;
930  dci.m_rv.at (j)++;
931  (*itHarq).second.at (harqId).m_rv.at (j)++;
932  NS_LOG_INFO (this << " layer " << (uint16_t)j << " RV " << (uint16_t)dci.m_rv.at (j));
933  }
934  }
935  else
936  {
937  // empty TB of layer j
938  dci.m_ndi.at (j) = 0;
939  dci.m_rv.at (j) = 0;
940  dci.m_mcs.at (j) = 0;
941  dci.m_tbsSize.at (j) = 0;
942  NS_LOG_INFO (this << " layer " << (uint16_t)j << " no retx");
943  }
944  }
945  for (uint16_t k = 0; k < (*itRlcPdu).second.at (0).at (dci.m_harqProcess).size (); k++)
946  {
947  std::vector <struct RlcPduListElement_s> rlcPduListPerLc;
948  for (uint8_t j = 0; j < nLayers; j++)
949  {
950  if (retx.at (j))
951  {
952  if (j < dci.m_ndi.size ())
953  {
954  rlcPduListPerLc.push_back ((*itRlcPdu).second.at (j).at (dci.m_harqProcess).at (k));
955  }
956  }
957  }
958 
959  if (rlcPduListPerLc.size () > 0)
960  {
961  newEl.m_rlcPduList.push_back (rlcPduListPerLc);
962  }
963  }
964  newEl.m_rnti = rnti;
965  newEl.m_dci = dci;
966  (*itHarq).second.at (harqId).m_rv = dci.m_rv;
967  // refresh timer
968  std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itHarqTimer = m_dlHarqProcessesTimer.find (rnti);
969  if (itHarqTimer== m_dlHarqProcessesTimer.end ())
970  {
971  NS_FATAL_ERROR ("Unable to find HARQ timer for RNTI " << (uint16_t)rnti);
972  }
973  (*itHarqTimer).second.at (harqId) = 0;
974  ret.m_buildDataList.push_back (newEl);
975  rntiAllocated.insert (rnti);
976  }
977  else
978  {
979  // update HARQ process status
980  NS_LOG_INFO (this << " HARQ received ACK for UE " << m_dlInfoListBuffered.at (i).m_rnti);
981  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator it = m_dlHarqProcessesStatus.find (m_dlInfoListBuffered.at (i).m_rnti);
982  if (it == m_dlHarqProcessesStatus.end ())
983  {
984  NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << m_dlInfoListBuffered.at (i).m_rnti);
985  }
986  (*it).second.at (m_dlInfoListBuffered.at (i).m_harqProcessId) = 0;
987  std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (m_dlInfoListBuffered.at (i).m_rnti);
988  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
989  {
990  NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << m_dlInfoListBuffered.at (i).m_rnti);
991  }
992  for (uint16_t k = 0; k < (*itRlcPdu).second.size (); k++)
993  {
994  (*itRlcPdu).second.at (k).at (m_dlInfoListBuffered.at (i).m_harqProcessId).clear ();
995  }
996  }
997  }
998  m_dlInfoListBuffered.clear ();
999  m_dlInfoListBuffered = dlInfoListUntxed;
1000 
1001  if (rbgAllocatedNum == rbgNum)
1002  {
1003  // all the RBGs are already allocated -> exit
1004  if ((ret.m_buildDataList.size () > 0) || (ret.m_buildRarList.size () > 0))
1005  {
1007  }
1008  return;
1009  }
1010 
1011 
1012  std::set <uint16_t>::iterator it;
1013  std::set <uint16_t>::iterator itMax = m_flowStatsDl.end ();
1014  double metricMax = 0.0;
1015  for (it = m_flowStatsDl.begin (); it != m_flowStatsDl.end (); it++)
1016  {
1017  std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it));
1018  if ((itRnti != rntiAllocated.end ())||(!HarqProcessAvailability ((*it))))
1019  {
1020  // UE already allocated for HARQ or without HARQ process available -> drop it
1021  if (itRnti != rntiAllocated.end ())
1022  {
1023  NS_LOG_DEBUG (this << " RNTI discared for HARQ tx" << (uint16_t)(*it));
1024  }
1025  if (!HarqProcessAvailability ((*it)))
1026  {
1027  NS_LOG_DEBUG (this << " RNTI discared for HARQ id" << (uint16_t)(*it));
1028  }
1029 
1030  continue;
1031  }
1032 
1033  std::map <uint16_t,uint8_t>::iterator itTxMode;
1034  itTxMode = m_uesTxMode.find ((*it));
1035  if (itTxMode == m_uesTxMode.end ())
1036  {
1037  NS_FATAL_ERROR ("No Transmission Mode info on user " << (*it));
1038  }
1039  int nLayer = TransmissionModesLayers::TxMode2LayerNum ((*itTxMode).second);
1040  std::map <uint16_t,uint8_t>::iterator itCqi = m_p10CqiRxed.find ((*it));
1041  uint8_t wbCqi = 0;
1042  if (itCqi != m_p10CqiRxed.end ())
1043  {
1044  wbCqi = (*itCqi).second;
1045  }
1046  else
1047  {
1048  wbCqi = 1; // lowest value fro trying a transmission
1049  }
1050 
1051  if (wbCqi != 0)
1052  {
1053  // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
1054  if (LcActivePerFlow (*it) > 0)
1055  {
1056  // this UE has data to transmit
1057  double achievableRate = 0.0;
1058  for (uint8_t k = 0; k < nLayer; k++)
1059  {
1060  uint8_t mcs = 0;
1061  mcs = m_amc->GetMcsFromCqi (wbCqi);
1062  achievableRate += ((m_amc->GetTbSizeFromMcs (mcs, rbgSize) / 8) / 0.001); // = TB size / TTI
1063 
1064  NS_LOG_DEBUG (this << " RNTI " << (*it) << " MCS " << (uint32_t)mcs << " achievableRate " << achievableRate );
1065  }
1066 
1067  double metric = achievableRate;
1068 
1069  if (metric > metricMax)
1070  {
1071  metricMax = metric;
1072  itMax = it;
1073  }
1074  } // LcActivePerFlow
1075 
1076  } // cqi
1077 
1078  } // end for m_flowStatsDl
1079 
1080  if (itMax == m_flowStatsDl.end ())
1081  {
1082  // no UE available for downlink
1083  NS_LOG_INFO (this << " any UE found");
1084  }
1085  else
1086  {
1087  // assign all free RBGs to this UE
1088  std::vector <uint16_t> tempMap;
1089  for (int i = 0; i < rbgNum; i++)
1090  {
1091  NS_LOG_INFO (this << " ALLOCATION for RBG " << i << " of " << rbgNum);
1092  NS_LOG_DEBUG (this << " ALLOCATION for RBG " << i << " of " << rbgNum);
1093  if (rbgMap.at (i) == false)
1094  {
1095  rbgMap.at (i) = true;
1096  tempMap.push_back (i);
1097  } // end for RBG free
1098 
1099  } // end for RBGs
1100 
1101  allocationMap.insert (std::pair <uint16_t, std::vector <uint16_t> > ((*itMax), tempMap));
1102  }
1103 
1104  // generate the transmission opportunities by grouping the RBGs of the same RNTI and
1105  // creating the correspondent DCIs
1106  std::map <uint16_t, std::vector <uint16_t> >::iterator itMap = allocationMap.begin ();
1107  while (itMap != allocationMap.end ())
1108  {
1109  // create new BuildDataListElement_s for this LC
1110  BuildDataListElement_s newEl;
1111  newEl.m_rnti = (*itMap).first;
1112  // create the DlDciListElement_s
1113  DlDciListElement_s newDci;
1114  newDci.m_rnti = (*itMap).first;
1115  newDci.m_harqProcess = UpdateHarqProcessId ((*itMap).first);
1116 
1117  uint16_t lcActives = LcActivePerFlow ((*itMap).first);
1118  NS_LOG_INFO (this << "Allocate user " << newEl.m_rnti << " rbg " << lcActives);
1119  if (lcActives == 0)
1120  {
1121  // Set to max value, to avoid divide by 0 below
1122  lcActives = (uint16_t)65535; // UINT16_MAX;
1123  }
1124  uint16_t RgbPerRnti = (*itMap).second.size ();
1125  std::map <uint16_t,uint8_t>::iterator itCqi;
1126  itCqi = m_p10CqiRxed.find ((*itMap).first);
1127  std::map <uint16_t,uint8_t>::iterator itTxMode;
1128  itTxMode = m_uesTxMode.find ((*itMap).first);
1129  if (itTxMode == m_uesTxMode.end ())
1130  {
1131  NS_FATAL_ERROR ("No Transmission Mode info on user " << (*itMap).first);
1132  }
1133  int nLayer = TransmissionModesLayers::TxMode2LayerNum ((*itTxMode).second);
1134  for (uint8_t j = 0; j < nLayer; j++)
1135  {
1136  if (itCqi == m_p10CqiRxed.end ())
1137  {
1138  newDci.m_mcs.push_back (0); // no info on this user -> lowest MCS
1139  }
1140  else
1141  {
1142  newDci.m_mcs.push_back ( m_amc->GetMcsFromCqi ((*itCqi).second) );
1143  }
1144 
1145  int tbSize = (m_amc->GetTbSizeFromMcs (newDci.m_mcs.at (j), RgbPerRnti * rbgSize) / 8); // (size of TB in bytes according to table 7.1.7.2.1-1 of 36.213)
1146  newDci.m_tbsSize.push_back (tbSize);
1147  }
1148 
1149  newDci.m_resAlloc = 0; // only allocation type 0 at this stage
1150  newDci.m_rbBitmap = 0; // TBD (32 bit bitmap see 7.1.6 of 36.213)
1151  uint32_t rbgMask = 0;
1152  for (uint16_t k = 0; k < (*itMap).second.size (); k++)
1153  {
1154  rbgMask = rbgMask + (0x1 << (*itMap).second.at (k));
1155  NS_LOG_INFO (this << " Allocated RBG " << (*itMap).second.at (k));
1156  }
1157  newDci.m_rbBitmap = rbgMask; // (32 bit bitmap see 7.1.6 of 36.213)
1158 
1159  // create the rlc PDUs -> equally divide resources among actives LCs
1160  std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator itBufReq;
1161  for (itBufReq = m_rlcBufferReq.begin (); itBufReq != m_rlcBufferReq.end (); itBufReq++)
1162  {
1163  if (((*itBufReq).first.m_rnti == (*itMap).first)
1164  && (((*itBufReq).second.m_rlcTransmissionQueueSize > 0)
1165  || ((*itBufReq).second.m_rlcRetransmissionQueueSize > 0)
1166  || ((*itBufReq).second.m_rlcStatusPduSize > 0) ))
1167  {
1168  std::vector <struct RlcPduListElement_s> newRlcPduLe;
1169  for (uint8_t j = 0; j < nLayer; j++)
1170  {
1171  RlcPduListElement_s newRlcEl;
1172  newRlcEl.m_logicalChannelIdentity = (*itBufReq).first.m_lcId;
1173  newRlcEl.m_size = newDci.m_tbsSize.at (j) / lcActives;
1174  NS_LOG_INFO (this << " LCID " << (uint32_t) newRlcEl.m_logicalChannelIdentity << " size " << newRlcEl.m_size << " layer " << (uint16_t)j);
1175  newRlcPduLe.push_back (newRlcEl);
1176  UpdateDlRlcBufferInfo (newDci.m_rnti, newRlcEl.m_logicalChannelIdentity, newRlcEl.m_size);
1177  if (m_harqOn == true)
1178  {
1179  // store RLC PDU list for HARQ
1180  std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find ((*itMap).first);
1181  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
1182  {
1183  NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << (*itMap).first);
1184  }
1185  (*itRlcPdu).second.at (j).at (newDci.m_harqProcess).push_back (newRlcEl);
1186  }
1187  }
1188  newEl.m_rlcPduList.push_back (newRlcPduLe);
1189  }
1190  if ((*itBufReq).first.m_rnti > (*itMap).first)
1191  {
1192  break;
1193  }
1194  }
1195  for (uint8_t j = 0; j < nLayer; j++)
1196  {
1197  newDci.m_ndi.push_back (1);
1198  newDci.m_rv.push_back (0);
1199  }
1200 
1201  newDci.m_tpc = 1; //1 is mapped to 0 in Accumulated Mode and to -1 in Absolute Mode
1202 
1203  newEl.m_dci = newDci;
1204 
1205  if (m_harqOn == true)
1206  {
1207  // store DCI for HARQ
1208  std::map <uint16_t, DlHarqProcessesDciBuffer_t>::iterator itDci = m_dlHarqProcessesDciBuffer.find (newEl.m_rnti);
1209  if (itDci == m_dlHarqProcessesDciBuffer.end ())
1210  {
1211  NS_FATAL_ERROR ("Unable to find RNTI entry in DCI HARQ buffer for RNTI " << newEl.m_rnti);
1212  }
1213  (*itDci).second.at (newDci.m_harqProcess) = newDci;
1214  // refresh timer
1215  std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itHarqTimer = m_dlHarqProcessesTimer.find (newEl.m_rnti);
1216  if (itHarqTimer== m_dlHarqProcessesTimer.end ())
1217  {
1218  NS_FATAL_ERROR ("Unable to find HARQ timer for RNTI " << (uint16_t)newEl.m_rnti);
1219  }
1220  (*itHarqTimer).second.at (newDci.m_harqProcess) = 0;
1221  }
1222 
1223  // ...more parameters -> ingored in this version
1224 
1225  ret.m_buildDataList.push_back (newEl);
1226 
1227  itMap++;
1228  } // end while allocation
1229  ret.m_nrOfPdcchOfdmSymbols = 1;
1230 
1232 
1233 
1234  return;
1235 }
1236 
1237 void
1239 {
1240  NS_LOG_FUNCTION (this);
1241 
1242  m_rachList = params.m_rachList;
1243 
1244  return;
1245 }
1246 
1247 void
1249 {
1250  NS_LOG_FUNCTION (this);
1251 
1252  for (unsigned int i = 0; i < params.m_cqiList.size (); i++)
1253  {
1254  if ( params.m_cqiList.at (i).m_cqiType == CqiListElement_s::P10 )
1255  {
1256  // wideband CQI reporting
1257  std::map <uint16_t,uint8_t>::iterator it;
1258  uint16_t rnti = params.m_cqiList.at (i).m_rnti;
1259  it = m_p10CqiRxed.find (rnti);
1260  if (it == m_p10CqiRxed.end ())
1261  {
1262  // create the new entry
1263  m_p10CqiRxed.insert ( std::pair<uint16_t, uint8_t > (rnti, params.m_cqiList.at (i).m_wbCqi.at (0)) ); // only codeword 0 at this stage (SISO)
1264  // generate correspondent timer
1265  m_p10CqiTimers.insert ( std::pair<uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1266  }
1267  else
1268  {
1269  // update the CQI value and refresh correspondent timer
1270  (*it).second = params.m_cqiList.at (i).m_wbCqi.at (0);
1271  // update correspondent timer
1272  std::map <uint16_t,uint32_t>::iterator itTimers;
1273  itTimers = m_p10CqiTimers.find (rnti);
1274  (*itTimers).second = m_cqiTimersThreshold;
1275  }
1276  }
1277  else if ( params.m_cqiList.at (i).m_cqiType == CqiListElement_s::A30 )
1278  {
1279  // subband CQI reporting high layer configured
1280  std::map <uint16_t,SbMeasResult_s>::iterator it;
1281  uint16_t rnti = params.m_cqiList.at (i).m_rnti;
1282  it = m_a30CqiRxed.find (rnti);
1283  if (it == m_a30CqiRxed.end ())
1284  {
1285  // create the new entry
1286  m_a30CqiRxed.insert ( std::pair<uint16_t, SbMeasResult_s > (rnti, params.m_cqiList.at (i).m_sbMeasResult) );
1287  m_a30CqiTimers.insert ( std::pair<uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1288  }
1289  else
1290  {
1291  // update the CQI value and refresh correspondent timer
1292  (*it).second = params.m_cqiList.at (i).m_sbMeasResult;
1293  std::map <uint16_t,uint32_t>::iterator itTimers;
1294  itTimers = m_a30CqiTimers.find (rnti);
1295  (*itTimers).second = m_cqiTimersThreshold;
1296  }
1297  }
1298  else
1299  {
1300  NS_LOG_ERROR (this << " CQI type unknown");
1301  }
1302  }
1303 
1304  return;
1305 }
1306 
1307 
1308 double
1309 TdMtFfMacScheduler::EstimateUlSinr (uint16_t rnti, uint16_t rb)
1310 {
1311  std::map <uint16_t, std::vector <double> >::iterator itCqi = m_ueCqi.find (rnti);
1312  if (itCqi == m_ueCqi.end ())
1313  {
1314  // no cqi info about this UE
1315  return (NO_SINR);
1316 
1317  }
1318  else
1319  {
1320  // take the average SINR value among the available
1321  double sinrSum = 0;
1322  int sinrNum = 0;
1323  for (uint32_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1324  {
1325  double sinr = (*itCqi).second.at (i);
1326  if (sinr != NO_SINR)
1327  {
1328  sinrSum += sinr;
1329  sinrNum++;
1330  }
1331  }
1332  double estimatedSinr = (sinrNum > 0) ? (sinrSum / sinrNum) : DBL_MAX;
1333  // store the value
1334  (*itCqi).second.at (rb) = estimatedSinr;
1335  return (estimatedSinr);
1336  }
1337 }
1338 
1339 void
1341 {
1342  NS_LOG_FUNCTION (this << " UL - Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf) << " size " << params.m_ulInfoList.size ());
1343 
1344  RefreshUlCqiMaps ();
1345 
1346  // Generate RBs map
1348  std::vector <bool> rbMap;
1349  uint16_t rbAllocatedNum = 0;
1350  std::set <uint16_t> rntiAllocated;
1351  std::vector <uint16_t> rbgAllocationMap;
1352  // update with RACH allocation map
1353  rbgAllocationMap = m_rachAllocationMap;
1354  //rbgAllocationMap.resize (m_cschedCellConfig.m_ulBandwidth, 0);
1355  m_rachAllocationMap.clear ();
1357 
1358  rbMap.resize (m_cschedCellConfig.m_ulBandwidth, false);
1359  // remove RACH allocation
1360  for (uint16_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1361  {
1362  if (rbgAllocationMap.at (i) != 0)
1363  {
1364  rbMap.at (i) = true;
1365  NS_LOG_DEBUG (this << " Allocated for RACH " << i);
1366  }
1367  }
1368 
1369 
1370  if (m_harqOn == true)
1371  {
1372  // Process UL HARQ feedback
1373  for (uint16_t i = 0; i < params.m_ulInfoList.size (); i++)
1374  {
1375  if (params.m_ulInfoList.at (i).m_receptionStatus == UlInfoListElement_s::NotOk)
1376  {
1377  // retx correspondent block: retrieve the UL-DCI
1378  uint16_t rnti = params.m_ulInfoList.at (i).m_rnti;
1379  std::map <uint16_t, uint8_t>::iterator itProcId = m_ulHarqCurrentProcessId.find (rnti);
1380  if (itProcId == m_ulHarqCurrentProcessId.end ())
1381  {
1382  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1383  }
1384  uint8_t harqId = (uint8_t)((*itProcId).second - HARQ_PERIOD) % HARQ_PROC_NUM;
1385  NS_LOG_INFO (this << " UL-HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId << " i " << i << " size " << params.m_ulInfoList.size ());
1386  std::map <uint16_t, UlHarqProcessesDciBuffer_t>::iterator itHarq = m_ulHarqProcessesDciBuffer.find (rnti);
1387  if (itHarq == m_ulHarqProcessesDciBuffer.end ())
1388  {
1389  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1390  continue;
1391  }
1392  UlDciListElement_s dci = (*itHarq).second.at (harqId);
1393  std::map <uint16_t, UlHarqProcessesStatus_t>::iterator itStat = m_ulHarqProcessesStatus.find (rnti);
1394  if (itStat == m_ulHarqProcessesStatus.end ())
1395  {
1396  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1397  }
1398  if ((*itStat).second.at (harqId) >= 3)
1399  {
1400  NS_LOG_INFO ("Max number of retransmissions reached (UL)-> drop process");
1401  continue;
1402  }
1403  bool free = true;
1404  for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1405  {
1406  if (rbMap.at (j) == true)
1407  {
1408  free = false;
1409  NS_LOG_INFO (this << " BUSY " << j);
1410  }
1411  }
1412  if (free)
1413  {
1414  // retx on the same RBs
1415  for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1416  {
1417  rbMap.at (j) = true;
1418  rbgAllocationMap.at (j) = dci.m_rnti;
1419  NS_LOG_INFO ("\tRB " << j);
1420  rbAllocatedNum++;
1421  }
1422  NS_LOG_INFO (this << " Send retx in the same RBs " << (uint16_t)dci.m_rbStart << " to " << dci.m_rbStart + dci.m_rbLen << " RV " << (*itStat).second.at (harqId) + 1);
1423  }
1424  else
1425  {
1426  NS_LOG_INFO ("Cannot allocate retx due to RACH allocations for UE " << rnti);
1427  continue;
1428  }
1429  dci.m_ndi = 0;
1430  // Update HARQ buffers with new HarqId
1431  (*itStat).second.at ((*itProcId).second) = (*itStat).second.at (harqId) + 1;
1432  (*itStat).second.at (harqId) = 0;
1433  (*itHarq).second.at ((*itProcId).second) = dci;
1434  ret.m_dciList.push_back (dci);
1435  rntiAllocated.insert (dci.m_rnti);
1436  }
1437  else
1438  {
1439  NS_LOG_INFO (this << " HARQ-ACK feedback from RNTI " << params.m_ulInfoList.at (i).m_rnti);
1440  }
1441  }
1442  }
1443 
1444  std::map <uint16_t,uint32_t>::iterator it;
1445  int nflows = 0;
1446 
1447  for (it = m_ceBsrRxed.begin (); it != m_ceBsrRxed.end (); it++)
1448  {
1449  std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it).first);
1450  // select UEs with queues not empty and not yet allocated for HARQ
1451  if (((*it).second > 0)&&(itRnti == rntiAllocated.end ()))
1452  {
1453  nflows++;
1454  }
1455  }
1456 
1457  if (nflows == 0)
1458  {
1459  if (ret.m_dciList.size () > 0)
1460  {
1461  m_allocationMaps.insert (std::pair <uint16_t, std::vector <uint16_t> > (params.m_sfnSf, rbgAllocationMap));
1463  }
1464 
1465  return; // no flows to be scheduled
1466  }
1467 
1468 
1469  // Divide the remaining resources equally among the active users starting from the subsequent one served last scheduling trigger
1470  uint16_t rbPerFlow = (m_cschedCellConfig.m_ulBandwidth) / (nflows + rntiAllocated.size ());
1471  if (rbPerFlow < 3)
1472  {
1473  rbPerFlow = 3; // at least 3 rbg per flow (till available resource) to ensure TxOpportunity >= 7 bytes
1474  }
1475  int rbAllocated = 0;
1476 
1477  if (m_nextRntiUl != 0)
1478  {
1479  for (it = m_ceBsrRxed.begin (); it != m_ceBsrRxed.end (); it++)
1480  {
1481  if ((*it).first == m_nextRntiUl)
1482  {
1483  break;
1484  }
1485  }
1486  if (it == m_ceBsrRxed.end ())
1487  {
1488  NS_LOG_ERROR (this << " no user found");
1489  }
1490  }
1491  else
1492  {
1493  it = m_ceBsrRxed.begin ();
1494  m_nextRntiUl = (*it).first;
1495  }
1496  do
1497  {
1498  std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it).first);
1499  if ((itRnti != rntiAllocated.end ())||((*it).second == 0))
1500  {
1501  // UE already allocated for UL-HARQ -> skip it
1502  NS_LOG_DEBUG (this << " UE already allocated in HARQ -> discared, RNTI " << (*it).first);
1503  it++;
1504  if (it == m_ceBsrRxed.end ())
1505  {
1506  // restart from the first
1507  it = m_ceBsrRxed.begin ();
1508  }
1509  continue;
1510  }
1511  if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1512  {
1513  // limit to physical resources last resource assignment
1514  rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1515  // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1516  if (rbPerFlow < 3)
1517  {
1518  // terminate allocation
1519  rbPerFlow = 0;
1520  }
1521  }
1522 
1523  UlDciListElement_s uldci;
1524  uldci.m_rnti = (*it).first;
1525  uldci.m_rbLen = rbPerFlow;
1526  bool allocated = false;
1527  NS_LOG_INFO (this << " RB Allocated " << rbAllocated << " rbPerFlow " << rbPerFlow << " flows " << nflows);
1528  while ((!allocated)&&((rbAllocated + rbPerFlow - m_cschedCellConfig.m_ulBandwidth) < 1) && (rbPerFlow != 0))
1529  {
1530  // check availability
1531  bool free = true;
1532  for (uint16_t j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1533  {
1534  if (rbMap.at (j) == true)
1535  {
1536  free = false;
1537  break;
1538  }
1539  }
1540  if (free)
1541  {
1542  uldci.m_rbStart = rbAllocated;
1543 
1544  for (uint16_t j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1545  {
1546  rbMap.at (j) = true;
1547  // store info on allocation for managing ul-cqi interpretation
1548  rbgAllocationMap.at (j) = (*it).first;
1549  }
1550  rbAllocated += rbPerFlow;
1551  allocated = true;
1552  break;
1553  }
1554  rbAllocated++;
1555  if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1556  {
1557  // limit to physical resources last resource assignment
1558  rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1559  // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1560  if (rbPerFlow < 3)
1561  {
1562  // terminate allocation
1563  rbPerFlow = 0;
1564  }
1565  }
1566  }
1567  if (!allocated)
1568  {
1569  // unable to allocate new resource: finish scheduling
1570  m_nextRntiUl = (*it).first;
1571  if (ret.m_dciList.size () > 0)
1572  {
1574  }
1575  m_allocationMaps.insert (std::pair <uint16_t, std::vector <uint16_t> > (params.m_sfnSf, rbgAllocationMap));
1576  return;
1577  }
1578 
1579 
1580 
1581  std::map <uint16_t, std::vector <double> >::iterator itCqi = m_ueCqi.find ((*it).first);
1582  int cqi = 0;
1583  if (itCqi == m_ueCqi.end ())
1584  {
1585  // no cqi info about this UE
1586  uldci.m_mcs = 0; // MCS 0 -> UL-AMC TBD
1587  }
1588  else
1589  {
1590  // take the lowest CQI value (worst RB)
1591  double minSinr = (*itCqi).second.at (uldci.m_rbStart);
1592  if (minSinr == NO_SINR)
1593  {
1594  minSinr = EstimateUlSinr ((*it).first, uldci.m_rbStart);
1595  }
1596  for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1597  {
1598  double sinr = (*itCqi).second.at (i);
1599  if (sinr == NO_SINR)
1600  {
1601  sinr = EstimateUlSinr ((*it).first, i);
1602  }
1603  if ((*itCqi).second.at (i) < minSinr)
1604  {
1605  minSinr = (*itCqi).second.at (i);
1606  }
1607  }
1608 
1609  // translate SINR -> cqi: WILD ACK: same as DL
1610  double s = log2 ( 1 + (
1611  std::pow (10, minSinr / 10 ) /
1612  ( (-std::log (5.0 * 0.00005 )) / 1.5) ));
1613  cqi = m_amc->GetCqiFromSpectralEfficiency (s);
1614  if (cqi == 0)
1615  {
1616  it++;
1617  if (it == m_ceBsrRxed.end ())
1618  {
1619  // restart from the first
1620  it = m_ceBsrRxed.begin ();
1621  }
1622  NS_LOG_DEBUG (this << " UE discared for CQI=0, RNTI " << uldci.m_rnti);
1623  // remove UE from allocation map
1624  for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1625  {
1626  rbgAllocationMap.at (i) = 0;
1627  }
1628  continue; // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
1629  }
1630  uldci.m_mcs = m_amc->GetMcsFromCqi (cqi);
1631  }
1632 
1633  uldci.m_tbSize = (m_amc->GetTbSizeFromMcs (uldci.m_mcs, rbPerFlow) / 8);
1634  UpdateUlRlcBufferInfo (uldci.m_rnti, uldci.m_tbSize);
1635  uldci.m_ndi = 1;
1636  uldci.m_cceIndex = 0;
1637  uldci.m_aggrLevel = 1;
1638  uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
1639  uldci.m_hopping = false;
1640  uldci.m_n2Dmrs = 0;
1641  uldci.m_tpc = 0; // no power control
1642  uldci.m_cqiRequest = false; // only period CQI at this stage
1643  uldci.m_ulIndex = 0; // TDD parameter
1644  uldci.m_dai = 1; // TDD parameter
1645  uldci.m_freqHopping = 0;
1646  uldci.m_pdcchPowerOffset = 0; // not used
1647  ret.m_dciList.push_back (uldci);
1648  // store DCI for HARQ_PERIOD
1649  uint8_t harqId = 0;
1650  if (m_harqOn == true)
1651  {
1652  std::map <uint16_t, uint8_t>::iterator itProcId;
1653  itProcId = m_ulHarqCurrentProcessId.find (uldci.m_rnti);
1654  if (itProcId == m_ulHarqCurrentProcessId.end ())
1655  {
1656  NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << uldci.m_rnti);
1657  }
1658  harqId = (*itProcId).second;
1659  std::map <uint16_t, UlHarqProcessesDciBuffer_t>::iterator itDci = m_ulHarqProcessesDciBuffer.find (uldci.m_rnti);
1660  if (itDci == m_ulHarqProcessesDciBuffer.end ())
1661  {
1662  NS_FATAL_ERROR ("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI " << uldci.m_rnti);
1663  }
1664  (*itDci).second.at (harqId) = uldci;
1665  // Update HARQ process status (RV 0)
1666  std::map <uint16_t, UlHarqProcessesStatus_t>::iterator itStat = m_ulHarqProcessesStatus.find (uldci.m_rnti);
1667  if (itStat == m_ulHarqProcessesStatus.end ())
1668  {
1669  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << uldci.m_rnti);
1670  }
1671  (*itStat).second.at (harqId) = 0;
1672  }
1673 
1674  NS_LOG_INFO (this << " UE Allocation RNTI " << (*it).first << " startPRB " << (uint32_t)uldci.m_rbStart << " nPRB " << (uint32_t)uldci.m_rbLen << " CQI " << cqi << " MCS " << (uint32_t)uldci.m_mcs << " TBsize " << uldci.m_tbSize << " RbAlloc " << rbAllocated << " harqId " << (uint16_t)harqId);
1675 
1676 
1677  it++;
1678  if (it == m_ceBsrRxed.end ())
1679  {
1680  // restart from the first
1681  it = m_ceBsrRxed.begin ();
1682  }
1683  if ((rbAllocated == m_cschedCellConfig.m_ulBandwidth) || (rbPerFlow == 0))
1684  {
1685  // Stop allocation: no more PRBs
1686  m_nextRntiUl = (*it).first;
1687  break;
1688  }
1689  }
1690  while (((*it).first != m_nextRntiUl)&&(rbPerFlow!=0));
1691 
1692 
1693  m_allocationMaps.insert (std::pair <uint16_t, std::vector <uint16_t> > (params.m_sfnSf, rbgAllocationMap));
1695 
1696  return;
1697 }
1698 
1699 void
1701 {
1702  NS_LOG_FUNCTION (this);
1703  return;
1704 }
1705 
1706 void
1708 {
1709  NS_LOG_FUNCTION (this);
1710  return;
1711 }
1712 
1713 void
1715 {
1716  NS_LOG_FUNCTION (this);
1717 
1718  std::map <uint16_t,uint32_t>::iterator it;
1719 
1720  for (unsigned int i = 0; i < params.m_macCeList.size (); i++)
1721  {
1722  if ( params.m_macCeList.at (i).m_macCeType == MacCeListElement_s::BSR )
1723  {
1724  // buffer status report
1725  // note that this scheduler does not differentiate the
1726  // allocation according to which LCGs have more/less bytes
1727  // to send.
1728  // Hence the BSR of different LCGs are just summed up to get
1729  // a total queue size that is used for allocation purposes.
1730 
1731  uint32_t buffer = 0;
1732  for (uint8_t lcg = 0; lcg < 4; ++lcg)
1733  {
1734  uint8_t bsrId = params.m_macCeList.at (i).m_macCeValue.m_bufferStatus.at (lcg);
1735  buffer += BufferSizeLevelBsr::BsrId2BufferSize (bsrId);
1736  }
1737 
1738  uint16_t rnti = params.m_macCeList.at (i).m_rnti;
1739  NS_LOG_LOGIC (this << "RNTI=" << rnti << " buffer=" << buffer);
1740  it = m_ceBsrRxed.find (rnti);
1741  if (it == m_ceBsrRxed.end ())
1742  {
1743  // create the new entry
1744  m_ceBsrRxed.insert ( std::pair<uint16_t, uint32_t > (rnti, buffer));
1745  }
1746  else
1747  {
1748  // update the buffer size value
1749  (*it).second = buffer;
1750  }
1751  }
1752  }
1753 
1754  return;
1755 }
1756 
1757 void
1759 {
1760  NS_LOG_FUNCTION (this);
1761 // retrieve the allocation for this subframe
1762  switch (m_ulCqiFilter)
1763  {
1765  {
1766  // filter all the CQIs that are not SRS based
1767  if (params.m_ulCqi.m_type != UlCqi_s::SRS)
1768  {
1769  return;
1770  }
1771  }
1772  break;
1774  {
1775  // filter all the CQIs that are not SRS based
1776  if (params.m_ulCqi.m_type != UlCqi_s::PUSCH)
1777  {
1778  return;
1779  }
1780  }
1782  break;
1783 
1784  default:
1785  NS_FATAL_ERROR ("Unknown UL CQI type");
1786  }
1787 
1788  switch (params.m_ulCqi.m_type)
1789  {
1790  case UlCqi_s::PUSCH:
1791  {
1792  std::map <uint16_t, std::vector <uint16_t> >::iterator itMap;
1793  std::map <uint16_t, std::vector <double> >::iterator itCqi;
1794  NS_LOG_DEBUG (this << " Collect PUSCH CQIs of Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf));
1795  itMap = m_allocationMaps.find (params.m_sfnSf);
1796  if (itMap == m_allocationMaps.end ())
1797  {
1798  return;
1799  }
1800  for (uint32_t i = 0; i < (*itMap).second.size (); i++)
1801  {
1802  // convert from fixed point notation Sxxxxxxxxxxx.xxx to double
1803  double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (i));
1804  itCqi = m_ueCqi.find ((*itMap).second.at (i));
1805  if (itCqi == m_ueCqi.end ())
1806  {
1807  // create a new entry
1808  std::vector <double> newCqi;
1809  for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1810  {
1811  if (i == j)
1812  {
1813  newCqi.push_back (sinr);
1814  }
1815  else
1816  {
1817  // initialize with NO_SINR value.
1818  newCqi.push_back (NO_SINR);
1819  }
1820 
1821  }
1822  m_ueCqi.insert (std::pair <uint16_t, std::vector <double> > ((*itMap).second.at (i), newCqi));
1823  // generate correspondent timer
1824  m_ueCqiTimers.insert (std::pair <uint16_t, uint32_t > ((*itMap).second.at (i), m_cqiTimersThreshold));
1825  }
1826  else
1827  {
1828  // update the value
1829  (*itCqi).second.at (i) = sinr;
1830  NS_LOG_DEBUG (this << " RNTI " << (*itMap).second.at (i) << " RB " << i << " SINR " << sinr);
1831  // update correspondent timer
1832  std::map <uint16_t, uint32_t>::iterator itTimers;
1833  itTimers = m_ueCqiTimers.find ((*itMap).second.at (i));
1834  (*itTimers).second = m_cqiTimersThreshold;
1835 
1836  }
1837 
1838  }
1839  // remove obsolete info on allocation
1840  m_allocationMaps.erase (itMap);
1841  }
1842  break;
1843  case UlCqi_s::SRS:
1844  {
1845  // get the RNTI from vendor specific parameters
1846  uint16_t rnti = 0;
1847  NS_ASSERT (params.m_vendorSpecificList.size () > 0);
1848  for (uint16_t i = 0; i < params.m_vendorSpecificList.size (); i++)
1849  {
1850  if (params.m_vendorSpecificList.at (i).m_type == SRS_CQI_RNTI_VSP)
1851  {
1852  Ptr<SrsCqiRntiVsp> vsp = DynamicCast<SrsCqiRntiVsp> (params.m_vendorSpecificList.at (i).m_value);
1853  rnti = vsp->GetRnti ();
1854  }
1855  }
1856  std::map <uint16_t, std::vector <double> >::iterator itCqi;
1857  itCqi = m_ueCqi.find (rnti);
1858  if (itCqi == m_ueCqi.end ())
1859  {
1860  // create a new entry
1861  std::vector <double> newCqi;
1862  for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1863  {
1864  double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (j));
1865  newCqi.push_back (sinr);
1866  NS_LOG_INFO (this << " RNTI " << rnti << " new SRS-CQI for RB " << j << " value " << sinr);
1867 
1868  }
1869  m_ueCqi.insert (std::pair <uint16_t, std::vector <double> > (rnti, newCqi));
1870  // generate correspondent timer
1871  m_ueCqiTimers.insert (std::pair <uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1872  }
1873  else
1874  {
1875  // update the values
1876  for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1877  {
1878  double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (j));
1879  (*itCqi).second.at (j) = sinr;
1880  NS_LOG_INFO (this << " RNTI " << rnti << " update SRS-CQI for RB " << j << " value " << sinr);
1881  }
1882  // update correspondent timer
1883  std::map <uint16_t, uint32_t>::iterator itTimers;
1884  itTimers = m_ueCqiTimers.find (rnti);
1885  (*itTimers).second = m_cqiTimersThreshold;
1886 
1887  }
1888 
1889 
1890  }
1891  break;
1892  case UlCqi_s::PUCCH_1:
1893  case UlCqi_s::PUCCH_2:
1894  case UlCqi_s::PRACH:
1895  {
1896  NS_FATAL_ERROR ("TdMtFfMacScheduler supports only PUSCH and SRS UL-CQIs");
1897  }
1898  break;
1899  default:
1900  NS_FATAL_ERROR ("Unknown type of UL-CQI");
1901  }
1902  return;
1903 }
1904 
1905 void
1907 {
1908  // refresh DL CQI P01 Map
1909  std::map <uint16_t,uint32_t>::iterator itP10 = m_p10CqiTimers.begin ();
1910  while (itP10 != m_p10CqiTimers.end ())
1911  {
1912  NS_LOG_INFO (this << " P10-CQI for user " << (*itP10).first << " is " << (uint32_t)(*itP10).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1913  if ((*itP10).second == 0)
1914  {
1915  // delete correspondent entries
1916  std::map <uint16_t,uint8_t>::iterator itMap = m_p10CqiRxed.find ((*itP10).first);
1917  NS_ASSERT_MSG (itMap != m_p10CqiRxed.end (), " Does not find CQI report for user " << (*itP10).first);
1918  NS_LOG_INFO (this << " P10-CQI expired for user " << (*itP10).first);
1919  m_p10CqiRxed.erase (itMap);
1920  std::map <uint16_t,uint32_t>::iterator temp = itP10;
1921  itP10++;
1922  m_p10CqiTimers.erase (temp);
1923  }
1924  else
1925  {
1926  (*itP10).second--;
1927  itP10++;
1928  }
1929  }
1930 
1931  // refresh DL CQI A30 Map
1932  std::map <uint16_t,uint32_t>::iterator itA30 = m_a30CqiTimers.begin ();
1933  while (itA30 != m_a30CqiTimers.end ())
1934  {
1935  NS_LOG_INFO (this << " A30-CQI for user " << (*itA30).first << " is " << (uint32_t)(*itA30).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1936  if ((*itA30).second == 0)
1937  {
1938  // delete correspondent entries
1939  std::map <uint16_t,SbMeasResult_s>::iterator itMap = m_a30CqiRxed.find ((*itA30).first);
1940  NS_ASSERT_MSG (itMap != m_a30CqiRxed.end (), " Does not find CQI report for user " << (*itA30).first);
1941  NS_LOG_INFO (this << " A30-CQI expired for user " << (*itA30).first);
1942  m_a30CqiRxed.erase (itMap);
1943  std::map <uint16_t,uint32_t>::iterator temp = itA30;
1944  itA30++;
1945  m_a30CqiTimers.erase (temp);
1946  }
1947  else
1948  {
1949  (*itA30).second--;
1950  itA30++;
1951  }
1952  }
1953 
1954  return;
1955 }
1956 
1957 
1958 void
1960 {
1961  // refresh UL CQI Map
1962  std::map <uint16_t,uint32_t>::iterator itUl = m_ueCqiTimers.begin ();
1963  while (itUl != m_ueCqiTimers.end ())
1964  {
1965  NS_LOG_INFO (this << " UL-CQI for user " << (*itUl).first << " is " << (uint32_t)(*itUl).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1966  if ((*itUl).second == 0)
1967  {
1968  // delete correspondent entries
1969  std::map <uint16_t, std::vector <double> >::iterator itMap = m_ueCqi.find ((*itUl).first);
1970  NS_ASSERT_MSG (itMap != m_ueCqi.end (), " Does not find CQI report for user " << (*itUl).first);
1971  NS_LOG_INFO (this << " UL-CQI exired for user " << (*itUl).first);
1972  (*itMap).second.clear ();
1973  m_ueCqi.erase (itMap);
1974  std::map <uint16_t,uint32_t>::iterator temp = itUl;
1975  itUl++;
1976  m_ueCqiTimers.erase (temp);
1977  }
1978  else
1979  {
1980  (*itUl).second--;
1981  itUl++;
1982  }
1983  }
1984 
1985  return;
1986 }
1987 
1988 void
1989 TdMtFfMacScheduler::UpdateDlRlcBufferInfo (uint16_t rnti, uint8_t lcid, uint16_t size)
1990 {
1991  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
1992  LteFlowId_t flow (rnti, lcid);
1993  it = m_rlcBufferReq.find (flow);
1994  if (it != m_rlcBufferReq.end ())
1995  {
1996  NS_LOG_INFO (this << " UE " << rnti << " LC " << (uint16_t)lcid << " txqueue " << (*it).second.m_rlcTransmissionQueueSize << " retxqueue " << (*it).second.m_rlcRetransmissionQueueSize << " status " << (*it).second.m_rlcStatusPduSize << " decrease " << size);
1997  // Update queues: RLC tx order Status, ReTx, Tx
1998  // Update status queue
1999  if (((*it).second.m_rlcStatusPduSize > 0) && (size >= (*it).second.m_rlcStatusPduSize))
2000  {
2001  (*it).second.m_rlcStatusPduSize = 0;
2002  }
2003  else if (((*it).second.m_rlcRetransmissionQueueSize > 0) && (size >= (*it).second.m_rlcRetransmissionQueueSize))
2004  {
2005  (*it).second.m_rlcRetransmissionQueueSize = 0;
2006  }
2007  else if ((*it).second.m_rlcTransmissionQueueSize > 0)
2008  {
2009  uint32_t rlcOverhead;
2010  if (lcid == 1)
2011  {
2012  // for SRB1 (using RLC AM) it's better to
2013  // overestimate RLC overhead rather than
2014  // underestimate it and risk unneeded
2015  // segmentation which increases delay
2016  rlcOverhead = 4;
2017  }
2018  else
2019  {
2020  // minimum RLC overhead due to header
2021  rlcOverhead = 2;
2022  }
2023  // update transmission queue
2024  if ((*it).second.m_rlcTransmissionQueueSize <= size - rlcOverhead)
2025  {
2026  (*it).second.m_rlcTransmissionQueueSize = 0;
2027  }
2028  else
2029  {
2030  (*it).second.m_rlcTransmissionQueueSize -= size - rlcOverhead;
2031  }
2032  }
2033  }
2034  else
2035  {
2036  NS_LOG_ERROR (this << " Does not find DL RLC Buffer Report of UE " << rnti);
2037  }
2038 }
2039 
2040 void
2041 TdMtFfMacScheduler::UpdateUlRlcBufferInfo (uint16_t rnti, uint16_t size)
2042 {
2043 
2044  size = size - 2; // remove the minimum RLC overhead
2045  std::map <uint16_t,uint32_t>::iterator it = m_ceBsrRxed.find (rnti);
2046  if (it != m_ceBsrRxed.end ())
2047  {
2048  NS_LOG_INFO (this << " UE " << rnti << " size " << size << " BSR " << (*it).second);
2049  if ((*it).second >= size)
2050  {
2051  (*it).second -= size;
2052  }
2053  else
2054  {
2055  (*it).second = 0;
2056  }
2057  }
2058  else
2059  {
2060  NS_LOG_ERROR (this << " Does not find BSR report info of UE " << rnti);
2061  }
2062 
2063 }
2064 
2065 void
2067 {
2068  NS_LOG_FUNCTION (this << " RNTI " << rnti << " txMode " << (uint16_t)txMode);
2070  params.m_rnti = rnti;
2071  params.m_transmissionMode = txMode;
2073 }
2074 
2075 
2076 }
virtual void SchedDlTriggerReq(const struct SchedDlTriggerReqParameters &params)
std::vector< struct UlInfoListElement_s > m_ulInfoList
See section 4.3.1 dlDciListElement.
Definition: ff-mac-common.h:88
std::set< uint16_t > m_flowStatsDl
virtual void CschedLcConfigReq(const struct CschedLcConfigReqParameters &params)
std::map< uint16_t, uint8_t > m_uesTxMode
smart pointer class similar to boost::intrusive_ptr
Definition: ptr.h:60
Service Access Point (SAP) offered by the eNodeB RRC instance to the Frequency Reuse algorithm instan...
Definition: lte-ffr-sap.h:132
#define NS_LOG_FUNCTION(parameters)
If log level LOG_FUNCTION is enabled, this macro will output all input parameters separated by "...
#define HARQ_PERIOD
Definition: lte-common.h:30
Hold a bool native type.
Definition: boolean.h:38
void DoCschedUeReleaseReq(const struct FfMacCschedSapProvider::CschedUeReleaseReqParameters &params)
void DoSchedUlNoiseInterferenceReq(const struct FfMacSchedSapProvider::SchedUlNoiseInterferenceReqParameters &params)
std::vector< DlInfoListElement_s > m_dlInfoListBuffered
std::map< uint16_t, uint32_t > m_ceBsrRxed
#define NS_OBJECT_ENSURE_REGISTERED(type)
Register the class in the ns-3 factory.
Definition: object-base.h:38
double EstimateUlSinr(uint16_t rnti, uint16_t rb)
Parameters of the CSCHED_UE_CONFIG_CNF primitive.
Parameters of the CSCHED_UE_RELEASE_REQ primitive.
virtual void SchedUlCqiInfoReq(const struct SchedUlCqiInfoReqParameters &params)
std::map< uint16_t, std::vector< double > > m_ueCqi
enum ns3::UlCqi_s::Type_e m_type
virtual void CschedCellConfigReq(const struct CschedCellConfigReqParameters &params)
CSCHED_CELL_CONFIG_REQ.
friend class TdMtSchedulerMemberSchedSapProvider
std::vector< UlDciListElement_s > UlHarqProcessesDciBuffer_t
std::vector< struct LogicalChannelConfigListElement_s > m_logicalChannelConfigList
std::vector< uint16_t > m_sinr
virtual LteFfrSapUser * GetLteFfrSapUser()
std::vector< uint8_t > DlHarqProcessesTimer_t
#define NS_ASSERT(condition)
At runtime, in debugging builds, if this condition is not true, the program prints the source file...
Definition: assert.h:61
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:170
std::vector< uint8_t > m_mcs
Definition: ff-mac-common.h:95
virtual ~TdMtFfMacScheduler()
Destructor.
See section 4.3.2 ulDciListElement.
Provides the CSCHED SAP.
std::vector< struct UlDciListElement_s > m_dciList
std::set< uint16_t > m_flowStatsUl
#define NS_LOG_INFO(msg)
Use NS_LOG to output a message of level LOG_INFO.
Definition: log.h:223
#define NS_FATAL_ERROR(msg)
fatal error handling
Definition: fatal-error.h:95
See section 4.3.10 buildRARListElement.
FfMacCschedSapProvider * m_cschedSapProvider
std::map< uint16_t, uint8_t > m_ulHarqCurrentProcessId
Parameters of the CSCHED_UE_CONFIG_UPDATE_IND primitive.
void DoSchedUlMacCtrlInfoReq(const struct FfMacSchedSapProvider::SchedUlMacCtrlInfoReqParameters &params)
Parameters of the CSCHED_LC_RELEASE_REQ primitive.
virtual void SchedUlMacCtrlInfoReq(const struct SchedUlMacCtrlInfoReqParameters &params)
std::vector< std::vector< struct RlcPduListElement_s > > m_rlcPduList
Parameters of the SCHED_DL_TRIGGER_REQ primitive.
std::map< uint16_t, UlHarqProcessesDciBuffer_t > m_ulHarqProcessesDciBuffer
void DoSchedDlMacBufferReq(const struct FfMacSchedSapProvider::SchedDlMacBufferReqParameters &params)
std::map< uint16_t, uint32_t > m_p10CqiTimers
std::vector< struct RachListElement_s > m_rachList
FfMacCschedSapProvider::CschedCellConfigReqParameters m_cschedCellConfig
virtual void SetFfMacCschedSapUser(FfMacCschedSapUser *s)
set the user part of the FfMacCschedSap that this Scheduler will interact with.
virtual FfMacCschedSapProvider * GetFfMacCschedSapProvider()
std::vector< RlcPduList_t > DlHarqRlcPduListBuffer_t
Parameters of the SCHED_DL_MAC_BUFFER_REQ primitive.
Parameters of the SCHED_DL_PAGING_BUFFER_REQ primitive.
virtual void SchedUlTriggerReq(const struct SchedUlTriggerReqParameters &params)
virtual void CschedUeConfigUpdateInd(const struct CschedUeConfigUpdateIndParameters &params)=0
std::vector< struct VendorSpecificListElement_s > m_vendorSpecificList
bool m_harqOn
m_harqOn when false inhibit te HARQ mechanisms (by default active)
friend class TdMtSchedulerMemberCschedSapProvider
virtual FfMacSchedSapProvider * GetFfMacSchedSapProvider()
virtual void SchedDlRachInfoReq(const struct SchedDlRachInfoReqParameters &params)
std::map< uint16_t, DlHarqProcessesDciBuffer_t > m_dlHarqProcessesDciBuffer
std::map< uint16_t, SbMeasResult_s > m_a30CqiRxed
Service Access Point (SAP) offered by the Frequency Reuse algorithm instance to the MAC Scheduler ins...
Definition: lte-ffr-sap.h:39
Parameters of the SCHED_UL_TRIGGER_REQ primitive.
Hold an unsigned integer type.
Definition: uinteger.h:46
static uint8_t TxMode2LayerNum(uint8_t txMode)
Definition: lte-common.cc:170
Ptr< SampleEmitter > s
std::vector< uint8_t > m_ndi
Definition: ff-mac-common.h:96
Provides the SCHED SAP.
int LcActivePerFlow(uint16_t rnti)
void DoCschedUeConfigReq(const struct FfMacCschedSapProvider::CschedUeConfigReqParameters &params)
virtual void SchedUlNoiseInterferenceReq(const struct SchedUlNoiseInterferenceReqParameters &params)
virtual void CschedUeConfigCnf(const struct CschedUeConfigCnfParameters &params)=0
#define NS_LOG_LOGIC(msg)
Use NS_LOG to output a message of level LOG_LOGIC.
Definition: log.h:233
Parameters of the SCHED_UL_NOISE_INTERFERENCE_REQ primitive.
std::vector< struct CqiListElement_s > m_cqiList
uint8_t UpdateHarqProcessId(uint16_t rnti)
Update and return a new process Id for the RNTI specified.
std::vector< struct DlInfoListElement_s > m_dlInfoList
virtual void SetFfMacSchedSapUser(FfMacSchedSapUser *s)
set the user part of the FfMacSchedSap that this Scheduler will interact with.
virtual void SchedDlConfigInd(const struct SchedDlConfigIndParameters &params)=0
virtual void CschedLcReleaseReq(const struct CschedLcReleaseReqParameters &params)
virtual void SchedUlSrInfoReq(const struct SchedUlSrInfoReqParameters &params)
void DoSchedDlRlcBufferReq(const struct FfMacSchedSapProvider::SchedDlRlcBufferReqParameters &params)
void UpdateDlRlcBufferInfo(uint16_t rnti, uint8_t lcid, uint16_t size)
std::vector< uint16_t > m_tbsSize
Definition: ff-mac-common.h:94
See section 4.3.9 rlcPDU_ListElement.
virtual void SchedDlMacBufferReq(const struct SchedDlMacBufferReqParameters &params)
static const int TdMtType0AllocationRbg[4]
std::vector< DlDciListElement_s > DlHarqProcessesDciBuffer_t
Parameters of the CSCHED_LC_CONFIG_REQ primitive.
virtual void SchedDlRlcBufferReq(const struct SchedDlRlcBufferReqParameters &params)
std::map< uint16_t, uint32_t > m_a30CqiTimers
void DoSchedDlPagingBufferReq(const struct FfMacSchedSapProvider::SchedDlPagingBufferReqParameters &params)
std::vector< uint8_t > m_rv
Definition: ff-mac-common.h:97
void DoCschedCellConfigReq(const struct FfMacCschedSapProvider::CschedCellConfigReqParameters &params)
virtual void SetLteFfrSapProvider(LteFfrSapProvider *s)
Set the Provider part of the LteFfrSap that this Scheduler will interact with.
virtual void SchedUlConfigInd(const struct SchedUlConfigIndParameters &params)=0
UlCqiFilter_t m_ulCqiFilter
LteFfrSapProvider * m_ffrSapProvider
std::map< uint16_t, DlHarqRlcPduListBuffer_t > m_dlHarqProcessesRlcPduListBuffer
#define SRS_CQI_RNTI_VSP
This abstract base class identifies the interface by means of which the helper object can plug on the...
std::vector< uint16_t > m_rachAllocationMap
#define NS_ASSERT_MSG(condition, message)
At runtime, in debugging builds, if this condition is not true, the program prints the message to out...
Definition: assert.h:84
Parameters of the SCHED_DL_CQI_INFO_REQ primitive.
std::vector< struct MacCeListElement_s > m_macCeList
std::vector< struct RachListElement_s > m_rachList
void RefreshHarqProcesses()
Refresh HARQ processes according to the timers.
static double fpS11dot3toDouble(uint16_t val)
Definition: lte-common.cc:114
void DoSchedUlCqiInfoReq(const struct FfMacSchedSapProvider::SchedUlCqiInfoReqParameters &params)
FfMacCschedSapUser * m_cschedSapUser
std::vector< uint8_t > UlHarqProcessesStatus_t
std::map< LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters > m_rlcBufferReq
std::map< uint16_t, UlHarqProcessesStatus_t > m_ulHarqProcessesStatus
std::vector< uint8_t > DlHarqProcessesStatus_t
Parameters of the SCHED_UL_CQI_INFO_REQ primitive.
void DoSchedDlRachInfoReq(const struct FfMacSchedSapProvider::SchedDlRachInfoReqParameters &params)
static uint32_t BsrId2BufferSize(uint8_t val)
Definition: lte-common.cc:142
void TransmissionModeConfigurationUpdate(uint16_t rnti, uint8_t txMode)
void UpdateUlRlcBufferInfo(uint16_t rnti, uint16_t size)
virtual void CschedUeConfigReq(const struct CschedUeConfigReqParameters &params)
Parameters of the SCHED_UL_MAC_CTRL_INFO_REQ primitive.
#define NS_LOG_DEBUG(msg)
Use NS_LOG to output a message of level LOG_DEBUG.
Definition: log.h:213
virtual void SchedDlPagingBufferReq(const struct SchedDlPagingBufferReqParameters &params)
void DoSchedDlTriggerReq(const struct FfMacSchedSapProvider::SchedDlTriggerReqParameters &params)
virtual void CschedUeReleaseReq(const struct CschedUeReleaseReqParameters &params)
Parameters of the SCHED_UL_SR_INFO_REQ primitive.
std::map< uint16_t, uint8_t > m_dlHarqCurrentProcessId
void DoCschedLcReleaseReq(const struct FfMacCschedSapProvider::CschedLcReleaseReqParameters &params)
std::map< uint16_t, uint8_t > m_p10CqiRxed
#define NS_LOG_ERROR(msg)
Use NS_LOG to output a message of level LOG_ERROR.
Definition: log.h:193
Parameters of the SCHED_DL_RACH_INFO_REQ primitive.
Parameters of the SCHED_UL_CONFIG_IND primitive.
void DoSchedUlSrInfoReq(const struct FfMacSchedSapProvider::SchedUlSrInfoReqParameters &params)
Parameters of the CSCHED_UE_CONFIG_REQ primitive.
virtual void DoDispose(void)
This method is called by Object::Dispose or by the object's destructor, whichever comes first...
#define HARQ_DL_TIMEOUT
void DoSchedUlTriggerReq(const struct FfMacSchedSapProvider::SchedUlTriggerReqParameters &params)
#define NO_SINR
FfMacSchedSapProvider * m_schedSapProvider
Implements the SCHED SAP and CSCHED SAP for a Time Domain Maximize Throughput scheduler.
struct DlDciListElement_s m_dci
std::vector< struct BuildRarListElement_s > m_buildRarList
std::map< uint16_t, std::vector< uint16_t > > m_allocationMaps
a unique identifier for an interface.
Definition: type-id.h:49
std::map< uint16_t, DlHarqProcessesStatus_t > m_dlHarqProcessesStatus
TypeId SetParent(TypeId tid)
Definition: type-id.cc:610
#define HARQ_PROC_NUM
virtual void SchedDlCqiInfoReq(const struct SchedDlCqiInfoReqParameters &params)
uint8_t HarqProcessAvailability(uint16_t rnti)
Return the availability of free process for the RNTI specified.
std::map< uint16_t, DlHarqProcessesTimer_t > m_dlHarqProcessesTimer
void DoCschedLcConfigReq(const struct FfMacCschedSapProvider::CschedLcConfigReqParameters &params)
int GetRbgSize(int dlbandwidth)
void DoSchedDlCqiInfoReq(const struct FfMacSchedSapProvider::SchedDlCqiInfoReqParameters &params)
FfMacSchedSapUser * m_schedSapUser
std::vector< struct BuildDataListElement_s > m_buildDataList
See section 4.3.8 builDataListElement.
std::map< uint16_t, uint32_t > m_ueCqiTimers