A Discrete-Event Network Simulator
API
fdmt-ff-mac-scheduler.cc
Go to the documentation of this file.
1 /* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
2 /*
3  * Copyright (c) 2011 Centre Tecnologic de Telecomunicacions de Catalunya (CTTC)
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation;
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Author: Marco Miozzo <marco.miozzo@cttc.es>
19  * Modification: Dizhi Zhou <dizhi.zhou@gmail.com> // modify codes related to downlink scheduler
20  */
21 
22 #include <ns3/log.h>
23 #include <ns3/pointer.h>
24 #include <ns3/math.h>
25 
26 #include <ns3/simulator.h>
27 #include <ns3/lte-amc.h>
28 #include <ns3/fdmt-ff-mac-scheduler.h>
29 #include <ns3/lte-vendor-specific-parameters.h>
30 #include <ns3/boolean.h>
31 #include <set>
32 #include <cfloat>
33 
34 namespace ns3 {
35 
36 NS_LOG_COMPONENT_DEFINE ("FdMtFfMacScheduler");
37 
38 static const int FdMtType0AllocationRbg[4] = {
39  10, // RGB size 1
40  26, // RGB size 2
41  63, // RGB size 3
42  110 // RGB size 4
43 }; // see table 7.1.6.1-1 of 36.213
44 
45 
46 NS_OBJECT_ENSURE_REGISTERED (FdMtFfMacScheduler);
47 
48 
49 
51 {
52 public:
54 
55  // inherited from FfMacCschedSapProvider
56  virtual void CschedCellConfigReq (const struct CschedCellConfigReqParameters& params);
57  virtual void CschedUeConfigReq (const struct CschedUeConfigReqParameters& params);
58  virtual void CschedLcConfigReq (const struct CschedLcConfigReqParameters& params);
59  virtual void CschedLcReleaseReq (const struct CschedLcReleaseReqParameters& params);
60  virtual void CschedUeReleaseReq (const struct CschedUeReleaseReqParameters& params);
61 
62 private:
65 };
66 
68 {
69 }
70 
72 {
73 }
74 
75 
76 void
78 {
80 }
81 
82 void
84 {
86 }
87 
88 
89 void
91 {
93 }
94 
95 void
97 {
99 }
100 
101 void
103 {
105 }
106 
107 
108 
109 
111 {
112 public:
114 
115  // inherited from FfMacSchedSapProvider
116  virtual void SchedDlRlcBufferReq (const struct SchedDlRlcBufferReqParameters& params);
117  virtual void SchedDlPagingBufferReq (const struct SchedDlPagingBufferReqParameters& params);
118  virtual void SchedDlMacBufferReq (const struct SchedDlMacBufferReqParameters& params);
119  virtual void SchedDlTriggerReq (const struct SchedDlTriggerReqParameters& params);
120  virtual void SchedDlRachInfoReq (const struct SchedDlRachInfoReqParameters& params);
121  virtual void SchedDlCqiInfoReq (const struct SchedDlCqiInfoReqParameters& params);
122  virtual void SchedUlTriggerReq (const struct SchedUlTriggerReqParameters& params);
123  virtual void SchedUlNoiseInterferenceReq (const struct SchedUlNoiseInterferenceReqParameters& params);
124  virtual void SchedUlSrInfoReq (const struct SchedUlSrInfoReqParameters& params);
125  virtual void SchedUlMacCtrlInfoReq (const struct SchedUlMacCtrlInfoReqParameters& params);
126  virtual void SchedUlCqiInfoReq (const struct SchedUlCqiInfoReqParameters& params);
127 
128 
129 private:
132 };
133 
134 
135 
137 {
138 }
139 
140 
142  : m_scheduler (scheduler)
143 {
144 }
145 
146 void
148 {
150 }
151 
152 void
154 {
156 }
157 
158 void
160 {
162 }
163 
164 void
166 {
168 }
169 
170 void
172 {
174 }
175 
176 void
178 {
180 }
181 
182 void
184 {
186 }
187 
188 void
190 {
192 }
193 
194 void
196 {
198 }
199 
200 void
202 {
204 }
205 
206 void
208 {
210 }
211 
212 
213 
214 
215 
217  : m_cschedSapUser (0),
218  m_schedSapUser (0),
219  m_nextRntiUl (0)
220 {
221  m_amc = CreateObject <LteAmc> ();
224 }
225 
227 {
228  NS_LOG_FUNCTION (this);
229 }
230 
231 void
233 {
234  NS_LOG_FUNCTION (this);
236  m_dlHarqProcessesTimer.clear ();
238  m_dlInfoListBuffered.clear ();
239  m_ulHarqCurrentProcessId.clear ();
240  m_ulHarqProcessesStatus.clear ();
242  delete m_cschedSapProvider;
243  delete m_schedSapProvider;
244 }
245 
246 TypeId
248 {
249  static TypeId tid = TypeId ("ns3::FdMtFfMacScheduler")
251  .SetGroupName("Lte")
252  .AddConstructor<FdMtFfMacScheduler> ()
253  .AddAttribute ("CqiTimerThreshold",
254  "The number of TTIs a CQI is valid (default 1000 - 1 sec.)",
255  UintegerValue (1000),
257  MakeUintegerChecker<uint32_t> ())
258  .AddAttribute ("HarqEnabled",
259  "Activate/Deactivate the HARQ [by default is active].",
260  BooleanValue (true),
263  .AddAttribute ("UlGrantMcs",
264  "The MCS of the UL grant, must be [0..15] (default 0)",
265  UintegerValue (0),
267  MakeUintegerChecker<uint8_t> ())
268  ;
269  return tid;
270 }
271 
272 
273 
274 void
276 {
277  m_cschedSapUser = s;
278 }
279 
280 void
282 {
283  m_schedSapUser = s;
284 }
285 
288 {
289  return m_cschedSapProvider;
290 }
291 
294 {
295  return m_schedSapProvider;
296 }
297 
298 void
300 {
301  m_ffrSapProvider = s;
302 }
303 
306 {
307  return m_ffrSapUser;
308 }
309 
310 void
312 {
313  NS_LOG_FUNCTION (this);
314  // Read the subset of parameters used
315  m_cschedCellConfig = params;
318  cnf.m_result = SUCCESS;
320  return;
321 }
322 
323 void
325 {
326  NS_LOG_FUNCTION (this << " RNTI " << params.m_rnti << " txMode " << (uint16_t)params.m_transmissionMode);
327  std::map <uint16_t,uint8_t>::iterator it = m_uesTxMode.find (params.m_rnti);
328  if (it == m_uesTxMode.end ())
329  {
330  m_uesTxMode.insert (std::pair <uint16_t, double> (params.m_rnti, params.m_transmissionMode));
331  // generate HARQ buffers
332  m_dlHarqCurrentProcessId.insert (std::pair <uint16_t,uint8_t > (params.m_rnti, 0));
333  DlHarqProcessesStatus_t dlHarqPrcStatus;
334  dlHarqPrcStatus.resize (8,0);
335  m_dlHarqProcessesStatus.insert (std::pair <uint16_t, DlHarqProcessesStatus_t> (params.m_rnti, dlHarqPrcStatus));
336  DlHarqProcessesTimer_t dlHarqProcessesTimer;
337  dlHarqProcessesTimer.resize (8,0);
338  m_dlHarqProcessesTimer.insert (std::pair <uint16_t, DlHarqProcessesTimer_t> (params.m_rnti, dlHarqProcessesTimer));
339  DlHarqProcessesDciBuffer_t dlHarqdci;
340  dlHarqdci.resize (8);
341  m_dlHarqProcessesDciBuffer.insert (std::pair <uint16_t, DlHarqProcessesDciBuffer_t> (params.m_rnti, dlHarqdci));
342  DlHarqRlcPduListBuffer_t dlHarqRlcPdu;
343  dlHarqRlcPdu.resize (2);
344  dlHarqRlcPdu.at (0).resize (8);
345  dlHarqRlcPdu.at (1).resize (8);
346  m_dlHarqProcessesRlcPduListBuffer.insert (std::pair <uint16_t, DlHarqRlcPduListBuffer_t> (params.m_rnti, dlHarqRlcPdu));
347  m_ulHarqCurrentProcessId.insert (std::pair <uint16_t,uint8_t > (params.m_rnti, 0));
348  UlHarqProcessesStatus_t ulHarqPrcStatus;
349  ulHarqPrcStatus.resize (8,0);
350  m_ulHarqProcessesStatus.insert (std::pair <uint16_t, UlHarqProcessesStatus_t> (params.m_rnti, ulHarqPrcStatus));
351  UlHarqProcessesDciBuffer_t ulHarqdci;
352  ulHarqdci.resize (8);
353  m_ulHarqProcessesDciBuffer.insert (std::pair <uint16_t, UlHarqProcessesDciBuffer_t> (params.m_rnti, ulHarqdci));
354  }
355  else
356  {
357  (*it).second = params.m_transmissionMode;
358  }
359  return;
360 }
361 
362 void
364 {
365  NS_LOG_FUNCTION (this << " New LC, rnti: " << params.m_rnti);
366 
367  std::set <uint16_t>::iterator it;
368  for (uint16_t i = 0; i < params.m_logicalChannelConfigList.size (); i++)
369  {
370  it = m_flowStatsDl.find (params.m_rnti);
371 
372  if (it == m_flowStatsDl.end ())
373  {
374  m_flowStatsDl.insert (params.m_rnti);
375  m_flowStatsUl.insert (params.m_rnti);
376  }
377  }
378 
379  return;
380 }
381 
382 void
384 {
385  NS_LOG_FUNCTION (this);
386  for (uint16_t i = 0; i < params.m_logicalChannelIdentity.size (); i++)
387  {
388  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it = m_rlcBufferReq.begin ();
389  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator temp;
390  while (it!=m_rlcBufferReq.end ())
391  {
392  if (((*it).first.m_rnti == params.m_rnti) && ((*it).first.m_lcId == params.m_logicalChannelIdentity.at (i)))
393  {
394  temp = it;
395  it++;
396  m_rlcBufferReq.erase (temp);
397  }
398  else
399  {
400  it++;
401  }
402  }
403  }
404  return;
405 }
406 
407 void
409 {
410  NS_LOG_FUNCTION (this);
411 
412  m_uesTxMode.erase (params.m_rnti);
413  m_dlHarqCurrentProcessId.erase (params.m_rnti);
414  m_dlHarqProcessesStatus.erase (params.m_rnti);
415  m_dlHarqProcessesTimer.erase (params.m_rnti);
416  m_dlHarqProcessesDciBuffer.erase (params.m_rnti);
418  m_ulHarqCurrentProcessId.erase (params.m_rnti);
419  m_ulHarqProcessesStatus.erase (params.m_rnti);
420  m_ulHarqProcessesDciBuffer.erase (params.m_rnti);
421  m_flowStatsDl.erase (params.m_rnti);
422  m_flowStatsUl.erase (params.m_rnti);
423  m_ceBsrRxed.erase (params.m_rnti);
424  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it = m_rlcBufferReq.begin ();
425  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator temp;
426  while (it!=m_rlcBufferReq.end ())
427  {
428  if ((*it).first.m_rnti == params.m_rnti)
429  {
430  temp = it;
431  it++;
432  m_rlcBufferReq.erase (temp);
433  }
434  else
435  {
436  it++;
437  }
438  }
439  if (m_nextRntiUl == params.m_rnti)
440  {
441  m_nextRntiUl = 0;
442  }
443 
444  return;
445 }
446 
447 
448 void
450 {
451  NS_LOG_FUNCTION (this << params.m_rnti << (uint32_t) params.m_logicalChannelIdentity);
452  // API generated by RLC for updating RLC parameters on a LC (tx and retx queues)
453 
454  std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
455 
456  LteFlowId_t flow (params.m_rnti, params.m_logicalChannelIdentity);
457 
458  it = m_rlcBufferReq.find (flow);
459 
460  if (it == m_rlcBufferReq.end ())
461  {
462  m_rlcBufferReq.insert (std::pair <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters> (flow, params));
463  }
464  else
465  {
466  (*it).second = params;
467  }
468 
469  return;
470 }
471 
472 void
474 {
475  NS_LOG_FUNCTION (this);
476  NS_FATAL_ERROR ("method not implemented");
477  return;
478 }
479 
480 void
482 {
483  NS_LOG_FUNCTION (this);
484  NS_FATAL_ERROR ("method not implemented");
485  return;
486 }
487 
488 int
490 {
491  for (int i = 0; i < 4; i++)
492  {
493  if (dlbandwidth < FdMtType0AllocationRbg[i])
494  {
495  return (i + 1);
496  }
497  }
498 
499  return (-1);
500 }
501 
502 
503 int
505 {
506  std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
507  int lcActive = 0;
508  for (it = m_rlcBufferReq.begin (); it != m_rlcBufferReq.end (); it++)
509  {
510  if (((*it).first.m_rnti == rnti) && (((*it).second.m_rlcTransmissionQueueSize > 0)
511  || ((*it).second.m_rlcRetransmissionQueueSize > 0)
512  || ((*it).second.m_rlcStatusPduSize > 0) ))
513  {
514  lcActive++;
515  }
516  if ((*it).first.m_rnti > rnti)
517  {
518  break;
519  }
520  }
521  return (lcActive);
522 
523 }
524 
525 
526 uint8_t
528 {
529  NS_LOG_FUNCTION (this << rnti);
530 
531  std::map <uint16_t, uint8_t>::iterator it = m_dlHarqCurrentProcessId.find (rnti);
532  if (it == m_dlHarqCurrentProcessId.end ())
533  {
534  NS_FATAL_ERROR ("No Process Id found for this RNTI " << rnti);
535  }
536  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find (rnti);
537  if (itStat == m_dlHarqProcessesStatus.end ())
538  {
539  NS_FATAL_ERROR ("No Process Id Statusfound for this RNTI " << rnti);
540  }
541  uint8_t i = (*it).second;
542  do
543  {
544  i = (i + 1) % HARQ_PROC_NUM;
545  }
546  while ( ((*itStat).second.at (i) != 0)&&(i != (*it).second));
547  if ((*itStat).second.at (i) == 0)
548  {
549  return (true);
550  }
551  else
552  {
553  return (false); // return a not valid harq proc id
554  }
555 }
556 
557 
558 
559 uint8_t
561 {
562  NS_LOG_FUNCTION (this << rnti);
563 
564  if (m_harqOn == false)
565  {
566  return (0);
567  }
568 
569 
570  std::map <uint16_t, uint8_t>::iterator it = m_dlHarqCurrentProcessId.find (rnti);
571  if (it == m_dlHarqCurrentProcessId.end ())
572  {
573  NS_FATAL_ERROR ("No Process Id found for this RNTI " << rnti);
574  }
575  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find (rnti);
576  if (itStat == m_dlHarqProcessesStatus.end ())
577  {
578  NS_FATAL_ERROR ("No Process Id Statusfound for this RNTI " << rnti);
579  }
580  uint8_t i = (*it).second;
581  do
582  {
583  i = (i + 1) % HARQ_PROC_NUM;
584  }
585  while ( ((*itStat).second.at (i) != 0)&&(i != (*it).second));
586  if ((*itStat).second.at (i) == 0)
587  {
588  (*it).second = i;
589  (*itStat).second.at (i) = 1;
590  }
591  else
592  {
593  NS_FATAL_ERROR ("No HARQ process available for RNTI " << rnti << " check before update with HarqProcessAvailability");
594  }
595 
596  return ((*it).second);
597 }
598 
599 
600 void
602 {
603  NS_LOG_FUNCTION (this);
604 
605  std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itTimers;
606  for (itTimers = m_dlHarqProcessesTimer.begin (); itTimers != m_dlHarqProcessesTimer.end (); itTimers ++)
607  {
608  for (uint16_t i = 0; i < HARQ_PROC_NUM; i++)
609  {
610  if ((*itTimers).second.at (i) == HARQ_DL_TIMEOUT)
611  {
612  // reset HARQ process
613 
614  NS_LOG_DEBUG (this << " Reset HARQ proc " << i << " for RNTI " << (*itTimers).first);
615  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find ((*itTimers).first);
616  if (itStat == m_dlHarqProcessesStatus.end ())
617  {
618  NS_FATAL_ERROR ("No Process Id Status found for this RNTI " << (*itTimers).first);
619  }
620  (*itStat).second.at (i) = 0;
621  (*itTimers).second.at (i) = 0;
622  }
623  else
624  {
625  (*itTimers).second.at (i)++;
626  }
627  }
628  }
629 
630 }
631 
632 
633 void
635 {
636  NS_LOG_FUNCTION (this << " Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf));
637  // API generated by RLC for triggering the scheduling of a DL subframe
638 
639 
640  // evaluate the relative channel quality indicator for each UE per each RBG
641  // (since we are using allocation type 0 the small unit of allocation is RBG)
642  // Resource allocation type 0 (see sec 7.1.6.1 of 36.213)
643 
644  RefreshDlCqiMaps ();
645 
647  int rbgNum = m_cschedCellConfig.m_dlBandwidth / rbgSize;
648  std::map <uint16_t, std::vector <uint16_t> > allocationMap; // RBs map per RNTI
649  std::vector <bool> rbgMap; // global RBGs map
650  uint16_t rbgAllocatedNum = 0;
651  std::set <uint16_t> rntiAllocated;
652  rbgMap.resize (m_cschedCellConfig.m_dlBandwidth / rbgSize, false);
654 
655  // update UL HARQ proc id
656  std::map <uint16_t, uint8_t>::iterator itProcId;
657  for (itProcId = m_ulHarqCurrentProcessId.begin (); itProcId != m_ulHarqCurrentProcessId.end (); itProcId++)
658  {
659  (*itProcId).second = ((*itProcId).second + 1) % HARQ_PROC_NUM;
660  }
661 
662  // RACH Allocation
664  uint16_t rbStart = 0;
665  std::vector <struct RachListElement_s>::iterator itRach;
666  for (itRach = m_rachList.begin (); itRach != m_rachList.end (); itRach++)
667  {
668  NS_ASSERT_MSG (m_amc->GetTbSizeFromMcs (m_ulGrantMcs, m_cschedCellConfig.m_ulBandwidth) > (*itRach).m_estimatedSize, " Default UL Grant MCS does not allow to send RACH messages");
669  BuildRarListElement_s newRar;
670  newRar.m_rnti = (*itRach).m_rnti;
671  // DL-RACH Allocation
672  // Ideal: no needs of configuring m_dci
673  // UL-RACH Allocation
674  newRar.m_grant.m_rnti = newRar.m_rnti;
675  newRar.m_grant.m_mcs = m_ulGrantMcs;
676  uint16_t rbLen = 1;
677  uint16_t tbSizeBits = 0;
678  // find lowest TB size that fits UL grant estimated size
679  while ((tbSizeBits < (*itRach).m_estimatedSize) && (rbStart + rbLen < m_cschedCellConfig.m_ulBandwidth))
680  {
681  rbLen++;
682  tbSizeBits = m_amc->GetTbSizeFromMcs (m_ulGrantMcs, rbLen);
683  }
684  if (tbSizeBits < (*itRach).m_estimatedSize)
685  {
686  // no more allocation space: finish allocation
687  break;
688  }
689  newRar.m_grant.m_rbStart = rbStart;
690  newRar.m_grant.m_rbLen = rbLen;
691  newRar.m_grant.m_tbSize = tbSizeBits / 8;
692  newRar.m_grant.m_hopping = false;
693  newRar.m_grant.m_tpc = 0;
694  newRar.m_grant.m_cqiRequest = false;
695  newRar.m_grant.m_ulDelay = false;
696  NS_LOG_INFO (this << " UL grant allocated to RNTI " << (*itRach).m_rnti << " rbStart " << rbStart << " rbLen " << rbLen << " MCS " << m_ulGrantMcs << " tbSize " << newRar.m_grant.m_tbSize);
697  for (uint16_t i = rbStart; i < rbStart + rbLen; i++)
698  {
699  m_rachAllocationMap.at (i) = (*itRach).m_rnti;
700  }
701 
702  if (m_harqOn == true)
703  {
704  // generate UL-DCI for HARQ retransmissions
705  UlDciListElement_s uldci;
706  uldci.m_rnti = newRar.m_rnti;
707  uldci.m_rbLen = rbLen;
708  uldci.m_rbStart = rbStart;
709  uldci.m_mcs = m_ulGrantMcs;
710  uldci.m_tbSize = tbSizeBits / 8;
711  uldci.m_ndi = 1;
712  uldci.m_cceIndex = 0;
713  uldci.m_aggrLevel = 1;
714  uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
715  uldci.m_hopping = false;
716  uldci.m_n2Dmrs = 0;
717  uldci.m_tpc = 0; // no power control
718  uldci.m_cqiRequest = false; // only period CQI at this stage
719  uldci.m_ulIndex = 0; // TDD parameter
720  uldci.m_dai = 1; // TDD parameter
721  uldci.m_freqHopping = 0;
722  uldci.m_pdcchPowerOffset = 0; // not used
723 
724  uint8_t harqId = 0;
725  std::map <uint16_t, uint8_t>::iterator itProcId;
726  itProcId = m_ulHarqCurrentProcessId.find (uldci.m_rnti);
727  if (itProcId == m_ulHarqCurrentProcessId.end ())
728  {
729  NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << uldci.m_rnti);
730  }
731  harqId = (*itProcId).second;
732  std::map <uint16_t, UlHarqProcessesDciBuffer_t>::iterator itDci = m_ulHarqProcessesDciBuffer.find (uldci.m_rnti);
733  if (itDci == m_ulHarqProcessesDciBuffer.end ())
734  {
735  NS_FATAL_ERROR ("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI " << uldci.m_rnti);
736  }
737  (*itDci).second.at (harqId) = uldci;
738  }
739 
740  rbStart = rbStart + rbLen;
741  ret.m_buildRarList.push_back (newRar);
742  }
743  m_rachList.clear ();
744 
745 
746  // Process DL HARQ feedback
748  // retrieve past HARQ retx buffered
749  if (m_dlInfoListBuffered.size () > 0)
750  {
751  if (params.m_dlInfoList.size () > 0)
752  {
753  NS_LOG_INFO (this << " Received DL-HARQ feedback");
754  m_dlInfoListBuffered.insert (m_dlInfoListBuffered.end (), params.m_dlInfoList.begin (), params.m_dlInfoList.end ());
755  }
756  }
757  else
758  {
759  if (params.m_dlInfoList.size () > 0)
760  {
762  }
763  }
764  if (m_harqOn == false)
765  {
766  // Ignore HARQ feedback
767  m_dlInfoListBuffered.clear ();
768  }
769  std::vector <struct DlInfoListElement_s> dlInfoListUntxed;
770  for (uint16_t i = 0; i < m_dlInfoListBuffered.size (); i++)
771  {
772  std::set <uint16_t>::iterator itRnti = rntiAllocated.find (m_dlInfoListBuffered.at (i).m_rnti);
773  if (itRnti != rntiAllocated.end ())
774  {
775  // RNTI already allocated for retx
776  continue;
777  }
778  uint8_t nLayers = m_dlInfoListBuffered.at (i).m_harqStatus.size ();
779  std::vector <bool> retx;
780  NS_LOG_INFO (this << " Processing DLHARQ feedback");
781  if (nLayers == 1)
782  {
783  retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (0) == DlInfoListElement_s::NACK);
784  retx.push_back (false);
785  }
786  else
787  {
788  retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (0) == DlInfoListElement_s::NACK);
789  retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (1) == DlInfoListElement_s::NACK);
790  }
791  if (retx.at (0) || retx.at (1))
792  {
793  // retrieve HARQ process information
794  uint16_t rnti = m_dlInfoListBuffered.at (i).m_rnti;
795  uint8_t harqId = m_dlInfoListBuffered.at (i).m_harqProcessId;
796  NS_LOG_INFO (this << " HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId);
797  std::map <uint16_t, DlHarqProcessesDciBuffer_t>::iterator itHarq = m_dlHarqProcessesDciBuffer.find (rnti);
798  if (itHarq == m_dlHarqProcessesDciBuffer.end ())
799  {
800  NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << rnti);
801  }
802 
803  DlDciListElement_s dci = (*itHarq).second.at (harqId);
804  int rv = 0;
805  if (dci.m_rv.size () == 1)
806  {
807  rv = dci.m_rv.at (0);
808  }
809  else
810  {
811  rv = (dci.m_rv.at (0) > dci.m_rv.at (1) ? dci.m_rv.at (0) : dci.m_rv.at (1));
812  }
813 
814  if (rv == 3)
815  {
816  // maximum number of retx reached -> drop process
817  NS_LOG_INFO ("Maximum number of retransmissions reached -> drop process");
818  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator it = m_dlHarqProcessesStatus.find (rnti);
819  if (it == m_dlHarqProcessesStatus.end ())
820  {
821  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << m_dlInfoListBuffered.at (i).m_rnti);
822  }
823  (*it).second.at (harqId) = 0;
824  std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (rnti);
825  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
826  {
827  NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << m_dlInfoListBuffered.at (i).m_rnti);
828  }
829  for (uint16_t k = 0; k < (*itRlcPdu).second.size (); k++)
830  {
831  (*itRlcPdu).second.at (k).at (harqId).clear ();
832  }
833  continue;
834  }
835  // check the feasibility of retransmitting on the same RBGs
836  // translate the DCI to Spectrum framework
837  std::vector <int> dciRbg;
838  uint32_t mask = 0x1;
839  NS_LOG_INFO ("Original RBGs " << dci.m_rbBitmap << " rnti " << dci.m_rnti);
840  for (int j = 0; j < 32; j++)
841  {
842  if (((dci.m_rbBitmap & mask) >> j) == 1)
843  {
844  dciRbg.push_back (j);
845  NS_LOG_INFO ("\t" << j);
846  }
847  mask = (mask << 1);
848  }
849  bool free = true;
850  for (uint8_t j = 0; j < dciRbg.size (); j++)
851  {
852  if (rbgMap.at (dciRbg.at (j)) == true)
853  {
854  free = false;
855  break;
856  }
857  }
858  if (free)
859  {
860  // use the same RBGs for the retx
861  // reserve RBGs
862  for (uint8_t j = 0; j < dciRbg.size (); j++)
863  {
864  rbgMap.at (dciRbg.at (j)) = true;
865  NS_LOG_INFO ("RBG " << dciRbg.at (j) << " assigned");
866  rbgAllocatedNum++;
867  }
868 
869  NS_LOG_INFO (this << " Send retx in the same RBGs");
870  }
871  else
872  {
873  // find RBGs for sending HARQ retx
874  uint8_t j = 0;
875  uint8_t rbgId = (dciRbg.at (dciRbg.size () - 1) + 1) % rbgNum;
876  uint8_t startRbg = dciRbg.at (dciRbg.size () - 1);
877  std::vector <bool> rbgMapCopy = rbgMap;
878  while ((j < dciRbg.size ())&&(startRbg != rbgId))
879  {
880  if (rbgMapCopy.at (rbgId) == false)
881  {
882  rbgMapCopy.at (rbgId) = true;
883  dciRbg.at (j) = rbgId;
884  j++;
885  }
886  rbgId = (rbgId + 1) % rbgNum;
887  }
888  if (j == dciRbg.size ())
889  {
890  // find new RBGs -> update DCI map
891  uint32_t rbgMask = 0;
892  for (uint16_t k = 0; k < dciRbg.size (); k++)
893  {
894  rbgMask = rbgMask + (0x1 << dciRbg.at (k));
895  rbgAllocatedNum++;
896  }
897  dci.m_rbBitmap = rbgMask;
898  rbgMap = rbgMapCopy;
899  NS_LOG_INFO (this << " Move retx in RBGs " << dciRbg.size ());
900  }
901  else
902  {
903  // HARQ retx cannot be performed on this TTI -> store it
904  dlInfoListUntxed.push_back (m_dlInfoListBuffered.at (i));
905  NS_LOG_INFO (this << " No resource for this retx -> buffer it");
906  }
907  }
908  // retrieve RLC PDU list for retx TBsize and update DCI
910  std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (rnti);
911  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
912  {
913  NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << rnti);
914  }
915  for (uint8_t j = 0; j < nLayers; j++)
916  {
917  if (retx.at (j))
918  {
919  if (j >= dci.m_ndi.size ())
920  {
921  // for avoiding errors in MIMO transient phases
922  dci.m_ndi.push_back (0);
923  dci.m_rv.push_back (0);
924  dci.m_mcs.push_back (0);
925  dci.m_tbsSize.push_back (0);
926  NS_LOG_INFO (this << " layer " << (uint16_t)j << " no txed (MIMO transition)");
927  }
928  else
929  {
930  dci.m_ndi.at (j) = 0;
931  dci.m_rv.at (j)++;
932  (*itHarq).second.at (harqId).m_rv.at (j)++;
933  NS_LOG_INFO (this << " layer " << (uint16_t)j << " RV " << (uint16_t)dci.m_rv.at (j));
934  }
935  }
936  else
937  {
938  // empty TB of layer j
939  dci.m_ndi.at (j) = 0;
940  dci.m_rv.at (j) = 0;
941  dci.m_mcs.at (j) = 0;
942  dci.m_tbsSize.at (j) = 0;
943  NS_LOG_INFO (this << " layer " << (uint16_t)j << " no retx");
944  }
945  }
946  for (uint16_t k = 0; k < (*itRlcPdu).second.at (0).at (dci.m_harqProcess).size (); k++)
947  {
948  std::vector <struct RlcPduListElement_s> rlcPduListPerLc;
949  for (uint8_t j = 0; j < nLayers; j++)
950  {
951  if (retx.at (j))
952  {
953  if (j < dci.m_ndi.size ())
954  {
955  rlcPduListPerLc.push_back ((*itRlcPdu).second.at (j).at (dci.m_harqProcess).at (k));
956  }
957  }
958  }
959 
960  if (rlcPduListPerLc.size () > 0)
961  {
962  newEl.m_rlcPduList.push_back (rlcPduListPerLc);
963  }
964  }
965  newEl.m_rnti = rnti;
966  newEl.m_dci = dci;
967  (*itHarq).second.at (harqId).m_rv = dci.m_rv;
968  // refresh timer
969  std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itHarqTimer = m_dlHarqProcessesTimer.find (rnti);
970  if (itHarqTimer== m_dlHarqProcessesTimer.end ())
971  {
972  NS_FATAL_ERROR ("Unable to find HARQ timer for RNTI " << (uint16_t)rnti);
973  }
974  (*itHarqTimer).second.at (harqId) = 0;
975  ret.m_buildDataList.push_back (newEl);
976  rntiAllocated.insert (rnti);
977  }
978  else
979  {
980  // update HARQ process status
981  NS_LOG_INFO (this << " HARQ received ACK for UE " << m_dlInfoListBuffered.at (i).m_rnti);
982  std::map <uint16_t, DlHarqProcessesStatus_t>::iterator it = m_dlHarqProcessesStatus.find (m_dlInfoListBuffered.at (i).m_rnti);
983  if (it == m_dlHarqProcessesStatus.end ())
984  {
985  NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << m_dlInfoListBuffered.at (i).m_rnti);
986  }
987  (*it).second.at (m_dlInfoListBuffered.at (i).m_harqProcessId) = 0;
988  std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (m_dlInfoListBuffered.at (i).m_rnti);
989  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
990  {
991  NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << m_dlInfoListBuffered.at (i).m_rnti);
992  }
993  for (uint16_t k = 0; k < (*itRlcPdu).second.size (); k++)
994  {
995  (*itRlcPdu).second.at (k).at (m_dlInfoListBuffered.at (i).m_harqProcessId).clear ();
996  }
997  }
998  }
999  m_dlInfoListBuffered.clear ();
1000  m_dlInfoListBuffered = dlInfoListUntxed;
1001 
1002  if (rbgAllocatedNum == rbgNum)
1003  {
1004  // all the RBGs are already allocated -> exit
1005  if ((ret.m_buildDataList.size () > 0) || (ret.m_buildRarList.size () > 0))
1006  {
1008  }
1009  return;
1010  }
1011 
1012 
1013 
1014  for (int i = 0; i < rbgNum; i++)
1015  {
1016  NS_LOG_INFO (this << " ALLOCATION for RBG " << i << " of " << rbgNum);
1017  if (rbgMap.at (i) == false)
1018  {
1019  std::set <uint16_t>::iterator it;
1020  std::set <uint16_t>::iterator itMax = m_flowStatsDl.end ();
1021  double rcqiMax = 0.0;
1022  for (it = m_flowStatsDl.begin (); it != m_flowStatsDl.end (); it++)
1023  {
1024  std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it));
1025  if ((itRnti != rntiAllocated.end ())||(!HarqProcessAvailability ((*it))))
1026  {
1027  // UE already allocated for HARQ or without HARQ process available -> drop it
1028  if (itRnti != rntiAllocated.end ())
1029  {
1030  NS_LOG_DEBUG (this << " RNTI discared for HARQ tx" << (uint16_t)(*it));
1031  }
1032  if (!HarqProcessAvailability ((*it)))
1033  {
1034  NS_LOG_DEBUG (this << " RNTI discared for HARQ id" << (uint16_t)(*it));
1035  }
1036  continue;
1037  }
1038 
1039  std::map <uint16_t,SbMeasResult_s>::iterator itCqi;
1040  itCqi = m_a30CqiRxed.find ((*it));
1041  std::map <uint16_t,uint8_t>::iterator itTxMode;
1042  itTxMode = m_uesTxMode.find ((*it));
1043  if (itTxMode == m_uesTxMode.end ())
1044  {
1045  NS_FATAL_ERROR ("No Transmission Mode info on user " << (*it));
1046  }
1047  int nLayer = TransmissionModesLayers::TxMode2LayerNum ((*itTxMode).second);
1048  std::vector <uint8_t> sbCqi;
1049  if (itCqi == m_a30CqiRxed.end ())
1050  {
1051  for (uint8_t k = 0; k < nLayer; k++)
1052  {
1053  sbCqi.push_back (1); // start with lowest value
1054  }
1055  }
1056  else
1057  {
1058  sbCqi = (*itCqi).second.m_higherLayerSelected.at (i).m_sbCqi;
1059  }
1060  uint8_t cqi1 = sbCqi.at (0);
1061  uint8_t cqi2 = 1;
1062  if (sbCqi.size () > 1)
1063  {
1064  cqi2 = sbCqi.at (1);
1065  }
1066  if ((cqi1 > 0)||(cqi2 > 0)) // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
1067  {
1068  if (LcActivePerFlow ((*it)) > 0)
1069  {
1070  // this UE has data to transmit
1071  double achievableRate = 0.0;
1072  uint8_t mcs = 0;
1073  for (uint8_t k = 0; k < nLayer; k++)
1074  {
1075  if (sbCqi.size () > k)
1076  {
1077  mcs = m_amc->GetMcsFromCqi (sbCqi.at (k));
1078  }
1079  else
1080  {
1081  // no info on this subband -> worst MCS
1082  mcs = 0;
1083  }
1084  achievableRate += ((m_amc->GetTbSizeFromMcs (mcs, rbgSize) / 8) / 0.001); // = TB size / TTI
1085  }
1086 
1087  double rcqi = achievableRate;
1088  NS_LOG_INFO (this << " RNTI " << (*it) << " MCS " << (uint32_t)mcs << " achievableRate " << achievableRate << " RCQI " << rcqi);
1089 
1090  if (rcqi > rcqiMax)
1091  {
1092  rcqiMax = rcqi;
1093  itMax = it;
1094  }
1095  }
1096  } // end if cqi
1097 
1098  } // end for m_rlcBufferReq
1099 
1100  if (itMax == m_flowStatsDl.end ())
1101  {
1102  // no UE available for this RB
1103  NS_LOG_INFO (this << " any UE found");
1104  }
1105  else
1106  {
1107  rbgMap.at (i) = true;
1108  std::map <uint16_t, std::vector <uint16_t> >::iterator itMap;
1109  itMap = allocationMap.find ((*itMax));
1110  if (itMap == allocationMap.end ())
1111  {
1112  // insert new element
1113  std::vector <uint16_t> tempMap;
1114  tempMap.push_back (i);
1115  allocationMap.insert (std::pair <uint16_t, std::vector <uint16_t> > ((*itMax), tempMap));
1116  }
1117  else
1118  {
1119  (*itMap).second.push_back (i);
1120  }
1121  NS_LOG_INFO (this << " UE assigned " << (*itMax));
1122  }
1123  } // end for RBG free
1124  } // end for RBGs
1125 
1126  // generate the transmission opportunities by grouping the RBGs of the same RNTI and
1127  // creating the correspondent DCIs
1128  std::map <uint16_t, std::vector <uint16_t> >::iterator itMap = allocationMap.begin ();
1129  while (itMap != allocationMap.end ())
1130  {
1131  // create new BuildDataListElement_s for this LC
1132  BuildDataListElement_s newEl;
1133  newEl.m_rnti = (*itMap).first;
1134  // create the DlDciListElement_s
1135  DlDciListElement_s newDci;
1136  newDci.m_rnti = (*itMap).first;
1137  newDci.m_harqProcess = UpdateHarqProcessId ((*itMap).first);
1138 
1139  uint16_t lcActives = LcActivePerFlow ((*itMap).first);
1140  NS_LOG_INFO (this << "Allocate user " << newEl.m_rnti << " rbg " << lcActives);
1141  if (lcActives == 0)
1142  {
1143  // Set to max value, to avoid divide by 0 below
1144  lcActives = (uint16_t)65535; // UINT16_MAX;
1145  }
1146  uint16_t RgbPerRnti = (*itMap).second.size ();
1147  std::map <uint16_t,SbMeasResult_s>::iterator itCqi;
1148  itCqi = m_a30CqiRxed.find ((*itMap).first);
1149  std::map <uint16_t,uint8_t>::iterator itTxMode;
1150  itTxMode = m_uesTxMode.find ((*itMap).first);
1151  if (itTxMode == m_uesTxMode.end ())
1152  {
1153  NS_FATAL_ERROR ("No Transmission Mode info on user " << (*itMap).first);
1154  }
1155  int nLayer = TransmissionModesLayers::TxMode2LayerNum ((*itTxMode).second);
1156  std::vector <uint8_t> worstCqi (2, 15);
1157  if (itCqi != m_a30CqiRxed.end ())
1158  {
1159  for (uint16_t k = 0; k < (*itMap).second.size (); k++)
1160  {
1161  if ((*itCqi).second.m_higherLayerSelected.size () > (*itMap).second.at (k))
1162  {
1163  NS_LOG_INFO (this << " RBG " << (*itMap).second.at (k) << " CQI " << (uint16_t)((*itCqi).second.m_higherLayerSelected.at ((*itMap).second.at (k)).m_sbCqi.at (0)) );
1164  for (uint8_t j = 0; j < nLayer; j++)
1165  {
1166  if ((*itCqi).second.m_higherLayerSelected.at ((*itMap).second.at (k)).m_sbCqi.size () > j)
1167  {
1168  if (((*itCqi).second.m_higherLayerSelected.at ((*itMap).second.at (k)).m_sbCqi.at (j)) < worstCqi.at (j))
1169  {
1170  worstCqi.at (j) = ((*itCqi).second.m_higherLayerSelected.at ((*itMap).second.at (k)).m_sbCqi.at (j));
1171  }
1172  }
1173  else
1174  {
1175  // no CQI for this layer of this suband -> worst one
1176  worstCqi.at (j) = 1;
1177  }
1178  }
1179  }
1180  else
1181  {
1182  for (uint8_t j = 0; j < nLayer; j++)
1183  {
1184  worstCqi.at (j) = 1; // try with lowest MCS in RBG with no info on channel
1185  }
1186  }
1187  }
1188  }
1189  else
1190  {
1191  for (uint8_t j = 0; j < nLayer; j++)
1192  {
1193  worstCqi.at (j) = 1; // try with lowest MCS in RBG with no info on channel
1194  }
1195  }
1196  for (uint8_t j = 0; j < nLayer; j++)
1197  {
1198  NS_LOG_INFO (this << " Layer " << (uint16_t)j << " CQI selected " << (uint16_t)worstCqi.at (j));
1199  }
1200  uint32_t bytesTxed = 0;
1201  for (uint8_t j = 0; j < nLayer; j++)
1202  {
1203  newDci.m_mcs.push_back (m_amc->GetMcsFromCqi (worstCqi.at (j)));
1204  int tbSize = (m_amc->GetTbSizeFromMcs (newDci.m_mcs.at (j), RgbPerRnti * rbgSize) / 8); // (size of TB in bytes according to table 7.1.7.2.1-1 of 36.213)
1205  newDci.m_tbsSize.push_back (tbSize);
1206  NS_LOG_INFO (this << " Layer " << (uint16_t)j << " MCS selected" << m_amc->GetMcsFromCqi (worstCqi.at (j)));
1207  bytesTxed += tbSize;
1208  }
1209 
1210  newDci.m_resAlloc = 0; // only allocation type 0 at this stage
1211  newDci.m_rbBitmap = 0; // TBD (32 bit bitmap see 7.1.6 of 36.213)
1212  uint32_t rbgMask = 0;
1213  for (uint16_t k = 0; k < (*itMap).second.size (); k++)
1214  {
1215  rbgMask = rbgMask + (0x1 << (*itMap).second.at (k));
1216  NS_LOG_INFO (this << " Allocated RBG " << (*itMap).second.at (k));
1217  }
1218  newDci.m_rbBitmap = rbgMask; // (32 bit bitmap see 7.1.6 of 36.213)
1219 
1220  // create the rlc PDUs -> equally divide resources among actives LCs
1221  std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator itBufReq;
1222  for (itBufReq = m_rlcBufferReq.begin (); itBufReq != m_rlcBufferReq.end (); itBufReq++)
1223  {
1224  if (((*itBufReq).first.m_rnti == (*itMap).first)
1225  && (((*itBufReq).second.m_rlcTransmissionQueueSize > 0)
1226  || ((*itBufReq).second.m_rlcRetransmissionQueueSize > 0)
1227  || ((*itBufReq).second.m_rlcStatusPduSize > 0) ))
1228  {
1229  std::vector <struct RlcPduListElement_s> newRlcPduLe;
1230  for (uint8_t j = 0; j < nLayer; j++)
1231  {
1232  RlcPduListElement_s newRlcEl;
1233  newRlcEl.m_logicalChannelIdentity = (*itBufReq).first.m_lcId;
1234  newRlcEl.m_size = newDci.m_tbsSize.at (j) / lcActives;
1235  NS_LOG_INFO (this << " LCID " << (uint32_t) newRlcEl.m_logicalChannelIdentity << " size " << newRlcEl.m_size << " layer " << (uint16_t)j);
1236  newRlcPduLe.push_back (newRlcEl);
1237  UpdateDlRlcBufferInfo (newDci.m_rnti, newRlcEl.m_logicalChannelIdentity, newRlcEl.m_size);
1238  if (m_harqOn == true)
1239  {
1240  // store RLC PDU list for HARQ
1241  std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find ((*itMap).first);
1242  if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
1243  {
1244  NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << (*itMap).first);
1245  }
1246  (*itRlcPdu).second.at (j).at (newDci.m_harqProcess).push_back (newRlcEl);
1247  }
1248  }
1249  newEl.m_rlcPduList.push_back (newRlcPduLe);
1250  }
1251  if ((*itBufReq).first.m_rnti > (*itMap).first)
1252  {
1253  break;
1254  }
1255  }
1256  for (uint8_t j = 0; j < nLayer; j++)
1257  {
1258  newDci.m_ndi.push_back (1);
1259  newDci.m_rv.push_back (0);
1260  }
1261 
1262  newDci.m_tpc = 1; //1 is mapped to 0 in Accumulated Mode and to -1 in Absolute Mode
1263 
1264  newEl.m_dci = newDci;
1265 
1266  if (m_harqOn == true)
1267  {
1268  // store DCI for HARQ
1269  std::map <uint16_t, DlHarqProcessesDciBuffer_t>::iterator itDci = m_dlHarqProcessesDciBuffer.find (newEl.m_rnti);
1270  if (itDci == m_dlHarqProcessesDciBuffer.end ())
1271  {
1272  NS_FATAL_ERROR ("Unable to find RNTI entry in DCI HARQ buffer for RNTI " << newEl.m_rnti);
1273  }
1274  (*itDci).second.at (newDci.m_harqProcess) = newDci;
1275  // refresh timer
1276  std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itHarqTimer = m_dlHarqProcessesTimer.find (newEl.m_rnti);
1277  if (itHarqTimer== m_dlHarqProcessesTimer.end ())
1278  {
1279  NS_FATAL_ERROR ("Unable to find HARQ timer for RNTI " << (uint16_t)newEl.m_rnti);
1280  }
1281  (*itHarqTimer).second.at (newDci.m_harqProcess) = 0;
1282  }
1283 
1284  // ...more parameters -> ingored in this version
1285 
1286  ret.m_buildDataList.push_back (newEl);
1287 
1288  itMap++;
1289  } // end while allocation
1290  ret.m_nrOfPdcchOfdmSymbols = 1;
1291 
1293 
1294 
1295  return;
1296 }
1297 
1298 void
1300 {
1301  NS_LOG_FUNCTION (this);
1302 
1303  m_rachList = params.m_rachList;
1304 
1305  return;
1306 }
1307 
1308 void
1310 {
1311  NS_LOG_FUNCTION (this);
1312 
1313  for (unsigned int i = 0; i < params.m_cqiList.size (); i++)
1314  {
1315  if ( params.m_cqiList.at (i).m_cqiType == CqiListElement_s::P10 )
1316  {
1317  NS_LOG_LOGIC ("wideband CQI " << (uint32_t) params.m_cqiList.at (i).m_wbCqi.at (0) << " reported");
1318  std::map <uint16_t,uint8_t>::iterator it;
1319  uint16_t rnti = params.m_cqiList.at (i).m_rnti;
1320  it = m_p10CqiRxed.find (rnti);
1321  if (it == m_p10CqiRxed.end ())
1322  {
1323  // create the new entry
1324  m_p10CqiRxed.insert ( std::pair<uint16_t, uint8_t > (rnti, params.m_cqiList.at (i).m_wbCqi.at (0)) ); // only codeword 0 at this stage (SISO)
1325  // generate correspondent timer
1326  m_p10CqiTimers.insert ( std::pair<uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1327  }
1328  else
1329  {
1330  // update the CQI value and refresh correspondent timer
1331  (*it).second = params.m_cqiList.at (i).m_wbCqi.at (0);
1332  // update correspondent timer
1333  std::map <uint16_t,uint32_t>::iterator itTimers;
1334  itTimers = m_p10CqiTimers.find (rnti);
1335  (*itTimers).second = m_cqiTimersThreshold;
1336  }
1337  }
1338  else if ( params.m_cqiList.at (i).m_cqiType == CqiListElement_s::A30 )
1339  {
1340  // subband CQI reporting high layer configured
1341  std::map <uint16_t,SbMeasResult_s>::iterator it;
1342  uint16_t rnti = params.m_cqiList.at (i).m_rnti;
1343  it = m_a30CqiRxed.find (rnti);
1344  if (it == m_a30CqiRxed.end ())
1345  {
1346  // create the new entry
1347  m_a30CqiRxed.insert ( std::pair<uint16_t, SbMeasResult_s > (rnti, params.m_cqiList.at (i).m_sbMeasResult) );
1348  m_a30CqiTimers.insert ( std::pair<uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1349  }
1350  else
1351  {
1352  // update the CQI value and refresh correspondent timer
1353  (*it).second = params.m_cqiList.at (i).m_sbMeasResult;
1354  std::map <uint16_t,uint32_t>::iterator itTimers;
1355  itTimers = m_a30CqiTimers.find (rnti);
1356  (*itTimers).second = m_cqiTimersThreshold;
1357  }
1358  }
1359  else
1360  {
1361  NS_LOG_ERROR (this << " CQI type unknown");
1362  }
1363  }
1364 
1365  return;
1366 }
1367 
1368 
1369 double
1370 FdMtFfMacScheduler::EstimateUlSinr (uint16_t rnti, uint16_t rb)
1371 {
1372  std::map <uint16_t, std::vector <double> >::iterator itCqi = m_ueCqi.find (rnti);
1373  if (itCqi == m_ueCqi.end ())
1374  {
1375  // no cqi info about this UE
1376  return (NO_SINR);
1377 
1378  }
1379  else
1380  {
1381  // take the average SINR value among the available
1382  double sinrSum = 0;
1383  unsigned int sinrNum = 0;
1384  for (uint32_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1385  {
1386  double sinr = (*itCqi).second.at (i);
1387  if (sinr != NO_SINR)
1388  {
1389  sinrSum += sinr;
1390  sinrNum++;
1391  }
1392  }
1393  double estimatedSinr = (sinrNum > 0) ? (sinrSum / sinrNum) : DBL_MAX;
1394  // store the value
1395  (*itCqi).second.at (rb) = estimatedSinr;
1396  return (estimatedSinr);
1397  }
1398 }
1399 
1400 void
1402 {
1403  NS_LOG_FUNCTION (this << " UL - Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf) << " size " << params.m_ulInfoList.size ());
1404 
1405  RefreshUlCqiMaps ();
1406 
1407  // Generate RBs map
1409  std::vector <bool> rbMap;
1410  uint16_t rbAllocatedNum = 0;
1411  std::set <uint16_t> rntiAllocated;
1412  std::vector <uint16_t> rbgAllocationMap;
1413  // update with RACH allocation map
1414  rbgAllocationMap = m_rachAllocationMap;
1415  //rbgAllocationMap.resize (m_cschedCellConfig.m_ulBandwidth, 0);
1416  m_rachAllocationMap.clear ();
1418 
1419  rbMap.resize (m_cschedCellConfig.m_ulBandwidth, false);
1420  // remove RACH allocation
1421  for (uint16_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1422  {
1423  if (rbgAllocationMap.at (i) != 0)
1424  {
1425  rbMap.at (i) = true;
1426  NS_LOG_DEBUG (this << " Allocated for RACH " << i);
1427  }
1428  }
1429 
1430 
1431  if (m_harqOn == true)
1432  {
1433  // Process UL HARQ feedback
1434  for (uint16_t i = 0; i < params.m_ulInfoList.size (); i++)
1435  {
1436  if (params.m_ulInfoList.at (i).m_receptionStatus == UlInfoListElement_s::NotOk)
1437  {
1438  // retx correspondent block: retrieve the UL-DCI
1439  uint16_t rnti = params.m_ulInfoList.at (i).m_rnti;
1440  std::map <uint16_t, uint8_t>::iterator itProcId = m_ulHarqCurrentProcessId.find (rnti);
1441  if (itProcId == m_ulHarqCurrentProcessId.end ())
1442  {
1443  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1444  }
1445  uint8_t harqId = (uint8_t)((*itProcId).second - HARQ_PERIOD) % HARQ_PROC_NUM;
1446  NS_LOG_INFO (this << " UL-HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId << " i " << i << " size " << params.m_ulInfoList.size ());
1447  std::map <uint16_t, UlHarqProcessesDciBuffer_t>::iterator itHarq = m_ulHarqProcessesDciBuffer.find (rnti);
1448  if (itHarq == m_ulHarqProcessesDciBuffer.end ())
1449  {
1450  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1451  continue;
1452  }
1453  UlDciListElement_s dci = (*itHarq).second.at (harqId);
1454  std::map <uint16_t, UlHarqProcessesStatus_t>::iterator itStat = m_ulHarqProcessesStatus.find (rnti);
1455  if (itStat == m_ulHarqProcessesStatus.end ())
1456  {
1457  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1458  }
1459  if ((*itStat).second.at (harqId) >= 3)
1460  {
1461  NS_LOG_INFO ("Max number of retransmissions reached (UL)-> drop process");
1462  continue;
1463  }
1464  bool free = true;
1465  for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1466  {
1467  if (rbMap.at (j) == true)
1468  {
1469  free = false;
1470  NS_LOG_INFO (this << " BUSY " << j);
1471  }
1472  }
1473  if (free)
1474  {
1475  // retx on the same RBs
1476  for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1477  {
1478  rbMap.at (j) = true;
1479  rbgAllocationMap.at (j) = dci.m_rnti;
1480  NS_LOG_INFO ("\tRB " << j);
1481  rbAllocatedNum++;
1482  }
1483  NS_LOG_INFO (this << " Send retx in the same RBs " << (uint16_t)dci.m_rbStart << " to " << dci.m_rbStart + dci.m_rbLen << " RV " << (*itStat).second.at (harqId) + 1);
1484  }
1485  else
1486  {
1487  NS_LOG_INFO ("Cannot allocate retx due to RACH allocations for UE " << rnti);
1488  continue;
1489  }
1490  dci.m_ndi = 0;
1491  // Update HARQ buffers with new HarqId
1492  (*itStat).second.at ((*itProcId).second) = (*itStat).second.at (harqId) + 1;
1493  (*itStat).second.at (harqId) = 0;
1494  (*itHarq).second.at ((*itProcId).second) = dci;
1495  ret.m_dciList.push_back (dci);
1496  rntiAllocated.insert (dci.m_rnti);
1497  }
1498  else
1499  {
1500  NS_LOG_INFO (this << " HARQ-ACK feedback from RNTI " << params.m_ulInfoList.at (i).m_rnti);
1501  }
1502  }
1503  }
1504 
1505  std::map <uint16_t,uint32_t>::iterator it;
1506  int nflows = 0;
1507 
1508  for (it = m_ceBsrRxed.begin (); it != m_ceBsrRxed.end (); it++)
1509  {
1510  std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it).first);
1511  // select UEs with queues not empty and not yet allocated for HARQ
1512  if (((*it).second > 0)&&(itRnti == rntiAllocated.end ()))
1513  {
1514  nflows++;
1515  }
1516  }
1517 
1518  if (nflows == 0)
1519  {
1520  if (ret.m_dciList.size () > 0)
1521  {
1522  m_allocationMaps.insert (std::pair <uint16_t, std::vector <uint16_t> > (params.m_sfnSf, rbgAllocationMap));
1524  }
1525 
1526  return; // no flows to be scheduled
1527  }
1528 
1529 
1530  // Divide the remaining resources equally among the active users starting from the subsequent one served last scheduling trigger
1531  uint16_t rbPerFlow = (m_cschedCellConfig.m_ulBandwidth) / (nflows + rntiAllocated.size ());
1532  if (rbPerFlow < 3)
1533  {
1534  rbPerFlow = 3; // at least 3 rbg per flow (till available resource) to ensure TxOpportunity >= 7 bytes
1535  }
1536  int rbAllocated = 0;
1537 
1538  if (m_nextRntiUl != 0)
1539  {
1540  for (it = m_ceBsrRxed.begin (); it != m_ceBsrRxed.end (); it++)
1541  {
1542  if ((*it).first == m_nextRntiUl)
1543  {
1544  break;
1545  }
1546  }
1547  if (it == m_ceBsrRxed.end ())
1548  {
1549  NS_LOG_ERROR (this << " no user found");
1550  }
1551  }
1552  else
1553  {
1554  it = m_ceBsrRxed.begin ();
1555  m_nextRntiUl = (*it).first;
1556  }
1557  do
1558  {
1559  std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it).first);
1560  if ((itRnti != rntiAllocated.end ())||((*it).second == 0))
1561  {
1562  // UE already allocated for UL-HARQ -> skip it
1563  NS_LOG_DEBUG (this << " UE already allocated in HARQ -> discared, RNTI " << (*it).first);
1564  it++;
1565  if (it == m_ceBsrRxed.end ())
1566  {
1567  // restart from the first
1568  it = m_ceBsrRxed.begin ();
1569  }
1570  continue;
1571  }
1572  if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1573  {
1574  // limit to physical resources last resource assignment
1575  rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1576  // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1577  if (rbPerFlow < 3)
1578  {
1579  // terminate allocation
1580  rbPerFlow = 0;
1581  }
1582  }
1583 
1584  UlDciListElement_s uldci;
1585  uldci.m_rnti = (*it).first;
1586  uldci.m_rbLen = rbPerFlow;
1587  bool allocated = false;
1588  NS_LOG_INFO (this << " RB Allocated " << rbAllocated << " rbPerFlow " << rbPerFlow << " flows " << nflows);
1589  while ((!allocated)&&((rbAllocated + rbPerFlow - m_cschedCellConfig.m_ulBandwidth) < 1) && (rbPerFlow != 0))
1590  {
1591  // check availability
1592  bool free = true;
1593  for (uint16_t j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1594  {
1595  if (rbMap.at (j) == true)
1596  {
1597  free = false;
1598  break;
1599  }
1600  }
1601  if (free)
1602  {
1603  uldci.m_rbStart = rbAllocated;
1604 
1605  for (uint16_t j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1606  {
1607  rbMap.at (j) = true;
1608  // store info on allocation for managing ul-cqi interpretation
1609  rbgAllocationMap.at (j) = (*it).first;
1610  }
1611  rbAllocated += rbPerFlow;
1612  allocated = true;
1613  break;
1614  }
1615  rbAllocated++;
1616  if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1617  {
1618  // limit to physical resources last resource assignment
1619  rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1620  // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1621  if (rbPerFlow < 3)
1622  {
1623  // terminate allocation
1624  rbPerFlow = 0;
1625  }
1626  }
1627  }
1628  if (!allocated)
1629  {
1630  // unable to allocate new resource: finish scheduling
1631  m_nextRntiUl = (*it).first;
1632  if (ret.m_dciList.size () > 0)
1633  {
1635  }
1636  m_allocationMaps.insert (std::pair <uint16_t, std::vector <uint16_t> > (params.m_sfnSf, rbgAllocationMap));
1637  return;
1638  }
1639 
1640 
1641 
1642  std::map <uint16_t, std::vector <double> >::iterator itCqi = m_ueCqi.find ((*it).first);
1643  int cqi = 0;
1644  if (itCqi == m_ueCqi.end ())
1645  {
1646  // no cqi info about this UE
1647  uldci.m_mcs = 0; // MCS 0 -> UL-AMC TBD
1648  }
1649  else
1650  {
1651  // take the lowest CQI value (worst RB)
1652  double minSinr = (*itCqi).second.at (uldci.m_rbStart);
1653  if (minSinr == NO_SINR)
1654  {
1655  minSinr = EstimateUlSinr ((*it).first, uldci.m_rbStart);
1656  }
1657  for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1658  {
1659  double sinr = (*itCqi).second.at (i);
1660  if (sinr == NO_SINR)
1661  {
1662  sinr = EstimateUlSinr ((*it).first, i);
1663  }
1664  if ((*itCqi).second.at (i) < minSinr)
1665  {
1666  minSinr = (*itCqi).second.at (i);
1667  }
1668  }
1669 
1670  // translate SINR -> cqi: WILD ACK: same as DL
1671  double s = log2 ( 1 + (
1672  std::pow (10, minSinr / 10 ) /
1673  ( (-std::log (5.0 * 0.00005 )) / 1.5) ));
1674  cqi = m_amc->GetCqiFromSpectralEfficiency (s);
1675  if (cqi == 0)
1676  {
1677  it++;
1678  if (it == m_ceBsrRxed.end ())
1679  {
1680  // restart from the first
1681  it = m_ceBsrRxed.begin ();
1682  }
1683  NS_LOG_DEBUG (this << " UE discared for CQI=0, RNTI " << uldci.m_rnti);
1684  // remove UE from allocation map
1685  for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1686  {
1687  rbgAllocationMap.at (i) = 0;
1688  }
1689  continue; // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
1690  }
1691  uldci.m_mcs = m_amc->GetMcsFromCqi (cqi);
1692  }
1693 
1694  uldci.m_tbSize = (m_amc->GetTbSizeFromMcs (uldci.m_mcs, rbPerFlow) / 8);
1695  UpdateUlRlcBufferInfo (uldci.m_rnti, uldci.m_tbSize);
1696  uldci.m_ndi = 1;
1697  uldci.m_cceIndex = 0;
1698  uldci.m_aggrLevel = 1;
1699  uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
1700  uldci.m_hopping = false;
1701  uldci.m_n2Dmrs = 0;
1702  uldci.m_tpc = 0; // no power control
1703  uldci.m_cqiRequest = false; // only period CQI at this stage
1704  uldci.m_ulIndex = 0; // TDD parameter
1705  uldci.m_dai = 1; // TDD parameter
1706  uldci.m_freqHopping = 0;
1707  uldci.m_pdcchPowerOffset = 0; // not used
1708  ret.m_dciList.push_back (uldci);
1709  // store DCI for HARQ_PERIOD
1710  uint8_t harqId = 0;
1711  if (m_harqOn == true)
1712  {
1713  std::map <uint16_t, uint8_t>::iterator itProcId;
1714  itProcId = m_ulHarqCurrentProcessId.find (uldci.m_rnti);
1715  if (itProcId == m_ulHarqCurrentProcessId.end ())
1716  {
1717  NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << uldci.m_rnti);
1718  }
1719  harqId = (*itProcId).second;
1720  std::map <uint16_t, UlHarqProcessesDciBuffer_t>::iterator itDci = m_ulHarqProcessesDciBuffer.find (uldci.m_rnti);
1721  if (itDci == m_ulHarqProcessesDciBuffer.end ())
1722  {
1723  NS_FATAL_ERROR ("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI " << uldci.m_rnti);
1724  }
1725  (*itDci).second.at (harqId) = uldci;
1726  // Update HARQ process status (RV 0)
1727  std::map <uint16_t, UlHarqProcessesStatus_t>::iterator itStat = m_ulHarqProcessesStatus.find (uldci.m_rnti);
1728  if (itStat == m_ulHarqProcessesStatus.end ())
1729  {
1730  NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << uldci.m_rnti);
1731  }
1732  (*itStat).second.at (harqId) = 0;
1733  }
1734 
1735  NS_LOG_INFO (this << " UE Allocation RNTI " << (*it).first << " startPRB " << (uint32_t)uldci.m_rbStart << " nPRB " << (uint32_t)uldci.m_rbLen << " CQI " << cqi << " MCS " << (uint32_t)uldci.m_mcs << " TBsize " << uldci.m_tbSize << " RbAlloc " << rbAllocated << " harqId " << (uint16_t)harqId);
1736 
1737 
1738  it++;
1739  if (it == m_ceBsrRxed.end ())
1740  {
1741  // restart from the first
1742  it = m_ceBsrRxed.begin ();
1743  }
1744  if ((rbAllocated == m_cschedCellConfig.m_ulBandwidth) || (rbPerFlow == 0))
1745  {
1746  // Stop allocation: no more PRBs
1747  m_nextRntiUl = (*it).first;
1748  break;
1749  }
1750  }
1751  while (((*it).first != m_nextRntiUl)&&(rbPerFlow!=0));
1752 
1753 
1754  m_allocationMaps.insert (std::pair <uint16_t, std::vector <uint16_t> > (params.m_sfnSf, rbgAllocationMap));
1756 
1757  return;
1758 }
1759 
1760 void
1762 {
1763  NS_LOG_FUNCTION (this);
1764  return;
1765 }
1766 
1767 void
1769 {
1770  NS_LOG_FUNCTION (this);
1771  return;
1772 }
1773 
1774 void
1776 {
1777  NS_LOG_FUNCTION (this);
1778 
1779  std::map <uint16_t,uint32_t>::iterator it;
1780 
1781  for (unsigned int i = 0; i < params.m_macCeList.size (); i++)
1782  {
1783  if ( params.m_macCeList.at (i).m_macCeType == MacCeListElement_s::BSR )
1784  {
1785  // buffer status report
1786  // note that this scheduler does not differentiate the
1787  // allocation according to which LCGs have more/less bytes
1788  // to send.
1789  // Hence the BSR of different LCGs are just summed up to get
1790  // a total queue size that is used for allocation purposes.
1791 
1792  uint32_t buffer = 0;
1793  for (uint8_t lcg = 0; lcg < 4; ++lcg)
1794  {
1795  uint8_t bsrId = params.m_macCeList.at (i).m_macCeValue.m_bufferStatus.at (lcg);
1796  buffer += BufferSizeLevelBsr::BsrId2BufferSize (bsrId);
1797  }
1798 
1799  uint16_t rnti = params.m_macCeList.at (i).m_rnti;
1800  NS_LOG_LOGIC (this << "RNTI=" << rnti << " buffer=" << buffer);
1801  it = m_ceBsrRxed.find (rnti);
1802  if (it == m_ceBsrRxed.end ())
1803  {
1804  // create the new entry
1805  m_ceBsrRxed.insert ( std::pair<uint16_t, uint32_t > (rnti, buffer));
1806  }
1807  else
1808  {
1809  // update the buffer size value
1810  (*it).second = buffer;
1811  }
1812  }
1813  }
1814 
1815  return;
1816 }
1817 
1818 void
1820 {
1821  NS_LOG_FUNCTION (this);
1822 // retrieve the allocation for this subframe
1823  switch (m_ulCqiFilter)
1824  {
1826  {
1827  // filter all the CQIs that are not SRS based
1828  if (params.m_ulCqi.m_type != UlCqi_s::SRS)
1829  {
1830  return;
1831  }
1832  }
1833  break;
1835  {
1836  // filter all the CQIs that are not SRS based
1837  if (params.m_ulCqi.m_type != UlCqi_s::PUSCH)
1838  {
1839  return;
1840  }
1841  }
1843  break;
1844 
1845  default:
1846  NS_FATAL_ERROR ("Unknown UL CQI type");
1847  }
1848 
1849  switch (params.m_ulCqi.m_type)
1850  {
1851  case UlCqi_s::PUSCH:
1852  {
1853  std::map <uint16_t, std::vector <uint16_t> >::iterator itMap;
1854  std::map <uint16_t, std::vector <double> >::iterator itCqi;
1855  NS_LOG_DEBUG (this << " Collect PUSCH CQIs of Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf));
1856  itMap = m_allocationMaps.find (params.m_sfnSf);
1857  if (itMap == m_allocationMaps.end ())
1858  {
1859  return;
1860  }
1861  for (uint32_t i = 0; i < (*itMap).second.size (); i++)
1862  {
1863  // convert from fixed point notation Sxxxxxxxxxxx.xxx to double
1864  double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (i));
1865  itCqi = m_ueCqi.find ((*itMap).second.at (i));
1866  if (itCqi == m_ueCqi.end ())
1867  {
1868  // create a new entry
1869  std::vector <double> newCqi;
1870  for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1871  {
1872  if (i == j)
1873  {
1874  newCqi.push_back (sinr);
1875  }
1876  else
1877  {
1878  // initialize with NO_SINR value.
1879  newCqi.push_back (NO_SINR);
1880  }
1881 
1882  }
1883  m_ueCqi.insert (std::pair <uint16_t, std::vector <double> > ((*itMap).second.at (i), newCqi));
1884  // generate correspondent timer
1885  m_ueCqiTimers.insert (std::pair <uint16_t, uint32_t > ((*itMap).second.at (i), m_cqiTimersThreshold));
1886  }
1887  else
1888  {
1889  // update the value
1890  (*itCqi).second.at (i) = sinr;
1891  NS_LOG_DEBUG (this << " RNTI " << (*itMap).second.at (i) << " RB " << i << " SINR " << sinr);
1892  // update correspondent timer
1893  std::map <uint16_t, uint32_t>::iterator itTimers;
1894  itTimers = m_ueCqiTimers.find ((*itMap).second.at (i));
1895  (*itTimers).second = m_cqiTimersThreshold;
1896 
1897  }
1898 
1899  }
1900  // remove obsolete info on allocation
1901  m_allocationMaps.erase (itMap);
1902  }
1903  break;
1904  case UlCqi_s::SRS:
1905  {
1906  // get the RNTI from vendor specific parameters
1907  uint16_t rnti = 0;
1908  NS_ASSERT (params.m_vendorSpecificList.size () > 0);
1909  for (uint16_t i = 0; i < params.m_vendorSpecificList.size (); i++)
1910  {
1911  if (params.m_vendorSpecificList.at (i).m_type == SRS_CQI_RNTI_VSP)
1912  {
1913  Ptr<SrsCqiRntiVsp> vsp = DynamicCast<SrsCqiRntiVsp> (params.m_vendorSpecificList.at (i).m_value);
1914  rnti = vsp->GetRnti ();
1915  }
1916  }
1917  std::map <uint16_t, std::vector <double> >::iterator itCqi;
1918  itCqi = m_ueCqi.find (rnti);
1919  if (itCqi == m_ueCqi.end ())
1920  {
1921  // create a new entry
1922  std::vector <double> newCqi;
1923  for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1924  {
1925  double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (j));
1926  newCqi.push_back (sinr);
1927  NS_LOG_INFO (this << " RNTI " << rnti << " new SRS-CQI for RB " << j << " value " << sinr);
1928 
1929  }
1930  m_ueCqi.insert (std::pair <uint16_t, std::vector <double> > (rnti, newCqi));
1931  // generate correspondent timer
1932  m_ueCqiTimers.insert (std::pair <uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1933  }
1934  else
1935  {
1936  // update the values
1937  for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1938  {
1939  double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (j));
1940  (*itCqi).second.at (j) = sinr;
1941  NS_LOG_INFO (this << " RNTI " << rnti << " update SRS-CQI for RB " << j << " value " << sinr);
1942  }
1943  // update correspondent timer
1944  std::map <uint16_t, uint32_t>::iterator itTimers;
1945  itTimers = m_ueCqiTimers.find (rnti);
1946  (*itTimers).second = m_cqiTimersThreshold;
1947 
1948  }
1949 
1950 
1951  }
1952  break;
1953  case UlCqi_s::PUCCH_1:
1954  case UlCqi_s::PUCCH_2:
1955  case UlCqi_s::PRACH:
1956  {
1957  NS_FATAL_ERROR ("FdMtFfMacScheduler supports only PUSCH and SRS UL-CQIs");
1958  }
1959  break;
1960  default:
1961  NS_FATAL_ERROR ("Unknown type of UL-CQI");
1962  }
1963  return;
1964 }
1965 
1966 void
1968 {
1969  // refresh DL CQI P01 Map
1970  std::map <uint16_t,uint32_t>::iterator itP10 = m_p10CqiTimers.begin ();
1971  while (itP10 != m_p10CqiTimers.end ())
1972  {
1973  NS_LOG_INFO (this << " P10-CQI for user " << (*itP10).first << " is " << (uint32_t)(*itP10).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1974  if ((*itP10).second == 0)
1975  {
1976  // delete correspondent entries
1977  std::map <uint16_t,uint8_t>::iterator itMap = m_p10CqiRxed.find ((*itP10).first);
1978  NS_ASSERT_MSG (itMap != m_p10CqiRxed.end (), " Does not find CQI report for user " << (*itP10).first);
1979  NS_LOG_INFO (this << " P10-CQI expired for user " << (*itP10).first);
1980  m_p10CqiRxed.erase (itMap);
1981  std::map <uint16_t,uint32_t>::iterator temp = itP10;
1982  itP10++;
1983  m_p10CqiTimers.erase (temp);
1984  }
1985  else
1986  {
1987  (*itP10).second--;
1988  itP10++;
1989  }
1990  }
1991 
1992  // refresh DL CQI A30 Map
1993  std::map <uint16_t,uint32_t>::iterator itA30 = m_a30CqiTimers.begin ();
1994  while (itA30 != m_a30CqiTimers.end ())
1995  {
1996  NS_LOG_INFO (this << " A30-CQI for user " << (*itA30).first << " is " << (uint32_t)(*itA30).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1997  if ((*itA30).second == 0)
1998  {
1999  // delete correspondent entries
2000  std::map <uint16_t,SbMeasResult_s>::iterator itMap = m_a30CqiRxed.find ((*itA30).first);
2001  NS_ASSERT_MSG (itMap != m_a30CqiRxed.end (), " Does not find CQI report for user " << (*itA30).first);
2002  NS_LOG_INFO (this << " A30-CQI expired for user " << (*itA30).first);
2003  m_a30CqiRxed.erase (itMap);
2004  std::map <uint16_t,uint32_t>::iterator temp = itA30;
2005  itA30++;
2006  m_a30CqiTimers.erase (temp);
2007  }
2008  else
2009  {
2010  (*itA30).second--;
2011  itA30++;
2012  }
2013  }
2014 
2015  return;
2016 }
2017 
2018 
2019 void
2021 {
2022  // refresh UL CQI Map
2023  std::map <uint16_t,uint32_t>::iterator itUl = m_ueCqiTimers.begin ();
2024  while (itUl != m_ueCqiTimers.end ())
2025  {
2026  NS_LOG_INFO (this << " UL-CQI for user " << (*itUl).first << " is " << (uint32_t)(*itUl).second << " thr " << (uint32_t)m_cqiTimersThreshold);
2027  if ((*itUl).second == 0)
2028  {
2029  // delete correspondent entries
2030  std::map <uint16_t, std::vector <double> >::iterator itMap = m_ueCqi.find ((*itUl).first);
2031  NS_ASSERT_MSG (itMap != m_ueCqi.end (), " Does not find CQI report for user " << (*itUl).first);
2032  NS_LOG_INFO (this << " UL-CQI exired for user " << (*itUl).first);
2033  (*itMap).second.clear ();
2034  m_ueCqi.erase (itMap);
2035  std::map <uint16_t,uint32_t>::iterator temp = itUl;
2036  itUl++;
2037  m_ueCqiTimers.erase (temp);
2038  }
2039  else
2040  {
2041  (*itUl).second--;
2042  itUl++;
2043  }
2044  }
2045 
2046  return;
2047 }
2048 
2049 void
2050 FdMtFfMacScheduler::UpdateDlRlcBufferInfo (uint16_t rnti, uint8_t lcid, uint16_t size)
2051 {
2052  std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
2053  LteFlowId_t flow (rnti, lcid);
2054  it = m_rlcBufferReq.find (flow);
2055  if (it != m_rlcBufferReq.end ())
2056  {
2057  NS_LOG_INFO (this << " UE " << rnti << " LC " << (uint16_t)lcid << " txqueue " << (*it).second.m_rlcTransmissionQueueSize << " retxqueue " << (*it).second.m_rlcRetransmissionQueueSize << " status " << (*it).second.m_rlcStatusPduSize << " decrease " << size);
2058  // Update queues: RLC tx order Status, ReTx, Tx
2059  // Update status queue
2060  if (((*it).second.m_rlcStatusPduSize > 0) && (size >= (*it).second.m_rlcStatusPduSize))
2061  {
2062  (*it).second.m_rlcStatusPduSize = 0;
2063  }
2064  else if (((*it).second.m_rlcRetransmissionQueueSize > 0) && (size >= (*it).second.m_rlcRetransmissionQueueSize))
2065  {
2066  (*it).second.m_rlcRetransmissionQueueSize = 0;
2067  }
2068  else if ((*it).second.m_rlcTransmissionQueueSize > 0)
2069  {
2070  uint32_t rlcOverhead;
2071  if (lcid == 1)
2072  {
2073  // for SRB1 (using RLC AM) it's better to
2074  // overestimate RLC overhead rather than
2075  // underestimate it and risk unneeded
2076  // segmentation which increases delay
2077  rlcOverhead = 4;
2078  }
2079  else
2080  {
2081  // minimum RLC overhead due to header
2082  rlcOverhead = 2;
2083  }
2084  // update transmission queue
2085  if ((*it).second.m_rlcTransmissionQueueSize <= size - rlcOverhead)
2086  {
2087  (*it).second.m_rlcTransmissionQueueSize = 0;
2088  }
2089  else
2090  {
2091  (*it).second.m_rlcTransmissionQueueSize -= size - rlcOverhead;
2092  }
2093  }
2094  }
2095  else
2096  {
2097  NS_LOG_ERROR (this << " Does not find DL RLC Buffer Report of UE " << rnti);
2098  }
2099 }
2100 
2101 void
2102 FdMtFfMacScheduler::UpdateUlRlcBufferInfo (uint16_t rnti, uint16_t size)
2103 {
2104 
2105  size = size - 2; // remove the minimum RLC overhead
2106  std::map <uint16_t,uint32_t>::iterator it = m_ceBsrRxed.find (rnti);
2107  if (it != m_ceBsrRxed.end ())
2108  {
2109  NS_LOG_INFO (this << " UE " << rnti << " size " << size << " BSR " << (*it).second);
2110  if ((*it).second >= size)
2111  {
2112  (*it).second -= size;
2113  }
2114  else
2115  {
2116  (*it).second = 0;
2117  }
2118  }
2119  else
2120  {
2121  NS_LOG_ERROR (this << " Does not find BSR report info of UE " << rnti);
2122  }
2123 
2124 }
2125 
2126 void
2128 {
2129  NS_LOG_FUNCTION (this << " RNTI " << rnti << " txMode " << (uint16_t)txMode);
2131  params.m_rnti = rnti;
2132  params.m_transmissionMode = txMode;
2134 }
2135 
2136 
2137 }
std::vector< struct UlInfoListElement_s > m_ulInfoList
See section 4.3.1 dlDciListElement.
Definition: ff-mac-common.h:88
int LcActivePerFlow(uint16_t rnti)
void UpdateDlRlcBufferInfo(uint16_t rnti, uint8_t lcid, uint16_t size)
virtual void CschedLcReleaseReq(const struct CschedLcReleaseReqParameters &params)
Smart pointer class similar to boost::intrusive_ptr.
Definition: ptr.h:73
Service Access Point (SAP) offered by the eNodeB RRC instance to the Frequency Reuse algorithm instan...
Definition: lte-ffr-sap.h:132
#define NS_LOG_FUNCTION(parameters)
If log level LOG_FUNCTION is enabled, this macro will output all input parameters separated by "...
#define HARQ_PERIOD
Definition: lte-common.h:30
AttributeValue implementation for Boolean.
Definition: boolean.h:34
void DoCschedUeReleaseReq(const struct FfMacCschedSapProvider::CschedUeReleaseReqParameters &params)
void DoSchedDlCqiInfoReq(const struct FfMacSchedSapProvider::SchedDlCqiInfoReqParameters &params)
uint8_t HarqProcessAvailability(uint16_t rnti)
Return the availability of free process for the RNTI specified.
#define NS_OBJECT_ENSURE_REGISTERED(type)
Register an Object subclass with the TypeId system.
Definition: object-base.h:44
Parameters of the CSCHED_UE_CONFIG_CNF primitive.
Parameters of the CSCHED_UE_RELEASE_REQ primitive.
void DoSchedDlMacBufferReq(const struct FfMacSchedSapProvider::SchedDlMacBufferReqParameters &params)
void TransmissionModeConfigurationUpdate(uint16_t rnti, uint8_t txMode)
virtual void SetFfMacCschedSapUser(FfMacCschedSapUser *s)
set the user part of the FfMacCschedSap that this Scheduler will interact with.
enum ns3::UlCqi_s::Type_e m_type
Ptr< const AttributeAccessor > MakeBooleanAccessor(T1 a1)
Create an AttributeAccessor for a class data member, or a lone class get functor or set method...
Definition: boolean.h:81
std::vector< UlDciListElement_s > UlHarqProcessesDciBuffer_t
virtual void CschedUeConfigReq(const struct CschedUeConfigReqParameters &params)
void DoSchedUlCqiInfoReq(const struct FfMacSchedSapProvider::SchedUlCqiInfoReqParameters &params)
std::vector< struct LogicalChannelConfigListElement_s > m_logicalChannelConfigList
std::vector< uint16_t > m_sinr
std::vector< uint8_t > DlHarqProcessesTimer_t
#define NS_ASSERT(condition)
At runtime, in debugging builds, if this condition is not true, the program prints the source file...
Definition: assert.h:67
std::vector< uint16_t > m_rachAllocationMap
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:201
std::vector< uint8_t > m_mcs
Definition: ff-mac-common.h:95
See section 4.3.2 ulDciListElement.
Provides the CSCHED SAP.
void DoCschedLcConfigReq(const struct FfMacCschedSapProvider::CschedLcConfigReqParameters &params)
std::vector< struct UlDciListElement_s > m_dciList
#define NS_LOG_INFO(msg)
Use NS_LOG to output a message of level LOG_INFO.
Definition: log.h:244
#define NS_FATAL_ERROR(msg)
Report a fatal error with a message and terminate.
Definition: fatal-error.h:162
See section 4.3.10 buildRARListElement.
virtual LteFfrSapUser * GetLteFfrSapUser()
Parameters of the CSCHED_UE_CONFIG_UPDATE_IND primitive.
Parameters of the CSCHED_LC_RELEASE_REQ primitive.
void RefreshHarqProcesses()
Refresh HARQ processes according to the timers.
std::vector< std::vector< struct RlcPduListElement_s > > m_rlcPduList
virtual void SchedUlCqiInfoReq(const struct SchedUlCqiInfoReqParameters &params)
Implements the SCHED SAP and CSCHED SAP for a Frequency Domain Maximize Throughput scheduler...
Parameters of the SCHED_DL_TRIGGER_REQ primitive.
virtual void CschedCellConfigReq(const struct CschedCellConfigReqParameters &params)
CSCHED_CELL_CONFIG_REQ.
std::map< uint16_t, DlHarqRlcPduListBuffer_t > m_dlHarqProcessesRlcPduListBuffer
std::vector< struct RachListElement_s > m_rachList
std::map< uint16_t, DlHarqProcessesStatus_t > m_dlHarqProcessesStatus
void DoCschedUeConfigReq(const struct FfMacCschedSapProvider::CschedUeConfigReqParameters &params)
friend class FdMtSchedulerMemberSchedSapProvider
virtual void DoDispose(void)
Destructor implementation.
std::vector< RlcPduList_t > DlHarqRlcPduListBuffer_t
Parameters of the SCHED_DL_MAC_BUFFER_REQ primitive.
Parameters of the SCHED_DL_PAGING_BUFFER_REQ primitive.
virtual void CschedUeConfigUpdateInd(const struct CschedUeConfigUpdateIndParameters &params)=0
static const int FdMtType0AllocationRbg[4]
std::map< uint16_t, DlHarqProcessesDciBuffer_t > m_dlHarqProcessesDciBuffer
std::vector< struct VendorSpecificListElement_s > m_vendorSpecificList
std::vector< DlInfoListElement_s > m_dlInfoListBuffered
int GetRbgSize(int dlbandwidth)
void DoSchedDlRlcBufferReq(const struct FfMacSchedSapProvider::SchedDlRlcBufferReqParameters &params)
Service Access Point (SAP) offered by the Frequency Reuse algorithm instance to the MAC Scheduler ins...
Definition: lte-ffr-sap.h:39
Parameters of the SCHED_UL_TRIGGER_REQ primitive.
void DoSchedUlTriggerReq(const struct FfMacSchedSapProvider::SchedUlTriggerReqParameters &params)
Hold an unsigned integer type.
Definition: uinteger.h:44
static uint8_t TxMode2LayerNum(uint8_t txMode)
Definition: lte-common.cc:169
double EstimateUlSinr(uint16_t rnti, uint16_t rb)
std::vector< uint8_t > m_ndi
Definition: ff-mac-common.h:96
virtual void SchedUlNoiseInterferenceReq(const struct SchedUlNoiseInterferenceReqParameters &params)
Provides the SCHED SAP.
virtual void SchedUlMacCtrlInfoReq(const struct SchedUlMacCtrlInfoReqParameters &params)
FfMacCschedSapProvider * m_cschedSapProvider
virtual void CschedUeConfigCnf(const struct CschedUeConfigCnfParameters &params)=0
#define NS_LOG_LOGIC(msg)
Use NS_LOG to output a message of level LOG_LOGIC.
Definition: log.h:252
Parameters of the SCHED_UL_NOISE_INTERFERENCE_REQ primitive.
std::vector< struct CqiListElement_s > m_cqiList
virtual void CschedLcConfigReq(const struct CschedLcConfigReqParameters &params)
std::vector< struct DlInfoListElement_s > m_dlInfoList
void DoSchedUlNoiseInterferenceReq(const struct FfMacSchedSapProvider::SchedUlNoiseInterferenceReqParameters &params)
virtual FfMacSchedSapProvider * GetFfMacSchedSapProvider()
virtual void SchedDlRlcBufferReq(const struct SchedDlRlcBufferReqParameters &params)
virtual void SchedDlConfigInd(const struct SchedDlConfigIndParameters &params)=0
std::map< uint16_t, uint32_t > m_a30CqiTimers
std::set< uint16_t > m_flowStatsDl
virtual FfMacCschedSapProvider * GetFfMacCschedSapProvider()
std::vector< uint16_t > m_tbsSize
Definition: ff-mac-common.h:94
See section 4.3.9 rlcPDU_ListElement.
std::set< uint16_t > m_flowStatsUl
Every class exported by the ns3 library is enclosed in the ns3 namespace.
void DoCschedLcReleaseReq(const struct FfMacCschedSapProvider::CschedLcReleaseReqParameters &params)
std::map< uint16_t, uint8_t > m_dlHarqCurrentProcessId
virtual ~FdMtFfMacScheduler()
Destructor.
friend class FdMtSchedulerMemberCschedSapProvider
Ptr< const AttributeChecker > MakeBooleanChecker(void)
Definition: boolean.cc:121
std::map< uint16_t, UlHarqProcessesDciBuffer_t > m_ulHarqProcessesDciBuffer
std::vector< DlDciListElement_s > DlHarqProcessesDciBuffer_t
Parameters of the CSCHED_LC_CONFIG_REQ primitive.
std::map< uint16_t, uint8_t > m_ulHarqCurrentProcessId
FfMacSchedSapUser * m_schedSapUser
std::map< uint16_t, SbMeasResult_s > m_a30CqiRxed
bool m_harqOn
m_harqOn when false inhibit te HARQ mechanisms (by default active)
std::vector< uint8_t > m_rv
Definition: ff-mac-common.h:97
FfMacCschedSapUser * m_cschedSapUser
std::map< uint16_t, std::vector< double > > m_ueCqi
virtual void SchedUlConfigInd(const struct SchedUlConfigIndParameters &params)=0
LteFfrSapProvider * m_ffrSapProvider
std::map< uint16_t, uint8_t > m_uesTxMode
UlCqiFilter_t m_ulCqiFilter
std::map< uint16_t, std::vector< uint16_t > > m_allocationMaps
#define SRS_CQI_RNTI_VSP
virtual void SchedDlPagingBufferReq(const struct SchedDlPagingBufferReqParameters &params)
This abstract base class identifies the interface by means of which the helper object can plug on the...
#define NS_ASSERT_MSG(condition, message)
At runtime, in debugging builds, if this condition is not true, the program prints the message to out...
Definition: assert.h:90
uint8_t UpdateHarqProcessId(uint16_t rnti)
Update and return a new process Id for the RNTI specified.
void UpdateUlRlcBufferInfo(uint16_t rnti, uint16_t size)
Parameters of the SCHED_DL_CQI_INFO_REQ primitive.
std::vector< struct MacCeListElement_s > m_macCeList
std::vector< struct RachListElement_s > m_rachList
static double fpS11dot3toDouble(uint16_t val)
Definition: lte-common.cc:113
std::vector< uint8_t > UlHarqProcessesStatus_t
std::vector< uint8_t > DlHarqProcessesStatus_t
Parameters of the SCHED_UL_CQI_INFO_REQ primitive.
std::map< LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters > m_rlcBufferReq
static uint32_t BsrId2BufferSize(uint8_t val)
Definition: lte-common.cc:141
std::map< uint16_t, uint32_t > m_ueCqiTimers
std::map< uint16_t, uint32_t > m_p10CqiTimers
virtual void SchedUlTriggerReq(const struct SchedUlTriggerReqParameters &params)
Parameters of the SCHED_UL_MAC_CTRL_INFO_REQ primitive.
virtual void SchedDlRachInfoReq(const struct SchedDlRachInfoReqParameters &params)
virtual void SchedDlMacBufferReq(const struct SchedDlMacBufferReqParameters &params)
FfMacCschedSapProvider::CschedCellConfigReqParameters m_cschedCellConfig
#define NS_LOG_DEBUG(msg)
Use NS_LOG to output a message of level LOG_DEBUG.
Definition: log.h:236
std::map< uint16_t, uint8_t > m_p10CqiRxed
Parameters of the SCHED_UL_SR_INFO_REQ primitive.
std::map< uint16_t, DlHarqProcessesTimer_t > m_dlHarqProcessesTimer
void DoSchedUlSrInfoReq(const struct FfMacSchedSapProvider::SchedUlSrInfoReqParameters &params)
#define NS_LOG_ERROR(msg)
Use NS_LOG to output a message of level LOG_ERROR.
Definition: log.h:220
virtual void SchedDlCqiInfoReq(const struct SchedDlCqiInfoReqParameters &params)
Parameters of the SCHED_DL_RACH_INFO_REQ primitive.
Parameters of the SCHED_UL_CONFIG_IND primitive.
virtual void SchedDlTriggerReq(const struct SchedDlTriggerReqParameters &params)
void DoSchedDlTriggerReq(const struct FfMacSchedSapProvider::SchedDlTriggerReqParameters &params)
Parameters of the CSCHED_UE_CONFIG_REQ primitive.
virtual void CschedUeReleaseReq(const struct CschedUeReleaseReqParameters &params)
void DoSchedUlMacCtrlInfoReq(const struct FfMacSchedSapProvider::SchedUlMacCtrlInfoReqParameters &params)
#define HARQ_DL_TIMEOUT
#define NO_SINR
struct DlDciListElement_s m_dci
std::vector< struct BuildRarListElement_s > m_buildRarList
void DoSchedDlPagingBufferReq(const struct FfMacSchedSapProvider::SchedDlPagingBufferReqParameters &params)
Ptr< const AttributeAccessor > MakeUintegerAccessor(T1 a1)
Create an AttributeAccessor for a class data member, or a lone class get functor or set method...
Definition: uinteger.h:45
a unique identifier for an interface.
Definition: type-id.h:58
virtual void SetLteFfrSapProvider(LteFfrSapProvider *s)
Set the Provider part of the LteFfrSap that this Scheduler will interact with.
virtual void SchedUlSrInfoReq(const struct SchedUlSrInfoReqParameters &params)
TypeId SetParent(TypeId tid)
Set the parent TypeId.
Definition: type-id.cc:904
void DoSchedDlRachInfoReq(const struct FfMacSchedSapProvider::SchedDlRachInfoReqParameters &params)
#define HARQ_PROC_NUM
std::map< uint16_t, uint32_t > m_ceBsrRxed
virtual void SetFfMacSchedSapUser(FfMacSchedSapUser *s)
set the user part of the FfMacSchedSap that this Scheduler will interact with.
std::vector< struct BuildDataListElement_s > m_buildDataList
std::map< uint16_t, UlHarqProcessesStatus_t > m_ulHarqProcessesStatus
FfMacSchedSapProvider * m_schedSapProvider
See section 4.3.8 builDataListElement.
void DoCschedCellConfigReq(const struct FfMacCschedSapProvider::CschedCellConfigReqParameters &params)