A Discrete-Event Network Simulator
API
fdmt-ff-mac-scheduler.cc
Go to the documentation of this file.
1/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
2/*
3 * Copyright (c) 2011 Centre Tecnologic de Telecomunicacions de Catalunya (CTTC)
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation;
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Author: Marco Miozzo <marco.miozzo@cttc.es>
19 * Modification: Dizhi Zhou <dizhi.zhou@gmail.com> // modify codes related to downlink scheduler
20 */
21
22#include <ns3/log.h>
23#include <ns3/pointer.h>
24#include <ns3/math.h>
25
26#include <ns3/simulator.h>
27#include <ns3/lte-amc.h>
28#include <ns3/fdmt-ff-mac-scheduler.h>
29#include <ns3/lte-vendor-specific-parameters.h>
30#include <ns3/boolean.h>
31#include <set>
32#include <cfloat>
33
34namespace ns3 {
35
36NS_LOG_COMPONENT_DEFINE ("FdMtFfMacScheduler");
37
39static const int FdMtType0AllocationRbg[4] = {
40 10, // RGB size 1
41 26, // RGB size 2
42 63, // RGB size 3
43 110 // RGB size 4
44}; // see table 7.1.6.1-1 of 36.213
45
46
47NS_OBJECT_ENSURE_REGISTERED (FdMtFfMacScheduler);
48
49
50
52 : m_cschedSapUser (0),
53 m_schedSapUser (0),
54 m_nextRntiUl (0)
55{
56 m_amc = CreateObject <LteAmc> ();
59}
60
62{
63 NS_LOG_FUNCTION (this);
64}
65
66void
68{
69 NS_LOG_FUNCTION (this);
73 m_dlInfoListBuffered.clear ();
78 delete m_schedSapProvider;
79}
80
83{
84 static TypeId tid = TypeId ("ns3::FdMtFfMacScheduler")
86 .SetGroupName("Lte")
87 .AddConstructor<FdMtFfMacScheduler> ()
88 .AddAttribute ("CqiTimerThreshold",
89 "The number of TTIs a CQI is valid (default 1000 - 1 sec.)",
90 UintegerValue (1000),
92 MakeUintegerChecker<uint32_t> ())
93 .AddAttribute ("HarqEnabled",
94 "Activate/Deactivate the HARQ [by default is active].",
95 BooleanValue (true),
98 .AddAttribute ("UlGrantMcs",
99 "The MCS of the UL grant, must be [0..15] (default 0)",
100 UintegerValue (0),
102 MakeUintegerChecker<uint8_t> ())
103 ;
104 return tid;
105}
106
107
108
109void
111{
112 m_cschedSapUser = s;
113}
114
115void
117{
118 m_schedSapUser = s;
119}
120
123{
124 return m_cschedSapProvider;
125}
126
129{
130 return m_schedSapProvider;
131}
132
133void
135{
137}
138
141{
142 return m_ffrSapUser;
143}
144
145void
147{
148 NS_LOG_FUNCTION (this);
149 // Read the subset of parameters used
150 m_cschedCellConfig = params;
153 cnf.m_result = SUCCESS;
155 return;
156}
157
158void
160{
161 NS_LOG_FUNCTION (this << " RNTI " << params.m_rnti << " txMode " << (uint16_t)params.m_transmissionMode);
162 std::map <uint16_t,uint8_t>::iterator it = m_uesTxMode.find (params.m_rnti);
163 if (it == m_uesTxMode.end ())
164 {
165 m_uesTxMode.insert (std::pair <uint16_t, double> (params.m_rnti, params.m_transmissionMode));
166 // generate HARQ buffers
167 m_dlHarqCurrentProcessId.insert (std::pair <uint16_t,uint8_t > (params.m_rnti, 0));
168 DlHarqProcessesStatus_t dlHarqPrcStatus;
169 dlHarqPrcStatus.resize (8,0);
170 m_dlHarqProcessesStatus.insert (std::pair <uint16_t, DlHarqProcessesStatus_t> (params.m_rnti, dlHarqPrcStatus));
171 DlHarqProcessesTimer_t dlHarqProcessesTimer;
172 dlHarqProcessesTimer.resize (8,0);
173 m_dlHarqProcessesTimer.insert (std::pair <uint16_t, DlHarqProcessesTimer_t> (params.m_rnti, dlHarqProcessesTimer));
175 dlHarqdci.resize (8);
176 m_dlHarqProcessesDciBuffer.insert (std::pair <uint16_t, DlHarqProcessesDciBuffer_t> (params.m_rnti, dlHarqdci));
177 DlHarqRlcPduListBuffer_t dlHarqRlcPdu;
178 dlHarqRlcPdu.resize (2);
179 dlHarqRlcPdu.at (0).resize (8);
180 dlHarqRlcPdu.at (1).resize (8);
181 m_dlHarqProcessesRlcPduListBuffer.insert (std::pair <uint16_t, DlHarqRlcPduListBuffer_t> (params.m_rnti, dlHarqRlcPdu));
182 m_ulHarqCurrentProcessId.insert (std::pair <uint16_t,uint8_t > (params.m_rnti, 0));
183 UlHarqProcessesStatus_t ulHarqPrcStatus;
184 ulHarqPrcStatus.resize (8,0);
185 m_ulHarqProcessesStatus.insert (std::pair <uint16_t, UlHarqProcessesStatus_t> (params.m_rnti, ulHarqPrcStatus));
187 ulHarqdci.resize (8);
188 m_ulHarqProcessesDciBuffer.insert (std::pair <uint16_t, UlHarqProcessesDciBuffer_t> (params.m_rnti, ulHarqdci));
189 }
190 else
191 {
192 (*it).second = params.m_transmissionMode;
193 }
194 return;
195}
196
197void
199{
200 NS_LOG_FUNCTION (this << " New LC, rnti: " << params.m_rnti);
201
202 std::set <uint16_t>::iterator it;
203 for (uint16_t i = 0; i < params.m_logicalChannelConfigList.size (); i++)
204 {
205 it = m_flowStatsDl.find (params.m_rnti);
206
207 if (it == m_flowStatsDl.end ())
208 {
209 m_flowStatsDl.insert (params.m_rnti);
210 m_flowStatsUl.insert (params.m_rnti);
211 }
212 }
213
214 return;
215}
216
217void
219{
220 NS_LOG_FUNCTION (this);
221 for (uint16_t i = 0; i < params.m_logicalChannelIdentity.size (); i++)
222 {
223 std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it = m_rlcBufferReq.begin ();
224 std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator temp;
225 while (it!=m_rlcBufferReq.end ())
226 {
227 if (((*it).first.m_rnti == params.m_rnti) && ((*it).first.m_lcId == params.m_logicalChannelIdentity.at (i)))
228 {
229 temp = it;
230 it++;
231 m_rlcBufferReq.erase (temp);
232 }
233 else
234 {
235 it++;
236 }
237 }
238 }
239 return;
240}
241
242void
244{
245 NS_LOG_FUNCTION (this);
246
247 m_uesTxMode.erase (params.m_rnti);
248 m_dlHarqCurrentProcessId.erase (params.m_rnti);
249 m_dlHarqProcessesStatus.erase (params.m_rnti);
250 m_dlHarqProcessesTimer.erase (params.m_rnti);
251 m_dlHarqProcessesDciBuffer.erase (params.m_rnti);
253 m_ulHarqCurrentProcessId.erase (params.m_rnti);
254 m_ulHarqProcessesStatus.erase (params.m_rnti);
255 m_ulHarqProcessesDciBuffer.erase (params.m_rnti);
256 m_flowStatsDl.erase (params.m_rnti);
257 m_flowStatsUl.erase (params.m_rnti);
258 m_ceBsrRxed.erase (params.m_rnti);
259 std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it = m_rlcBufferReq.begin ();
260 std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator temp;
261 while (it!=m_rlcBufferReq.end ())
262 {
263 if ((*it).first.m_rnti == params.m_rnti)
264 {
265 temp = it;
266 it++;
267 m_rlcBufferReq.erase (temp);
268 }
269 else
270 {
271 it++;
272 }
273 }
274 if (m_nextRntiUl == params.m_rnti)
275 {
276 m_nextRntiUl = 0;
277 }
278
279 return;
280}
281
282
283void
285{
286 NS_LOG_FUNCTION (this << params.m_rnti << (uint32_t) params.m_logicalChannelIdentity);
287 // API generated by RLC for updating RLC parameters on a LC (tx and retx queues)
288
289 std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
290
291 LteFlowId_t flow (params.m_rnti, params.m_logicalChannelIdentity);
292
293 it = m_rlcBufferReq.find (flow);
294
295 if (it == m_rlcBufferReq.end ())
296 {
297 m_rlcBufferReq.insert (std::pair <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters> (flow, params));
298 }
299 else
300 {
301 (*it).second = params;
302 }
303
304 return;
305}
306
307void
309{
310 NS_LOG_FUNCTION (this);
311 NS_FATAL_ERROR ("method not implemented");
312 return;
313}
314
315void
317{
318 NS_LOG_FUNCTION (this);
319 NS_FATAL_ERROR ("method not implemented");
320 return;
321}
322
323int
325{
326 for (int i = 0; i < 4; i++)
327 {
328 if (dlbandwidth < FdMtType0AllocationRbg[i])
329 {
330 return (i + 1);
331 }
332 }
333
334 return (-1);
335}
336
337
338unsigned int
340{
341 std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
342 unsigned int lcActive = 0;
343 for (it = m_rlcBufferReq.begin (); it != m_rlcBufferReq.end (); it++)
344 {
345 if (((*it).first.m_rnti == rnti) && (((*it).second.m_rlcTransmissionQueueSize > 0)
346 || ((*it).second.m_rlcRetransmissionQueueSize > 0)
347 || ((*it).second.m_rlcStatusPduSize > 0) ))
348 {
349 lcActive++;
350 }
351 if ((*it).first.m_rnti > rnti)
352 {
353 break;
354 }
355 }
356 return (lcActive);
357
358}
359
360
361uint8_t
363{
364 NS_LOG_FUNCTION (this << rnti);
365
366 std::map <uint16_t, uint8_t>::iterator it = m_dlHarqCurrentProcessId.find (rnti);
367 if (it == m_dlHarqCurrentProcessId.end ())
368 {
369 NS_FATAL_ERROR ("No Process Id found for this RNTI " << rnti);
370 }
371 std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find (rnti);
372 if (itStat == m_dlHarqProcessesStatus.end ())
373 {
374 NS_FATAL_ERROR ("No Process Id Statusfound for this RNTI " << rnti);
375 }
376 uint8_t i = (*it).second;
377 do
378 {
379 i = (i + 1) % HARQ_PROC_NUM;
380 }
381 while ( ((*itStat).second.at (i) != 0)&&(i != (*it).second));
382 if ((*itStat).second.at (i) == 0)
383 {
384 return (true);
385 }
386 else
387 {
388 return (false); // return a not valid harq proc id
389 }
390}
391
392
393
394uint8_t
396{
397 NS_LOG_FUNCTION (this << rnti);
398
399 if (m_harqOn == false)
400 {
401 return (0);
402 }
403
404
405 std::map <uint16_t, uint8_t>::iterator it = m_dlHarqCurrentProcessId.find (rnti);
406 if (it == m_dlHarqCurrentProcessId.end ())
407 {
408 NS_FATAL_ERROR ("No Process Id found for this RNTI " << rnti);
409 }
410 std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find (rnti);
411 if (itStat == m_dlHarqProcessesStatus.end ())
412 {
413 NS_FATAL_ERROR ("No Process Id Statusfound for this RNTI " << rnti);
414 }
415 uint8_t i = (*it).second;
416 do
417 {
418 i = (i + 1) % HARQ_PROC_NUM;
419 }
420 while ( ((*itStat).second.at (i) != 0)&&(i != (*it).second));
421 if ((*itStat).second.at (i) == 0)
422 {
423 (*it).second = i;
424 (*itStat).second.at (i) = 1;
425 }
426 else
427 {
428 NS_FATAL_ERROR ("No HARQ process available for RNTI " << rnti << " check before update with HarqProcessAvailability");
429 }
430
431 return ((*it).second);
432}
433
434
435void
437{
438 NS_LOG_FUNCTION (this);
439
440 std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itTimers;
441 for (itTimers = m_dlHarqProcessesTimer.begin (); itTimers != m_dlHarqProcessesTimer.end (); itTimers ++)
442 {
443 for (uint16_t i = 0; i < HARQ_PROC_NUM; i++)
444 {
445 if ((*itTimers).second.at (i) == HARQ_DL_TIMEOUT)
446 {
447 // reset HARQ process
448
449 NS_LOG_DEBUG (this << " Reset HARQ proc " << i << " for RNTI " << (*itTimers).first);
450 std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find ((*itTimers).first);
451 if (itStat == m_dlHarqProcessesStatus.end ())
452 {
453 NS_FATAL_ERROR ("No Process Id Status found for this RNTI " << (*itTimers).first);
454 }
455 (*itStat).second.at (i) = 0;
456 (*itTimers).second.at (i) = 0;
457 }
458 else
459 {
460 (*itTimers).second.at (i)++;
461 }
462 }
463 }
464
465}
466
467
468void
470{
471 NS_LOG_FUNCTION (this << " Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf));
472 // API generated by RLC for triggering the scheduling of a DL subframe
473
474
475 // evaluate the relative channel quality indicator for each UE per each RBG
476 // (since we are using allocation type 0 the small unit of allocation is RBG)
477 // Resource allocation type 0 (see sec 7.1.6.1 of 36.213)
478
480
482 int rbgNum = m_cschedCellConfig.m_dlBandwidth / rbgSize;
483 std::map <uint16_t, std::vector <uint16_t> > allocationMap; // RBs map per RNTI
484 std::vector <bool> rbgMap; // global RBGs map
485 uint16_t rbgAllocatedNum = 0;
486 std::set <uint16_t> rntiAllocated;
487 rbgMap.resize (m_cschedCellConfig.m_dlBandwidth / rbgSize, false);
489
490 // update UL HARQ proc id
491 std::map <uint16_t, uint8_t>::iterator itProcId;
492 for (itProcId = m_ulHarqCurrentProcessId.begin (); itProcId != m_ulHarqCurrentProcessId.end (); itProcId++)
493 {
494 (*itProcId).second = ((*itProcId).second + 1) % HARQ_PROC_NUM;
495 }
496
497 // RACH Allocation
499 uint16_t rbStart = 0;
500 std::vector <struct RachListElement_s>::iterator itRach;
501 for (itRach = m_rachList.begin (); itRach != m_rachList.end (); itRach++)
502 {
503 NS_ASSERT_MSG (m_amc->GetUlTbSizeFromMcs (m_ulGrantMcs, m_cschedCellConfig.m_ulBandwidth) > (*itRach).m_estimatedSize, " Default UL Grant MCS does not allow to send RACH messages");
505 newRar.m_rnti = (*itRach).m_rnti;
506 // DL-RACH Allocation
507 // Ideal: no needs of configuring m_dci
508 // UL-RACH Allocation
509 newRar.m_grant.m_rnti = newRar.m_rnti;
510 newRar.m_grant.m_mcs = m_ulGrantMcs;
511 uint16_t rbLen = 1;
512 uint16_t tbSizeBits = 0;
513 // find lowest TB size that fits UL grant estimated size
514 while ((tbSizeBits < (*itRach).m_estimatedSize) && (rbStart + rbLen < m_cschedCellConfig.m_ulBandwidth))
515 {
516 rbLen++;
517 tbSizeBits = m_amc->GetUlTbSizeFromMcs (m_ulGrantMcs, rbLen);
518 }
519 if (tbSizeBits < (*itRach).m_estimatedSize)
520 {
521 // no more allocation space: finish allocation
522 break;
523 }
524 newRar.m_grant.m_rbStart = rbStart;
525 newRar.m_grant.m_rbLen = rbLen;
526 newRar.m_grant.m_tbSize = tbSizeBits / 8;
527 newRar.m_grant.m_hopping = false;
528 newRar.m_grant.m_tpc = 0;
529 newRar.m_grant.m_cqiRequest = false;
530 newRar.m_grant.m_ulDelay = false;
531 NS_LOG_INFO (this << " UL grant allocated to RNTI " << (*itRach).m_rnti << " rbStart " << rbStart << " rbLen " << rbLen << " MCS " << m_ulGrantMcs << " tbSize " << newRar.m_grant.m_tbSize);
532 for (uint16_t i = rbStart; i < rbStart + rbLen; i++)
533 {
534 m_rachAllocationMap.at (i) = (*itRach).m_rnti;
535 }
536
537 if (m_harqOn == true)
538 {
539 // generate UL-DCI for HARQ retransmissions
540 UlDciListElement_s uldci;
541 uldci.m_rnti = newRar.m_rnti;
542 uldci.m_rbLen = rbLen;
543 uldci.m_rbStart = rbStart;
544 uldci.m_mcs = m_ulGrantMcs;
545 uldci.m_tbSize = tbSizeBits / 8;
546 uldci.m_ndi = 1;
547 uldci.m_cceIndex = 0;
548 uldci.m_aggrLevel = 1;
549 uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
550 uldci.m_hopping = false;
551 uldci.m_n2Dmrs = 0;
552 uldci.m_tpc = 0; // no power control
553 uldci.m_cqiRequest = false; // only period CQI at this stage
554 uldci.m_ulIndex = 0; // TDD parameter
555 uldci.m_dai = 1; // TDD parameter
556 uldci.m_freqHopping = 0;
557 uldci.m_pdcchPowerOffset = 0; // not used
558
559 uint8_t harqId = 0;
560 std::map <uint16_t, uint8_t>::iterator itProcId;
561 itProcId = m_ulHarqCurrentProcessId.find (uldci.m_rnti);
562 if (itProcId == m_ulHarqCurrentProcessId.end ())
563 {
564 NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << uldci.m_rnti);
565 }
566 harqId = (*itProcId).second;
567 std::map <uint16_t, UlHarqProcessesDciBuffer_t>::iterator itDci = m_ulHarqProcessesDciBuffer.find (uldci.m_rnti);
568 if (itDci == m_ulHarqProcessesDciBuffer.end ())
569 {
570 NS_FATAL_ERROR ("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI " << uldci.m_rnti);
571 }
572 (*itDci).second.at (harqId) = uldci;
573 }
574
575 rbStart = rbStart + rbLen;
576 ret.m_buildRarList.push_back (newRar);
577 }
578 m_rachList.clear ();
579
580
581 // Process DL HARQ feedback
583 // retrieve past HARQ retx buffered
584 if (m_dlInfoListBuffered.size () > 0)
585 {
586 if (params.m_dlInfoList.size () > 0)
587 {
588 NS_LOG_INFO (this << " Received DL-HARQ feedback");
589 m_dlInfoListBuffered.insert (m_dlInfoListBuffered.end (), params.m_dlInfoList.begin (), params.m_dlInfoList.end ());
590 }
591 }
592 else
593 {
594 if (params.m_dlInfoList.size () > 0)
595 {
597 }
598 }
599 if (m_harqOn == false)
600 {
601 // Ignore HARQ feedback
602 m_dlInfoListBuffered.clear ();
603 }
604 std::vector <struct DlInfoListElement_s> dlInfoListUntxed;
605 for (uint16_t i = 0; i < m_dlInfoListBuffered.size (); i++)
606 {
607 std::set <uint16_t>::iterator itRnti = rntiAllocated.find (m_dlInfoListBuffered.at (i).m_rnti);
608 if (itRnti != rntiAllocated.end ())
609 {
610 // RNTI already allocated for retx
611 continue;
612 }
613 uint8_t nLayers = m_dlInfoListBuffered.at (i).m_harqStatus.size ();
614 std::vector <bool> retx;
615 NS_LOG_INFO (this << " Processing DLHARQ feedback");
616 if (nLayers == 1)
617 {
618 retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (0) == DlInfoListElement_s::NACK);
619 retx.push_back (false);
620 }
621 else
622 {
623 retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (0) == DlInfoListElement_s::NACK);
624 retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (1) == DlInfoListElement_s::NACK);
625 }
626 if (retx.at (0) || retx.at (1))
627 {
628 // retrieve HARQ process information
629 uint16_t rnti = m_dlInfoListBuffered.at (i).m_rnti;
630 uint8_t harqId = m_dlInfoListBuffered.at (i).m_harqProcessId;
631 NS_LOG_INFO (this << " HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId);
632 std::map <uint16_t, DlHarqProcessesDciBuffer_t>::iterator itHarq = m_dlHarqProcessesDciBuffer.find (rnti);
633 if (itHarq == m_dlHarqProcessesDciBuffer.end ())
634 {
635 NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << rnti);
636 }
637
638 DlDciListElement_s dci = (*itHarq).second.at (harqId);
639 int rv = 0;
640 if (dci.m_rv.size () == 1)
641 {
642 rv = dci.m_rv.at (0);
643 }
644 else
645 {
646 rv = (dci.m_rv.at (0) > dci.m_rv.at (1) ? dci.m_rv.at (0) : dci.m_rv.at (1));
647 }
648
649 if (rv == 3)
650 {
651 // maximum number of retx reached -> drop process
652 NS_LOG_INFO ("Maximum number of retransmissions reached -> drop process");
653 std::map <uint16_t, DlHarqProcessesStatus_t>::iterator it = m_dlHarqProcessesStatus.find (rnti);
654 if (it == m_dlHarqProcessesStatus.end ())
655 {
656 NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << m_dlInfoListBuffered.at (i).m_rnti);
657 }
658 (*it).second.at (harqId) = 0;
659 std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (rnti);
660 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
661 {
662 NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << m_dlInfoListBuffered.at (i).m_rnti);
663 }
664 for (uint16_t k = 0; k < (*itRlcPdu).second.size (); k++)
665 {
666 (*itRlcPdu).second.at (k).at (harqId).clear ();
667 }
668 continue;
669 }
670 // check the feasibility of retransmitting on the same RBGs
671 // translate the DCI to Spectrum framework
672 std::vector <int> dciRbg;
673 uint32_t mask = 0x1;
674 NS_LOG_INFO ("Original RBGs " << dci.m_rbBitmap << " rnti " << dci.m_rnti);
675 for (int j = 0; j < 32; j++)
676 {
677 if (((dci.m_rbBitmap & mask) >> j) == 1)
678 {
679 dciRbg.push_back (j);
680 NS_LOG_INFO ("\t" << j);
681 }
682 mask = (mask << 1);
683 }
684 bool free = true;
685 for (uint8_t j = 0; j < dciRbg.size (); j++)
686 {
687 if (rbgMap.at (dciRbg.at (j)) == true)
688 {
689 free = false;
690 break;
691 }
692 }
693 if (free)
694 {
695 // use the same RBGs for the retx
696 // reserve RBGs
697 for (uint8_t j = 0; j < dciRbg.size (); j++)
698 {
699 rbgMap.at (dciRbg.at (j)) = true;
700 NS_LOG_INFO ("RBG " << dciRbg.at (j) << " assigned");
701 rbgAllocatedNum++;
702 }
703
704 NS_LOG_INFO (this << " Send retx in the same RBGs");
705 }
706 else
707 {
708 // find RBGs for sending HARQ retx
709 uint8_t j = 0;
710 uint8_t rbgId = (dciRbg.at (dciRbg.size () - 1) + 1) % rbgNum;
711 uint8_t startRbg = dciRbg.at (dciRbg.size () - 1);
712 std::vector <bool> rbgMapCopy = rbgMap;
713 while ((j < dciRbg.size ())&&(startRbg != rbgId))
714 {
715 if (rbgMapCopy.at (rbgId) == false)
716 {
717 rbgMapCopy.at (rbgId) = true;
718 dciRbg.at (j) = rbgId;
719 j++;
720 }
721 rbgId = (rbgId + 1) % rbgNum;
722 }
723 if (j == dciRbg.size ())
724 {
725 // find new RBGs -> update DCI map
726 uint32_t rbgMask = 0;
727 for (uint16_t k = 0; k < dciRbg.size (); k++)
728 {
729 rbgMask = rbgMask + (0x1 << dciRbg.at (k));
730 rbgAllocatedNum++;
731 }
732 dci.m_rbBitmap = rbgMask;
733 rbgMap = rbgMapCopy;
734 NS_LOG_INFO (this << " Move retx in RBGs " << dciRbg.size ());
735 }
736 else
737 {
738 // HARQ retx cannot be performed on this TTI -> store it
739 dlInfoListUntxed.push_back (m_dlInfoListBuffered.at (i));
740 NS_LOG_INFO (this << " No resource for this retx -> buffer it");
741 }
742 }
743 // retrieve RLC PDU list for retx TBsize and update DCI
745 std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (rnti);
746 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
747 {
748 NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << rnti);
749 }
750 for (uint8_t j = 0; j < nLayers; j++)
751 {
752 if (retx.at (j))
753 {
754 if (j >= dci.m_ndi.size ())
755 {
756 // for avoiding errors in MIMO transient phases
757 dci.m_ndi.push_back (0);
758 dci.m_rv.push_back (0);
759 dci.m_mcs.push_back (0);
760 dci.m_tbsSize.push_back (0);
761 NS_LOG_INFO (this << " layer " << (uint16_t)j << " no txed (MIMO transition)");
762 }
763 else
764 {
765 dci.m_ndi.at (j) = 0;
766 dci.m_rv.at (j)++;
767 (*itHarq).second.at (harqId).m_rv.at (j)++;
768 NS_LOG_INFO (this << " layer " << (uint16_t)j << " RV " << (uint16_t)dci.m_rv.at (j));
769 }
770 }
771 else
772 {
773 // empty TB of layer j
774 dci.m_ndi.at (j) = 0;
775 dci.m_rv.at (j) = 0;
776 dci.m_mcs.at (j) = 0;
777 dci.m_tbsSize.at (j) = 0;
778 NS_LOG_INFO (this << " layer " << (uint16_t)j << " no retx");
779 }
780 }
781 for (uint16_t k = 0; k < (*itRlcPdu).second.at (0).at (dci.m_harqProcess).size (); k++)
782 {
783 std::vector <struct RlcPduListElement_s> rlcPduListPerLc;
784 for (uint8_t j = 0; j < nLayers; j++)
785 {
786 if (retx.at (j))
787 {
788 if (j < dci.m_ndi.size ())
789 {
790 NS_LOG_INFO (" layer " << (uint16_t)j << " tb size " << dci.m_tbsSize.at (j));
791 rlcPduListPerLc.push_back ((*itRlcPdu).second.at (j).at (dci.m_harqProcess).at (k));
792 }
793 }
794 else
795 { // if no retx needed on layer j, push an RlcPduListElement_s object with m_size=0 to keep the size of rlcPduListPerLc vector = 2 in case of MIMO
796 NS_LOG_INFO (" layer " << (uint16_t)j << " tb size "<<dci.m_tbsSize.at (j));
797 RlcPduListElement_s emptyElement;
798 emptyElement.m_logicalChannelIdentity = (*itRlcPdu).second.at (j).at (dci.m_harqProcess).at (k).m_logicalChannelIdentity;
799 emptyElement.m_size = 0;
800 rlcPduListPerLc.push_back (emptyElement);
801 }
802 }
803
804 if (rlcPduListPerLc.size () > 0)
805 {
806 newEl.m_rlcPduList.push_back (rlcPduListPerLc);
807 }
808 }
809 newEl.m_rnti = rnti;
810 newEl.m_dci = dci;
811 (*itHarq).second.at (harqId).m_rv = dci.m_rv;
812 // refresh timer
813 std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itHarqTimer = m_dlHarqProcessesTimer.find (rnti);
814 if (itHarqTimer== m_dlHarqProcessesTimer.end ())
815 {
816 NS_FATAL_ERROR ("Unable to find HARQ timer for RNTI " << (uint16_t)rnti);
817 }
818 (*itHarqTimer).second.at (harqId) = 0;
819 ret.m_buildDataList.push_back (newEl);
820 rntiAllocated.insert (rnti);
821 }
822 else
823 {
824 // update HARQ process status
825 NS_LOG_INFO (this << " HARQ received ACK for UE " << m_dlInfoListBuffered.at (i).m_rnti);
826 std::map <uint16_t, DlHarqProcessesStatus_t>::iterator it = m_dlHarqProcessesStatus.find (m_dlInfoListBuffered.at (i).m_rnti);
827 if (it == m_dlHarqProcessesStatus.end ())
828 {
829 NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << m_dlInfoListBuffered.at (i).m_rnti);
830 }
831 (*it).second.at (m_dlInfoListBuffered.at (i).m_harqProcessId) = 0;
832 std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (m_dlInfoListBuffered.at (i).m_rnti);
833 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
834 {
835 NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << m_dlInfoListBuffered.at (i).m_rnti);
836 }
837 for (uint16_t k = 0; k < (*itRlcPdu).second.size (); k++)
838 {
839 (*itRlcPdu).second.at (k).at (m_dlInfoListBuffered.at (i).m_harqProcessId).clear ();
840 }
841 }
842 }
843 m_dlInfoListBuffered.clear ();
844 m_dlInfoListBuffered = dlInfoListUntxed;
845
846 if (rbgAllocatedNum == rbgNum)
847 {
848 // all the RBGs are already allocated -> exit
849 if ((ret.m_buildDataList.size () > 0) || (ret.m_buildRarList.size () > 0))
850 {
852 }
853 return;
854 }
855
856
857
858 for (int i = 0; i < rbgNum; i++)
859 {
860 NS_LOG_INFO (this << " ALLOCATION for RBG " << i << " of " << rbgNum);
861 if (rbgMap.at (i) == false)
862 {
863 std::set <uint16_t>::iterator it;
864 std::set <uint16_t>::iterator itMax = m_flowStatsDl.end ();
865 double rcqiMax = 0.0;
866 for (it = m_flowStatsDl.begin (); it != m_flowStatsDl.end (); it++)
867 {
868 std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it));
869 if ((itRnti != rntiAllocated.end ())||(!HarqProcessAvailability ((*it))))
870 {
871 // UE already allocated for HARQ or without HARQ process available -> drop it
872 if (itRnti != rntiAllocated.end ())
873 {
874 NS_LOG_DEBUG (this << " RNTI discared for HARQ tx" << (uint16_t)(*it));
875 }
876 if (!HarqProcessAvailability ((*it)))
877 {
878 NS_LOG_DEBUG (this << " RNTI discared for HARQ id" << (uint16_t)(*it));
879 }
880 continue;
881 }
882
883 std::map <uint16_t,SbMeasResult_s>::iterator itCqi;
884 itCqi = m_a30CqiRxed.find ((*it));
885 std::map <uint16_t,uint8_t>::iterator itTxMode;
886 itTxMode = m_uesTxMode.find ((*it));
887 if (itTxMode == m_uesTxMode.end ())
888 {
889 NS_FATAL_ERROR ("No Transmission Mode info on user " << (*it));
890 }
891 int nLayer = TransmissionModesLayers::TxMode2LayerNum ((*itTxMode).second);
892 std::vector <uint8_t> sbCqi;
893 if (itCqi == m_a30CqiRxed.end ())
894 {
895 for (uint8_t k = 0; k < nLayer; k++)
896 {
897 sbCqi.push_back (1); // start with lowest value
898 }
899 }
900 else
901 {
902 sbCqi = (*itCqi).second.m_higherLayerSelected.at (i).m_sbCqi;
903 }
904 uint8_t cqi1 = sbCqi.at (0);
905 uint8_t cqi2 = 0;
906 if (sbCqi.size () > 1)
907 {
908 cqi2 = sbCqi.at (1);
909 }
910 if ((cqi1 > 0)||(cqi2 > 0)) // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
911 {
912 if (LcActivePerFlow ((*it)) > 0)
913 {
914 // this UE has data to transmit
915 double achievableRate = 0.0;
916 uint8_t mcs = 0;
917 for (uint8_t k = 0; k < nLayer; k++)
918 {
919 if (sbCqi.size () > k)
920 {
921 mcs = m_amc->GetMcsFromCqi (sbCqi.at (k));
922 }
923 else
924 {
925 // no info on this subband -> worst MCS
926 mcs = 0;
927 }
928 achievableRate += ((m_amc->GetDlTbSizeFromMcs (mcs, rbgSize) / 8) / 0.001); // = TB size / TTI
929 }
930
931 double rcqi = achievableRate;
932 NS_LOG_INFO (this << " RNTI " << (*it) << " MCS " << (uint32_t)mcs << " achievableRate " << achievableRate << " RCQI " << rcqi);
933
934 if (rcqi > rcqiMax)
935 {
936 rcqiMax = rcqi;
937 itMax = it;
938 }
939 }
940 } // end if cqi
941
942 } // end for m_rlcBufferReq
943
944 if (itMax == m_flowStatsDl.end ())
945 {
946 // no UE available for this RB
947 NS_LOG_INFO (this << " any UE found");
948 }
949 else
950 {
951 rbgMap.at (i) = true;
952 std::map <uint16_t, std::vector <uint16_t> >::iterator itMap;
953 itMap = allocationMap.find ((*itMax));
954 if (itMap == allocationMap.end ())
955 {
956 // insert new element
957 std::vector <uint16_t> tempMap;
958 tempMap.push_back (i);
959 allocationMap.insert (std::pair <uint16_t, std::vector <uint16_t> > ((*itMax), tempMap));
960 }
961 else
962 {
963 (*itMap).second.push_back (i);
964 }
965 NS_LOG_INFO (this << " UE assigned " << (*itMax));
966 }
967 } // end for RBG free
968 } // end for RBGs
969
970 // generate the transmission opportunities by grouping the RBGs of the same RNTI and
971 // creating the correspondent DCIs
972 std::map <uint16_t, std::vector <uint16_t> >::iterator itMap = allocationMap.begin ();
973 while (itMap != allocationMap.end ())
974 {
975 // create new BuildDataListElement_s for this LC
977 newEl.m_rnti = (*itMap).first;
978 // create the DlDciListElement_s
979 DlDciListElement_s newDci;
980 newDci.m_rnti = (*itMap).first;
981 newDci.m_harqProcess = UpdateHarqProcessId ((*itMap).first);
982
983 uint16_t lcActives = LcActivePerFlow ((*itMap).first);
984 NS_LOG_INFO (this << "Allocate user " << newEl.m_rnti << " rbg " << lcActives);
985 if (lcActives == 0)
986 {
987 // Set to max value, to avoid divide by 0 below
988 lcActives = (uint16_t)65535; // UINT16_MAX;
989 }
990 uint16_t RgbPerRnti = (*itMap).second.size ();
991 std::map <uint16_t,SbMeasResult_s>::iterator itCqi;
992 itCqi = m_a30CqiRxed.find ((*itMap).first);
993 std::map <uint16_t,uint8_t>::iterator itTxMode;
994 itTxMode = m_uesTxMode.find ((*itMap).first);
995 if (itTxMode == m_uesTxMode.end ())
996 {
997 NS_FATAL_ERROR ("No Transmission Mode info on user " << (*itMap).first);
998 }
999 int nLayer = TransmissionModesLayers::TxMode2LayerNum ((*itTxMode).second);
1000 std::vector <uint8_t> worstCqi (2, 15);
1001 if (itCqi != m_a30CqiRxed.end ())
1002 {
1003 for (uint16_t k = 0; k < (*itMap).second.size (); k++)
1004 {
1005 if ((*itCqi).second.m_higherLayerSelected.size () > (*itMap).second.at (k))
1006 {
1007 NS_LOG_INFO (this << " RBG " << (*itMap).second.at (k) << " CQI " << (uint16_t)((*itCqi).second.m_higherLayerSelected.at ((*itMap).second.at (k)).m_sbCqi.at (0)) );
1008 for (uint8_t j = 0; j < nLayer; j++)
1009 {
1010 if ((*itCqi).second.m_higherLayerSelected.at ((*itMap).second.at (k)).m_sbCqi.size () > j)
1011 {
1012 if (((*itCqi).second.m_higherLayerSelected.at ((*itMap).second.at (k)).m_sbCqi.at (j)) < worstCqi.at (j))
1013 {
1014 worstCqi.at (j) = ((*itCqi).second.m_higherLayerSelected.at ((*itMap).second.at (k)).m_sbCqi.at (j));
1015 }
1016 }
1017 else
1018 {
1019 // no CQI for this layer of this suband -> worst one
1020 worstCqi.at (j) = 1;
1021 }
1022 }
1023 }
1024 else
1025 {
1026 for (uint8_t j = 0; j < nLayer; j++)
1027 {
1028 worstCqi.at (j) = 1; // try with lowest MCS in RBG with no info on channel
1029 }
1030 }
1031 }
1032 }
1033 else
1034 {
1035 for (uint8_t j = 0; j < nLayer; j++)
1036 {
1037 worstCqi.at (j) = 1; // try with lowest MCS in RBG with no info on channel
1038 }
1039 }
1040 for (uint8_t j = 0; j < nLayer; j++)
1041 {
1042 NS_LOG_INFO (this << " Layer " << (uint16_t)j << " CQI selected " << (uint16_t)worstCqi.at (j));
1043 }
1044 for (uint8_t j = 0; j < nLayer; j++)
1045 {
1046 newDci.m_mcs.push_back (m_amc->GetMcsFromCqi (worstCqi.at (j)));
1047 int tbSize = (m_amc->GetDlTbSizeFromMcs (newDci.m_mcs.at (j), RgbPerRnti * rbgSize) / 8); // (size of TB in bytes according to table 7.1.7.2.1-1 of 36.213)
1048 newDci.m_tbsSize.push_back (tbSize);
1049 NS_LOG_INFO (this << " Layer " << (uint16_t)j << " MCS selected" << m_amc->GetMcsFromCqi (worstCqi.at (j)));
1050 }
1051
1052 newDci.m_resAlloc = 0; // only allocation type 0 at this stage
1053 newDci.m_rbBitmap = 0; // TBD (32 bit bitmap see 7.1.6 of 36.213)
1054 uint32_t rbgMask = 0;
1055 for (uint16_t k = 0; k < (*itMap).second.size (); k++)
1056 {
1057 rbgMask = rbgMask + (0x1 << (*itMap).second.at (k));
1058 NS_LOG_INFO (this << " Allocated RBG " << (*itMap).second.at (k));
1059 }
1060 newDci.m_rbBitmap = rbgMask; // (32 bit bitmap see 7.1.6 of 36.213)
1061
1062 // create the rlc PDUs -> equally divide resources among actives LCs
1063 std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator itBufReq;
1064 for (itBufReq = m_rlcBufferReq.begin (); itBufReq != m_rlcBufferReq.end (); itBufReq++)
1065 {
1066 if (((*itBufReq).first.m_rnti == (*itMap).first)
1067 && (((*itBufReq).second.m_rlcTransmissionQueueSize > 0)
1068 || ((*itBufReq).second.m_rlcRetransmissionQueueSize > 0)
1069 || ((*itBufReq).second.m_rlcStatusPduSize > 0) ))
1070 {
1071 std::vector <struct RlcPduListElement_s> newRlcPduLe;
1072 for (uint8_t j = 0; j < nLayer; j++)
1073 {
1074 RlcPduListElement_s newRlcEl;
1075 newRlcEl.m_logicalChannelIdentity = (*itBufReq).first.m_lcId;
1076 newRlcEl.m_size = newDci.m_tbsSize.at (j) / lcActives;
1077 NS_LOG_INFO (this << " LCID " << (uint32_t) newRlcEl.m_logicalChannelIdentity << " size " << newRlcEl.m_size << " layer " << (uint16_t)j);
1078 newRlcPduLe.push_back (newRlcEl);
1079 UpdateDlRlcBufferInfo (newDci.m_rnti, newRlcEl.m_logicalChannelIdentity, newRlcEl.m_size);
1080 if (m_harqOn == true)
1081 {
1082 // store RLC PDU list for HARQ
1083 std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find ((*itMap).first);
1084 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
1085 {
1086 NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << (*itMap).first);
1087 }
1088 (*itRlcPdu).second.at (j).at (newDci.m_harqProcess).push_back (newRlcEl);
1089 }
1090 }
1091 newEl.m_rlcPduList.push_back (newRlcPduLe);
1092 }
1093 if ((*itBufReq).first.m_rnti > (*itMap).first)
1094 {
1095 break;
1096 }
1097 }
1098 for (uint8_t j = 0; j < nLayer; j++)
1099 {
1100 newDci.m_ndi.push_back (1);
1101 newDci.m_rv.push_back (0);
1102 }
1103
1104 newDci.m_tpc = 1; //1 is mapped to 0 in Accumulated Mode and to -1 in Absolute Mode
1105
1106 newEl.m_dci = newDci;
1107
1108 if (m_harqOn == true)
1109 {
1110 // store DCI for HARQ
1111 std::map <uint16_t, DlHarqProcessesDciBuffer_t>::iterator itDci = m_dlHarqProcessesDciBuffer.find (newEl.m_rnti);
1112 if (itDci == m_dlHarqProcessesDciBuffer.end ())
1113 {
1114 NS_FATAL_ERROR ("Unable to find RNTI entry in DCI HARQ buffer for RNTI " << newEl.m_rnti);
1115 }
1116 (*itDci).second.at (newDci.m_harqProcess) = newDci;
1117 // refresh timer
1118 std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itHarqTimer = m_dlHarqProcessesTimer.find (newEl.m_rnti);
1119 if (itHarqTimer== m_dlHarqProcessesTimer.end ())
1120 {
1121 NS_FATAL_ERROR ("Unable to find HARQ timer for RNTI " << (uint16_t)newEl.m_rnti);
1122 }
1123 (*itHarqTimer).second.at (newDci.m_harqProcess) = 0;
1124 }
1125
1126 // ...more parameters -> ignored in this version
1127
1128 ret.m_buildDataList.push_back (newEl);
1129
1130 itMap++;
1131 } // end while allocation
1132 ret.m_nrOfPdcchOfdmSymbols = 1;
1133
1135
1136
1137 return;
1138}
1139
1140void
1142{
1143 NS_LOG_FUNCTION (this);
1144
1145 m_rachList = params.m_rachList;
1146
1147 return;
1148}
1149
1150void
1152{
1153 NS_LOG_FUNCTION (this);
1154
1155 for (unsigned int i = 0; i < params.m_cqiList.size (); i++)
1156 {
1157 if ( params.m_cqiList.at (i).m_cqiType == CqiListElement_s::P10 )
1158 {
1159 NS_LOG_LOGIC ("wideband CQI " << (uint32_t) params.m_cqiList.at (i).m_wbCqi.at (0) << " reported");
1160 std::map <uint16_t,uint8_t>::iterator it;
1161 uint16_t rnti = params.m_cqiList.at (i).m_rnti;
1162 it = m_p10CqiRxed.find (rnti);
1163 if (it == m_p10CqiRxed.end ())
1164 {
1165 // create the new entry
1166 m_p10CqiRxed.insert ( std::pair<uint16_t, uint8_t > (rnti, params.m_cqiList.at (i).m_wbCqi.at (0)) ); // only codeword 0 at this stage (SISO)
1167 // generate correspondent timer
1168 m_p10CqiTimers.insert ( std::pair<uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1169 }
1170 else
1171 {
1172 // update the CQI value and refresh correspondent timer
1173 (*it).second = params.m_cqiList.at (i).m_wbCqi.at (0);
1174 // update correspondent timer
1175 std::map <uint16_t,uint32_t>::iterator itTimers;
1176 itTimers = m_p10CqiTimers.find (rnti);
1177 (*itTimers).second = m_cqiTimersThreshold;
1178 }
1179 }
1180 else if ( params.m_cqiList.at (i).m_cqiType == CqiListElement_s::A30 )
1181 {
1182 // subband CQI reporting high layer configured
1183 std::map <uint16_t,SbMeasResult_s>::iterator it;
1184 uint16_t rnti = params.m_cqiList.at (i).m_rnti;
1185 it = m_a30CqiRxed.find (rnti);
1186 if (it == m_a30CqiRxed.end ())
1187 {
1188 // create the new entry
1189 m_a30CqiRxed.insert ( std::pair<uint16_t, SbMeasResult_s > (rnti, params.m_cqiList.at (i).m_sbMeasResult) );
1190 m_a30CqiTimers.insert ( std::pair<uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1191 }
1192 else
1193 {
1194 // update the CQI value and refresh correspondent timer
1195 (*it).second = params.m_cqiList.at (i).m_sbMeasResult;
1196 std::map <uint16_t,uint32_t>::iterator itTimers;
1197 itTimers = m_a30CqiTimers.find (rnti);
1198 (*itTimers).second = m_cqiTimersThreshold;
1199 }
1200 }
1201 else
1202 {
1203 NS_LOG_ERROR (this << " CQI type unknown");
1204 }
1205 }
1206
1207 return;
1208}
1209
1210
1211double
1212FdMtFfMacScheduler::EstimateUlSinr (uint16_t rnti, uint16_t rb)
1213{
1214 std::map <uint16_t, std::vector <double> >::iterator itCqi = m_ueCqi.find (rnti);
1215 if (itCqi == m_ueCqi.end ())
1216 {
1217 // no cqi info about this UE
1218 return (NO_SINR);
1219
1220 }
1221 else
1222 {
1223 // take the average SINR value among the available
1224 double sinrSum = 0;
1225 unsigned int sinrNum = 0;
1226 for (uint32_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1227 {
1228 double sinr = (*itCqi).second.at (i);
1229 if (sinr != NO_SINR)
1230 {
1231 sinrSum += sinr;
1232 sinrNum++;
1233 }
1234 }
1235 double estimatedSinr = (sinrNum > 0) ? (sinrSum / sinrNum) : DBL_MAX;
1236 // store the value
1237 (*itCqi).second.at (rb) = estimatedSinr;
1238 return (estimatedSinr);
1239 }
1240}
1241
1242void
1244{
1245 NS_LOG_FUNCTION (this << " UL - Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf) << " size " << params.m_ulInfoList.size ());
1246
1248
1249 // Generate RBs map
1251 std::vector <bool> rbMap;
1252 uint16_t rbAllocatedNum = 0;
1253 std::set <uint16_t> rntiAllocated;
1254 std::vector <uint16_t> rbgAllocationMap;
1255 // update with RACH allocation map
1256 rbgAllocationMap = m_rachAllocationMap;
1257 //rbgAllocationMap.resize (m_cschedCellConfig.m_ulBandwidth, 0);
1258 m_rachAllocationMap.clear ();
1260
1261 rbMap.resize (m_cschedCellConfig.m_ulBandwidth, false);
1262 // remove RACH allocation
1263 for (uint16_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1264 {
1265 if (rbgAllocationMap.at (i) != 0)
1266 {
1267 rbMap.at (i) = true;
1268 NS_LOG_DEBUG (this << " Allocated for RACH " << i);
1269 }
1270 }
1271
1272
1273 if (m_harqOn == true)
1274 {
1275 // Process UL HARQ feedback
1276 for (uint16_t i = 0; i < params.m_ulInfoList.size (); i++)
1277 {
1278 if (params.m_ulInfoList.at (i).m_receptionStatus == UlInfoListElement_s::NotOk)
1279 {
1280 // retx correspondent block: retrieve the UL-DCI
1281 uint16_t rnti = params.m_ulInfoList.at (i).m_rnti;
1282 std::map <uint16_t, uint8_t>::iterator itProcId = m_ulHarqCurrentProcessId.find (rnti);
1283 if (itProcId == m_ulHarqCurrentProcessId.end ())
1284 {
1285 NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1286 }
1287 uint8_t harqId = (uint8_t)((*itProcId).second - HARQ_PERIOD) % HARQ_PROC_NUM;
1288 NS_LOG_INFO (this << " UL-HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId << " i " << i << " size " << params.m_ulInfoList.size ());
1289 std::map <uint16_t, UlHarqProcessesDciBuffer_t>::iterator itHarq = m_ulHarqProcessesDciBuffer.find (rnti);
1290 if (itHarq == m_ulHarqProcessesDciBuffer.end ())
1291 {
1292 NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1293 continue;
1294 }
1295 UlDciListElement_s dci = (*itHarq).second.at (harqId);
1296 std::map <uint16_t, UlHarqProcessesStatus_t>::iterator itStat = m_ulHarqProcessesStatus.find (rnti);
1297 if (itStat == m_ulHarqProcessesStatus.end ())
1298 {
1299 NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1300 }
1301 if ((*itStat).second.at (harqId) >= 3)
1302 {
1303 NS_LOG_INFO ("Max number of retransmissions reached (UL)-> drop process");
1304 continue;
1305 }
1306 bool free = true;
1307 for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1308 {
1309 if (rbMap.at (j) == true)
1310 {
1311 free = false;
1312 NS_LOG_INFO (this << " BUSY " << j);
1313 }
1314 }
1315 if (free)
1316 {
1317 // retx on the same RBs
1318 for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1319 {
1320 rbMap.at (j) = true;
1321 rbgAllocationMap.at (j) = dci.m_rnti;
1322 NS_LOG_INFO ("\tRB " << j);
1323 rbAllocatedNum++;
1324 }
1325 NS_LOG_INFO (this << " Send retx in the same RBs " << (uint16_t)dci.m_rbStart << " to " << dci.m_rbStart + dci.m_rbLen << " RV " << (*itStat).second.at (harqId) + 1);
1326 }
1327 else
1328 {
1329 NS_LOG_INFO ("Cannot allocate retx due to RACH allocations for UE " << rnti);
1330 continue;
1331 }
1332 dci.m_ndi = 0;
1333 // Update HARQ buffers with new HarqId
1334 (*itStat).second.at ((*itProcId).second) = (*itStat).second.at (harqId) + 1;
1335 (*itStat).second.at (harqId) = 0;
1336 (*itHarq).second.at ((*itProcId).second) = dci;
1337 ret.m_dciList.push_back (dci);
1338 rntiAllocated.insert (dci.m_rnti);
1339 }
1340 else
1341 {
1342 NS_LOG_INFO (this << " HARQ-ACK feedback from RNTI " << params.m_ulInfoList.at (i).m_rnti);
1343 }
1344 }
1345 }
1346
1347 std::map <uint16_t,uint32_t>::iterator it;
1348 int nflows = 0;
1349
1350 for (it = m_ceBsrRxed.begin (); it != m_ceBsrRxed.end (); it++)
1351 {
1352 std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it).first);
1353 // select UEs with queues not empty and not yet allocated for HARQ
1354 if (((*it).second > 0)&&(itRnti == rntiAllocated.end ()))
1355 {
1356 nflows++;
1357 }
1358 }
1359
1360 if (nflows == 0)
1361 {
1362 if (ret.m_dciList.size () > 0)
1363 {
1364 m_allocationMaps.insert (std::pair <uint16_t, std::vector <uint16_t> > (params.m_sfnSf, rbgAllocationMap));
1366 }
1367
1368 return; // no flows to be scheduled
1369 }
1370
1371
1372 // Divide the remaining resources equally among the active users starting from the subsequent one served last scheduling trigger
1373 uint16_t rbPerFlow = (m_cschedCellConfig.m_ulBandwidth) / (nflows + rntiAllocated.size ());
1374 if (rbPerFlow < 3)
1375 {
1376 rbPerFlow = 3; // at least 3 rbg per flow (till available resource) to ensure TxOpportunity >= 7 bytes
1377 }
1378 int rbAllocated = 0;
1379
1380 if (m_nextRntiUl != 0)
1381 {
1382 for (it = m_ceBsrRxed.begin (); it != m_ceBsrRxed.end (); it++)
1383 {
1384 if ((*it).first == m_nextRntiUl)
1385 {
1386 break;
1387 }
1388 }
1389 if (it == m_ceBsrRxed.end ())
1390 {
1391 NS_LOG_ERROR (this << " no user found");
1392 }
1393 }
1394 else
1395 {
1396 it = m_ceBsrRxed.begin ();
1397 m_nextRntiUl = (*it).first;
1398 }
1399 do
1400 {
1401 std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it).first);
1402 if ((itRnti != rntiAllocated.end ())||((*it).second == 0))
1403 {
1404 // UE already allocated for UL-HARQ -> skip it
1405 NS_LOG_DEBUG (this << " UE already allocated in HARQ -> discared, RNTI " << (*it).first);
1406 it++;
1407 if (it == m_ceBsrRxed.end ())
1408 {
1409 // restart from the first
1410 it = m_ceBsrRxed.begin ();
1411 }
1412 continue;
1413 }
1414 if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1415 {
1416 // limit to physical resources last resource assignment
1417 rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1418 // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1419 if (rbPerFlow < 3)
1420 {
1421 // terminate allocation
1422 rbPerFlow = 0;
1423 }
1424 }
1425
1426 UlDciListElement_s uldci;
1427 uldci.m_rnti = (*it).first;
1428 uldci.m_rbLen = rbPerFlow;
1429 bool allocated = false;
1430 NS_LOG_INFO (this << " RB Allocated " << rbAllocated << " rbPerFlow " << rbPerFlow << " flows " << nflows);
1431 while ((!allocated)&&((rbAllocated + rbPerFlow - m_cschedCellConfig.m_ulBandwidth) < 1) && (rbPerFlow != 0))
1432 {
1433 // check availability
1434 bool free = true;
1435 for (uint16_t j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1436 {
1437 if (rbMap.at (j) == true)
1438 {
1439 free = false;
1440 break;
1441 }
1442 }
1443 if (free)
1444 {
1445 uldci.m_rbStart = rbAllocated;
1446
1447 for (uint16_t j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1448 {
1449 rbMap.at (j) = true;
1450 // store info on allocation for managing ul-cqi interpretation
1451 rbgAllocationMap.at (j) = (*it).first;
1452 }
1453 rbAllocated += rbPerFlow;
1454 allocated = true;
1455 break;
1456 }
1457 rbAllocated++;
1458 if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1459 {
1460 // limit to physical resources last resource assignment
1461 rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1462 // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1463 if (rbPerFlow < 3)
1464 {
1465 // terminate allocation
1466 rbPerFlow = 0;
1467 }
1468 }
1469 }
1470 if (!allocated)
1471 {
1472 // unable to allocate new resource: finish scheduling
1473 m_nextRntiUl = (*it).first;
1474 if (ret.m_dciList.size () > 0)
1475 {
1477 }
1478 m_allocationMaps.insert (std::pair <uint16_t, std::vector <uint16_t> > (params.m_sfnSf, rbgAllocationMap));
1479 return;
1480 }
1481
1482
1483
1484 std::map <uint16_t, std::vector <double> >::iterator itCqi = m_ueCqi.find ((*it).first);
1485 int cqi = 0;
1486 if (itCqi == m_ueCqi.end ())
1487 {
1488 // no cqi info about this UE
1489 uldci.m_mcs = 0; // MCS 0 -> UL-AMC TBD
1490 }
1491 else
1492 {
1493 // take the lowest CQI value (worst RB)
1494 NS_ABORT_MSG_IF ((*itCqi).second.size() == 0, "CQI of RNTI = " << (*it).first << " has expired");
1495 double minSinr = (*itCqi).second.at (uldci.m_rbStart);
1496 if (minSinr == NO_SINR)
1497 {
1498 minSinr = EstimateUlSinr ((*it).first, uldci.m_rbStart);
1499 }
1500 for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1501 {
1502 double sinr = (*itCqi).second.at (i);
1503 if (sinr == NO_SINR)
1504 {
1505 sinr = EstimateUlSinr ((*it).first, i);
1506 }
1507 if (sinr < minSinr)
1508 {
1509 minSinr = sinr;
1510 }
1511 }
1512
1513 // translate SINR -> cqi: WILD ACK: same as DL
1514 double s = log2 ( 1 + (
1515 std::pow (10, minSinr / 10 ) /
1516 ( (-std::log (5.0 * 0.00005 )) / 1.5) ));
1517 cqi = m_amc->GetCqiFromSpectralEfficiency (s);
1518 if (cqi == 0)
1519 {
1520 it++;
1521 if (it == m_ceBsrRxed.end ())
1522 {
1523 // restart from the first
1524 it = m_ceBsrRxed.begin ();
1525 }
1526 NS_LOG_DEBUG (this << " UE discarded for CQI = 0, RNTI " << uldci.m_rnti);
1527 // remove UE from allocation map
1528 for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1529 {
1530 rbgAllocationMap.at (i) = 0;
1531 }
1532 continue; // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
1533 }
1534 uldci.m_mcs = m_amc->GetMcsFromCqi (cqi);
1535 }
1536
1537 uldci.m_tbSize = (m_amc->GetUlTbSizeFromMcs (uldci.m_mcs, rbPerFlow) / 8);
1538 UpdateUlRlcBufferInfo (uldci.m_rnti, uldci.m_tbSize);
1539 uldci.m_ndi = 1;
1540 uldci.m_cceIndex = 0;
1541 uldci.m_aggrLevel = 1;
1542 uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
1543 uldci.m_hopping = false;
1544 uldci.m_n2Dmrs = 0;
1545 uldci.m_tpc = 0; // no power control
1546 uldci.m_cqiRequest = false; // only period CQI at this stage
1547 uldci.m_ulIndex = 0; // TDD parameter
1548 uldci.m_dai = 1; // TDD parameter
1549 uldci.m_freqHopping = 0;
1550 uldci.m_pdcchPowerOffset = 0; // not used
1551 ret.m_dciList.push_back (uldci);
1552 // store DCI for HARQ_PERIOD
1553 uint8_t harqId = 0;
1554 if (m_harqOn == true)
1555 {
1556 std::map <uint16_t, uint8_t>::iterator itProcId;
1557 itProcId = m_ulHarqCurrentProcessId.find (uldci.m_rnti);
1558 if (itProcId == m_ulHarqCurrentProcessId.end ())
1559 {
1560 NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << uldci.m_rnti);
1561 }
1562 harqId = (*itProcId).second;
1563 std::map <uint16_t, UlHarqProcessesDciBuffer_t>::iterator itDci = m_ulHarqProcessesDciBuffer.find (uldci.m_rnti);
1564 if (itDci == m_ulHarqProcessesDciBuffer.end ())
1565 {
1566 NS_FATAL_ERROR ("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI " << uldci.m_rnti);
1567 }
1568 (*itDci).second.at (harqId) = uldci;
1569 // Update HARQ process status (RV 0)
1570 std::map <uint16_t, UlHarqProcessesStatus_t>::iterator itStat = m_ulHarqProcessesStatus.find (uldci.m_rnti);
1571 if (itStat == m_ulHarqProcessesStatus.end ())
1572 {
1573 NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << uldci.m_rnti);
1574 }
1575 (*itStat).second.at (harqId) = 0;
1576 }
1577
1578 NS_LOG_INFO (this << " UE Allocation RNTI " << (*it).first << " startPRB " << (uint32_t)uldci.m_rbStart << " nPRB " << (uint32_t)uldci.m_rbLen << " CQI " << cqi << " MCS " << (uint32_t)uldci.m_mcs << " TBsize " << uldci.m_tbSize << " RbAlloc " << rbAllocated << " harqId " << (uint16_t)harqId);
1579
1580
1581 it++;
1582 if (it == m_ceBsrRxed.end ())
1583 {
1584 // restart from the first
1585 it = m_ceBsrRxed.begin ();
1586 }
1587 if ((rbAllocated == m_cschedCellConfig.m_ulBandwidth) || (rbPerFlow == 0))
1588 {
1589 // Stop allocation: no more PRBs
1590 m_nextRntiUl = (*it).first;
1591 break;
1592 }
1593 }
1594 while (((*it).first != m_nextRntiUl)&&(rbPerFlow!=0));
1595
1596
1597 m_allocationMaps.insert (std::pair <uint16_t, std::vector <uint16_t> > (params.m_sfnSf, rbgAllocationMap));
1599
1600 return;
1601}
1602
1603void
1605{
1606 NS_LOG_FUNCTION (this);
1607 return;
1608}
1609
1610void
1612{
1613 NS_LOG_FUNCTION (this);
1614 return;
1615}
1616
1617void
1619{
1620 NS_LOG_FUNCTION (this);
1621
1622 std::map <uint16_t,uint32_t>::iterator it;
1623
1624 for (unsigned int i = 0; i < params.m_macCeList.size (); i++)
1625 {
1626 if ( params.m_macCeList.at (i).m_macCeType == MacCeListElement_s::BSR )
1627 {
1628 // buffer status report
1629 // note that this scheduler does not differentiate the
1630 // allocation according to which LCGs have more/less bytes
1631 // to send.
1632 // Hence the BSR of different LCGs are just summed up to get
1633 // a total queue size that is used for allocation purposes.
1634
1635 uint32_t buffer = 0;
1636 for (uint8_t lcg = 0; lcg < 4; ++lcg)
1637 {
1638 uint8_t bsrId = params.m_macCeList.at (i).m_macCeValue.m_bufferStatus.at (lcg);
1639 buffer += BufferSizeLevelBsr::BsrId2BufferSize (bsrId);
1640 }
1641
1642 uint16_t rnti = params.m_macCeList.at (i).m_rnti;
1643 NS_LOG_LOGIC (this << "RNTI=" << rnti << " buffer=" << buffer);
1644 it = m_ceBsrRxed.find (rnti);
1645 if (it == m_ceBsrRxed.end ())
1646 {
1647 // create the new entry
1648 m_ceBsrRxed.insert ( std::pair<uint16_t, uint32_t > (rnti, buffer));
1649 }
1650 else
1651 {
1652 // update the buffer size value
1653 (*it).second = buffer;
1654 }
1655 }
1656 }
1657
1658 return;
1659}
1660
1661void
1663{
1664 NS_LOG_FUNCTION (this);
1665// retrieve the allocation for this subframe
1666 switch (m_ulCqiFilter)
1667 {
1669 {
1670 // filter all the CQIs that are not SRS based
1671 if (params.m_ulCqi.m_type != UlCqi_s::SRS)
1672 {
1673 return;
1674 }
1675 }
1676 break;
1678 {
1679 // filter all the CQIs that are not SRS based
1680 if (params.m_ulCqi.m_type != UlCqi_s::PUSCH)
1681 {
1682 return;
1683 }
1684 }
1685 break;
1686 default:
1687 NS_FATAL_ERROR ("Unknown UL CQI type");
1688 }
1689
1690 switch (params.m_ulCqi.m_type)
1691 {
1692 case UlCqi_s::PUSCH:
1693 {
1694 std::map <uint16_t, std::vector <uint16_t> >::iterator itMap;
1695 std::map <uint16_t, std::vector <double> >::iterator itCqi;
1696 NS_LOG_DEBUG (this << " Collect PUSCH CQIs of Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf));
1697 itMap = m_allocationMaps.find (params.m_sfnSf);
1698 if (itMap == m_allocationMaps.end ())
1699 {
1700 return;
1701 }
1702 for (uint32_t i = 0; i < (*itMap).second.size (); i++)
1703 {
1704 // convert from fixed point notation Sxxxxxxxxxxx.xxx to double
1705 double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (i));
1706 itCqi = m_ueCqi.find ((*itMap).second.at (i));
1707 if (itCqi == m_ueCqi.end ())
1708 {
1709 // create a new entry
1710 std::vector <double> newCqi;
1711 for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1712 {
1713 if (i == j)
1714 {
1715 newCqi.push_back (sinr);
1716 }
1717 else
1718 {
1719 // initialize with NO_SINR value.
1720 newCqi.push_back (NO_SINR);
1721 }
1722
1723 }
1724 m_ueCqi.insert (std::pair <uint16_t, std::vector <double> > ((*itMap).second.at (i), newCqi));
1725 // generate correspondent timer
1726 m_ueCqiTimers.insert (std::pair <uint16_t, uint32_t > ((*itMap).second.at (i), m_cqiTimersThreshold));
1727 }
1728 else
1729 {
1730 // update the value
1731 (*itCqi).second.at (i) = sinr;
1732 NS_LOG_DEBUG (this << " RNTI " << (*itMap).second.at (i) << " RB " << i << " SINR " << sinr);
1733 // update correspondent timer
1734 std::map <uint16_t, uint32_t>::iterator itTimers;
1735 itTimers = m_ueCqiTimers.find ((*itMap).second.at (i));
1736 (*itTimers).second = m_cqiTimersThreshold;
1737
1738 }
1739
1740 }
1741 // remove obsolete info on allocation
1742 m_allocationMaps.erase (itMap);
1743 }
1744 break;
1745 case UlCqi_s::SRS:
1746 {
1747 // get the RNTI from vendor specific parameters
1748 uint16_t rnti = 0;
1749 NS_ASSERT (params.m_vendorSpecificList.size () > 0);
1750 for (uint16_t i = 0; i < params.m_vendorSpecificList.size (); i++)
1751 {
1752 if (params.m_vendorSpecificList.at (i).m_type == SRS_CQI_RNTI_VSP)
1753 {
1754 Ptr<SrsCqiRntiVsp> vsp = DynamicCast<SrsCqiRntiVsp> (params.m_vendorSpecificList.at (i).m_value);
1755 rnti = vsp->GetRnti ();
1756 }
1757 }
1758 std::map <uint16_t, std::vector <double> >::iterator itCqi;
1759 itCqi = m_ueCqi.find (rnti);
1760 if (itCqi == m_ueCqi.end ())
1761 {
1762 // create a new entry
1763 std::vector <double> newCqi;
1764 for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1765 {
1766 double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (j));
1767 newCqi.push_back (sinr);
1768 NS_LOG_INFO (this << " RNTI " << rnti << " new SRS-CQI for RB " << j << " value " << sinr);
1769
1770 }
1771 m_ueCqi.insert (std::pair <uint16_t, std::vector <double> > (rnti, newCqi));
1772 // generate correspondent timer
1773 m_ueCqiTimers.insert (std::pair <uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1774 }
1775 else
1776 {
1777 // update the values
1778 for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1779 {
1780 double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (j));
1781 (*itCqi).second.at (j) = sinr;
1782 NS_LOG_INFO (this << " RNTI " << rnti << " update SRS-CQI for RB " << j << " value " << sinr);
1783 }
1784 // update correspondent timer
1785 std::map <uint16_t, uint32_t>::iterator itTimers;
1786 itTimers = m_ueCqiTimers.find (rnti);
1787 (*itTimers).second = m_cqiTimersThreshold;
1788
1789 }
1790
1791
1792 }
1793 break;
1794 case UlCqi_s::PUCCH_1:
1795 case UlCqi_s::PUCCH_2:
1796 case UlCqi_s::PRACH:
1797 {
1798 NS_FATAL_ERROR ("FdMtFfMacScheduler supports only PUSCH and SRS UL-CQIs");
1799 }
1800 break;
1801 default:
1802 NS_FATAL_ERROR ("Unknown type of UL-CQI");
1803 }
1804 return;
1805}
1806
1807void
1809{
1810 // refresh DL CQI P01 Map
1811 std::map <uint16_t,uint32_t>::iterator itP10 = m_p10CqiTimers.begin ();
1812 while (itP10 != m_p10CqiTimers.end ())
1813 {
1814 NS_LOG_INFO (this << " P10-CQI for user " << (*itP10).first << " is " << (uint32_t)(*itP10).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1815 if ((*itP10).second == 0)
1816 {
1817 // delete correspondent entries
1818 std::map <uint16_t,uint8_t>::iterator itMap = m_p10CqiRxed.find ((*itP10).first);
1819 NS_ASSERT_MSG (itMap != m_p10CqiRxed.end (), " Does not find CQI report for user " << (*itP10).first);
1820 NS_LOG_INFO (this << " P10-CQI expired for user " << (*itP10).first);
1821 m_p10CqiRxed.erase (itMap);
1822 std::map <uint16_t,uint32_t>::iterator temp = itP10;
1823 itP10++;
1824 m_p10CqiTimers.erase (temp);
1825 }
1826 else
1827 {
1828 (*itP10).second--;
1829 itP10++;
1830 }
1831 }
1832
1833 // refresh DL CQI A30 Map
1834 std::map <uint16_t,uint32_t>::iterator itA30 = m_a30CqiTimers.begin ();
1835 while (itA30 != m_a30CqiTimers.end ())
1836 {
1837 NS_LOG_INFO (this << " A30-CQI for user " << (*itA30).first << " is " << (uint32_t)(*itA30).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1838 if ((*itA30).second == 0)
1839 {
1840 // delete correspondent entries
1841 std::map <uint16_t,SbMeasResult_s>::iterator itMap = m_a30CqiRxed.find ((*itA30).first);
1842 NS_ASSERT_MSG (itMap != m_a30CqiRxed.end (), " Does not find CQI report for user " << (*itA30).first);
1843 NS_LOG_INFO (this << " A30-CQI expired for user " << (*itA30).first);
1844 m_a30CqiRxed.erase (itMap);
1845 std::map <uint16_t,uint32_t>::iterator temp = itA30;
1846 itA30++;
1847 m_a30CqiTimers.erase (temp);
1848 }
1849 else
1850 {
1851 (*itA30).second--;
1852 itA30++;
1853 }
1854 }
1855
1856 return;
1857}
1858
1859
1860void
1862{
1863 // refresh UL CQI Map
1864 std::map <uint16_t,uint32_t>::iterator itUl = m_ueCqiTimers.begin ();
1865 while (itUl != m_ueCqiTimers.end ())
1866 {
1867 NS_LOG_INFO (this << " UL-CQI for user " << (*itUl).first << " is " << (uint32_t)(*itUl).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1868 if ((*itUl).second == 0)
1869 {
1870 // delete correspondent entries
1871 std::map <uint16_t, std::vector <double> >::iterator itMap = m_ueCqi.find ((*itUl).first);
1872 NS_ASSERT_MSG (itMap != m_ueCqi.end (), " Does not find CQI report for user " << (*itUl).first);
1873 NS_LOG_INFO (this << " UL-CQI exired for user " << (*itUl).first);
1874 (*itMap).second.clear ();
1875 m_ueCqi.erase (itMap);
1876 std::map <uint16_t,uint32_t>::iterator temp = itUl;
1877 itUl++;
1878 m_ueCqiTimers.erase (temp);
1879 }
1880 else
1881 {
1882 (*itUl).second--;
1883 itUl++;
1884 }
1885 }
1886
1887 return;
1888}
1889
1890void
1891FdMtFfMacScheduler::UpdateDlRlcBufferInfo (uint16_t rnti, uint8_t lcid, uint16_t size)
1892{
1893 std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
1894 LteFlowId_t flow (rnti, lcid);
1895 it = m_rlcBufferReq.find (flow);
1896 if (it != m_rlcBufferReq.end ())
1897 {
1898 NS_LOG_INFO (this << " UE " << rnti << " LC " << (uint16_t)lcid << " txqueue " << (*it).second.m_rlcTransmissionQueueSize << " retxqueue " << (*it).second.m_rlcRetransmissionQueueSize << " status " << (*it).second.m_rlcStatusPduSize << " decrease " << size);
1899 // Update queues: RLC tx order Status, ReTx, Tx
1900 // Update status queue
1901 if (((*it).second.m_rlcStatusPduSize > 0) && (size >= (*it).second.m_rlcStatusPduSize))
1902 {
1903 (*it).second.m_rlcStatusPduSize = 0;
1904 }
1905 else if (((*it).second.m_rlcRetransmissionQueueSize > 0) && (size >= (*it).second.m_rlcRetransmissionQueueSize))
1906 {
1907 (*it).second.m_rlcRetransmissionQueueSize = 0;
1908 }
1909 else if ((*it).second.m_rlcTransmissionQueueSize > 0)
1910 {
1911 uint32_t rlcOverhead;
1912 if (lcid == 1)
1913 {
1914 // for SRB1 (using RLC AM) it's better to
1915 // overestimate RLC overhead rather than
1916 // underestimate it and risk unneeded
1917 // segmentation which increases delay
1918 rlcOverhead = 4;
1919 }
1920 else
1921 {
1922 // minimum RLC overhead due to header
1923 rlcOverhead = 2;
1924 }
1925 // update transmission queue
1926 if ((*it).second.m_rlcTransmissionQueueSize <= size - rlcOverhead)
1927 {
1928 (*it).second.m_rlcTransmissionQueueSize = 0;
1929 }
1930 else
1931 {
1932 (*it).second.m_rlcTransmissionQueueSize -= size - rlcOverhead;
1933 }
1934 }
1935 }
1936 else
1937 {
1938 NS_LOG_ERROR (this << " Does not find DL RLC Buffer Report of UE " << rnti);
1939 }
1940}
1941
1942void
1943FdMtFfMacScheduler::UpdateUlRlcBufferInfo (uint16_t rnti, uint16_t size)
1944{
1945
1946 size = size - 2; // remove the minimum RLC overhead
1947 std::map <uint16_t,uint32_t>::iterator it = m_ceBsrRxed.find (rnti);
1948 if (it != m_ceBsrRxed.end ())
1949 {
1950 NS_LOG_INFO (this << " UE " << rnti << " size " << size << " BSR " << (*it).second);
1951 if ((*it).second >= size)
1952 {
1953 (*it).second -= size;
1954 }
1955 else
1956 {
1957 (*it).second = 0;
1958 }
1959 }
1960 else
1961 {
1962 NS_LOG_ERROR (this << " Does not find BSR report info of UE " << rnti);
1963 }
1964
1965}
1966
1967void
1969{
1970 NS_LOG_FUNCTION (this << " RNTI " << rnti << " txMode " << (uint16_t)txMode);
1972 params.m_rnti = rnti;
1973 params.m_transmissionMode = txMode;
1975}
1976
1977
1978}
AttributeValue implementation for Boolean.
Definition: boolean.h:37
static uint32_t BsrId2BufferSize(uint8_t val)
Convert BSR ID to buffer size.
Definition: lte-common.cc:184
Implements the SCHED SAP and CSCHED SAP for a Frequency Domain Maximize Throughput scheduler.
void DoSchedDlMacBufferReq(const struct FfMacSchedSapProvider::SchedDlMacBufferReqParameters &params)
Sched DL MAC buffer request function.
virtual LteFfrSapUser * GetLteFfrSapUser()
void DoCschedCellConfigReq(const struct FfMacCschedSapProvider::CschedCellConfigReqParameters &params)
Csched cell config request function.
std::map< uint16_t, uint32_t > m_ceBsrRxed
Map of UE's buffer status reports received.
uint8_t HarqProcessAvailability(uint16_t rnti)
Return the availability of free process for the RNTI specified.
virtual ~FdMtFfMacScheduler()
Destructor.
double EstimateUlSinr(uint16_t rnti, uint16_t rb)
Estimate UL SNR function.
virtual void DoDispose(void)
Destructor implementation.
std::map< uint16_t, DlHarqRlcPduListBuffer_t > m_dlHarqProcessesRlcPduListBuffer
DL HARQ process RLC PDU list buffer.
LteFfrSapProvider * m_ffrSapProvider
FFR SAP provider.
void UpdateDlRlcBufferInfo(uint16_t rnti, uint8_t lcid, uint16_t size)
Update DL RLC buffer info function.
std::vector< struct RachListElement_s > m_rachList
RACH list.
std::map< uint16_t, SbMeasResult_s > m_a30CqiRxed
Map of UE's DL CQI A30 received.
std::map< uint16_t, UlHarqProcessesStatus_t > m_ulHarqProcessesStatus
UL HARQ process status.
void DoSchedDlTriggerReq(const struct FfMacSchedSapProvider::SchedDlTriggerReqParameters &params)
Sched DL trigger request function.
LteFfrSapUser * m_ffrSapUser
FFR SAP user.
void RefreshHarqProcesses()
Refresh HARQ processes according to the timers.
void TransmissionModeConfigurationUpdate(uint16_t rnti, uint8_t txMode)
Transmission mode configuration update.
void DoSchedDlRlcBufferReq(const struct FfMacSchedSapProvider::SchedDlRlcBufferReqParameters &params)
Sched DL RLC buffer request function.
unsigned int LcActivePerFlow(uint16_t rnti)
LC Active per flow function.
std::map< uint16_t, uint8_t > m_dlHarqCurrentProcessId
DL HARQ current process ID.
int GetRbgSize(int dlbandwidth)
Get RBG size function.
void RefreshUlCqiMaps(void)
Refresh UL CGI maps function.
std::map< uint16_t, UlHarqProcessesDciBuffer_t > m_ulHarqProcessesDciBuffer
UL HARQ process DCI buffer.
void DoSchedUlNoiseInterferenceReq(const struct FfMacSchedSapProvider::SchedUlNoiseInterferenceReqParameters &params)
Sched UL noise interference request function.
std::map< uint16_t, std::vector< double > > m_ueCqi
Map of UEs' UL-CQI per RBG.
std::set< uint16_t > m_flowStatsUl
Set of UE statistics (per RNTI basis)
virtual FfMacCschedSapProvider * GetFfMacCschedSapProvider()
FfMacCschedSapProvider * m_cschedSapProvider
csched SAP provider
std::map< uint16_t, uint32_t > m_p10CqiTimers
Map of UE's timers on DL CQI P01 received.
void DoSchedUlCqiInfoReq(const struct FfMacSchedSapProvider::SchedUlCqiInfoReqParameters &params)
Sched UL CQI info request function.
std::map< uint16_t, uint8_t > m_p10CqiRxed
Map of UE's DL CQI P01 received.
void DoSchedUlSrInfoReq(const struct FfMacSchedSapProvider::SchedUlSrInfoReqParameters &params)
Sched UL SR info request function.
std::map< uint16_t, uint32_t > m_ueCqiTimers
Map of UEs' timers on UL-CQI per RBG.
virtual FfMacSchedSapProvider * GetFfMacSchedSapProvider()
void DoCschedLcConfigReq(const struct FfMacCschedSapProvider::CschedLcConfigReqParameters &params)
CSched LC config request function.
static TypeId GetTypeId(void)
Get the type ID.
virtual void SetFfMacSchedSapUser(FfMacSchedSapUser *s)
set the user part of the FfMacSchedSap that this Scheduler will interact with.
std::map< uint16_t, DlHarqProcessesDciBuffer_t > m_dlHarqProcessesDciBuffer
DL HARQ process DCI buffer.
FfMacSchedSapProvider * m_schedSapProvider
sched SAP provider
std::map< uint16_t, std::vector< uint16_t > > m_allocationMaps
Map of previous allocated UE per RBG (used to retrieve info from UL-CQI)
std::set< uint16_t > m_flowStatsDl
Set of UE statistics (per RNTI basis) in downlink.
std::map< uint16_t, DlHarqProcessesStatus_t > m_dlHarqProcessesStatus
DL HARQ process status.
FfMacCschedSapProvider::CschedCellConfigReqParameters m_cschedCellConfig
sched cell config
void DoSchedDlCqiInfoReq(const struct FfMacSchedSapProvider::SchedDlCqiInfoReqParameters &params)
Sched DL CQI info request function.
std::vector< uint16_t > m_rachAllocationMap
RACH allocation map.
std::map< uint16_t, uint8_t > m_uesTxMode
txMode of the UEs
void DoSchedUlMacCtrlInfoReq(const struct FfMacSchedSapProvider::SchedUlMacCtrlInfoReqParameters &params)
Sched UL MAC control info request function.
uint8_t m_ulGrantMcs
MCS for UL grant (default 0)
void RefreshDlCqiMaps(void)
Refresh DL CGI maps function.
bool m_harqOn
m_harqOn when false inhibit tte HARQ mechanisms (by default active)
std::map< uint16_t, uint8_t > m_ulHarqCurrentProcessId
UL HARQ current process ID.
friend class MemberSchedSapProvider< FdMtFfMacScheduler >
allow MemberSchedSapProvider<FdMtFfMacScheduler> clss friend access
std::vector< DlInfoListElement_s > m_dlInfoListBuffered
HARQ retx buffered.
FfMacSchedSapUser * m_schedSapUser
sched SAP user
FfMacCschedSapUser * m_cschedSapUser
csched SAP user
void DoSchedDlPagingBufferReq(const struct FfMacSchedSapProvider::SchedDlPagingBufferReqParameters &params)
Sched DL paging buffer request function.
void DoSchedUlTriggerReq(const struct FfMacSchedSapProvider::SchedUlTriggerReqParameters &params)
Sched UL trigger request function.
void DoCschedUeReleaseReq(const struct FfMacCschedSapProvider::CschedUeReleaseReqParameters &params)
CSched UE release request function.
virtual void SetFfMacCschedSapUser(FfMacCschedSapUser *s)
set the user part of the FfMacCschedSap that this Scheduler will interact with.
void DoCschedUeConfigReq(const struct FfMacCschedSapProvider::CschedUeConfigReqParameters &params)
CSched UE config request function.
std::map< uint16_t, DlHarqProcessesTimer_t > m_dlHarqProcessesTimer
DL HARDQ process timer.
uint16_t m_nextRntiUl
RNTI of the next user to be served next scheduling in UL.
std::map< LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters > m_rlcBufferReq
Vectors of UE's LC info.
std::map< uint16_t, uint32_t > m_a30CqiTimers
Map of UE's timers on DL CQI A30 received.
void UpdateUlRlcBufferInfo(uint16_t rnti, uint16_t size)
Update UL RLC b uffer info function.
void DoSchedDlRachInfoReq(const struct FfMacSchedSapProvider::SchedDlRachInfoReqParameters &params)
Sched DL RACH info request function.
void DoCschedLcReleaseReq(const struct FfMacCschedSapProvider::CschedLcReleaseReqParameters &params)
CSched LC release request function.
friend class MemberCschedSapProvider< FdMtFfMacScheduler >
allow MemberCschedSapProvider<FdMtFfMacScheduler> class friend access
virtual void SetLteFfrSapProvider(LteFfrSapProvider *s)
Set the Provider part of the LteFfrSap that this Scheduler will interact with.
uint8_t UpdateHarqProcessId(uint16_t rnti)
Update and return a new process Id for the RNTI specified.
Provides the CSCHED SAP.
FfMacCschedSapUser class.
virtual void CschedUeConfigUpdateInd(const struct CschedUeConfigUpdateIndParameters &params)=0
CSCHED_UE_UPDATE_IND.
virtual void CschedUeConfigCnf(const struct CschedUeConfigCnfParameters &params)=0
CSCHED_UE_CONFIG_CNF.
Provides the SCHED SAP.
FfMacSchedSapUser class.
virtual void SchedUlConfigInd(const struct SchedUlConfigIndParameters &params)=0
SCHED_UL_CONFIG_IND.
virtual void SchedDlConfigInd(const struct SchedDlConfigIndParameters &params)=0
SCHED_DL_CONFIG_IND.
This abstract base class identifies the interface by means of which the helper object can plug on the...
UlCqiFilter_t m_ulCqiFilter
UL CQI filter.
static double fpS11dot3toDouble(uint16_t val)
Convert from fixed point S11.3 notation to double.
Definition: lte-common.cc:155
Service Access Point (SAP) offered by the Frequency Reuse algorithm instance to the MAC Scheduler ins...
Definition: lte-ffr-sap.h:40
Service Access Point (SAP) offered by the eNodeB RRC instance to the Frequency Reuse algorithm instan...
Definition: lte-ffr-sap.h:139
Smart pointer class similar to boost::intrusive_ptr.
Definition: ptr.h:74
static uint8_t TxMode2LayerNum(uint8_t txMode)
Transmit mode 2 layer number.
Definition: lte-common.cc:212
a unique identifier for an interface.
Definition: type-id.h:59
TypeId SetParent(TypeId tid)
Set the parent TypeId.
Definition: type-id.cc:922
Hold an unsigned integer type.
Definition: uinteger.h:44
#define NO_SINR
#define HARQ_PROC_NUM
#define HARQ_DL_TIMEOUT
#define NS_ASSERT(condition)
At runtime, in debugging builds, if this condition is not true, the program prints the source file,...
Definition: assert.h:67
#define NS_ASSERT_MSG(condition, message)
At runtime, in debugging builds, if this condition is not true, the program prints the message to out...
Definition: assert.h:88
Ptr< const AttributeChecker > MakeBooleanChecker(void)
Definition: boolean.cc:121
Ptr< const AttributeAccessor > MakeBooleanAccessor(T1 a1)
Definition: boolean.h:85
Ptr< const AttributeAccessor > MakeUintegerAccessor(T1 a1)
Definition: uinteger.h:45
#define NS_FATAL_ERROR(msg)
Report a fatal error with a message and terminate.
Definition: fatal-error.h:165
#define NS_ABORT_MSG_IF(cond, msg)
Abnormal program termination if a condition is true, with a message.
Definition: abort.h:108
#define NS_LOG_ERROR(msg)
Use NS_LOG to output a message of level LOG_ERROR.
Definition: log.h:257
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:205
#define NS_LOG_DEBUG(msg)
Use NS_LOG to output a message of level LOG_DEBUG.
Definition: log.h:273
#define NS_LOG_LOGIC(msg)
Use NS_LOG to output a message of level LOG_LOGIC.
Definition: log.h:289
#define NS_LOG_FUNCTION(parameters)
If log level LOG_FUNCTION is enabled, this macro will output all input parameters separated by ",...
#define NS_LOG_INFO(msg)
Use NS_LOG to output a message of level LOG_INFO.
Definition: log.h:281
#define NS_OBJECT_ENSURE_REGISTERED(type)
Register an Object subclass with the TypeId system.
Definition: object-base.h:45
#define HARQ_PERIOD
Definition: lte-common.h:30
#define SRS_CQI_RNTI_VSP
Every class exported by the ns3 library is enclosed in the ns3 namespace.
std::vector< UlDciListElement_s > UlHarqProcessesDciBuffer_t
UL HARQ process DCI buffer vector.
std::vector< uint8_t > DlHarqProcessesTimer_t
DL HARQ process timer vector typedef.
std::vector< uint8_t > DlHarqProcessesStatus_t
DL HARQ process status vector typedef.
std::vector< RlcPduList_t > DlHarqRlcPduListBuffer_t
vector of the 8 HARQ processes per UE
@ SUCCESS
Definition: ff-mac-common.h:62
static const int FdMtType0AllocationRbg[4]
FdMtType0AllocationRbg size array.
std::vector< DlDciListElement_s > DlHarqProcessesDciBuffer_t
DL HARQ process DCI buffer vector typedef.
std::vector< uint8_t > UlHarqProcessesStatus_t
UL HARQ process status vector.
See section 4.3.8 builDataListElement.
struct DlDciListElement_s m_dci
DCI.
std::vector< std::vector< struct RlcPduListElement_s > > m_rlcPduList
RLC PDU list.
See section 4.3.10 buildRARListElement.
See section 4.3.1 dlDciListElement.
Definition: ff-mac-common.h:94
std::vector< uint8_t > m_ndi
New data indicator.
uint8_t m_harqProcess
HARQ process.
uint32_t m_rbBitmap
RB bitmap.
Definition: ff-mac-common.h:96
std::vector< uint8_t > m_mcs
MCS.
uint8_t m_resAlloc
The type of resource allocation.
Definition: ff-mac-common.h:98
std::vector< uint16_t > m_tbsSize
The TBs size.
Definition: ff-mac-common.h:99
std::vector< uint8_t > m_rv
Redundancy version.
uint8_t m_tpc
Tx power control command.
Parameters of the CSCHED_LC_CONFIG_REQ primitive.
std::vector< struct LogicalChannelConfigListElement_s > m_logicalChannelConfigList
logicalChannelConfigList
Parameters of the CSCHED_LC_RELEASE_REQ primitive.
std::vector< uint8_t > m_logicalChannelIdentity
logical channel identity
Parameters of the CSCHED_UE_CONFIG_REQ primitive.
Parameters of the CSCHED_UE_RELEASE_REQ primitive.
Parameters of the CSCHED_UE_CONFIG_CNF primitive.
Parameters of the CSCHED_UE_CONFIG_UPDATE_IND primitive.
Parameters of the SCHED_DL_CQI_INFO_REQ primitive.
std::vector< struct CqiListElement_s > m_cqiList
CQI list.
Parameters of the SCHED_DL_MAC_BUFFER_REQ primitive.
Parameters of the SCHED_DL_PAGING_BUFFER_REQ primitive.
Parameters of the SCHED_DL_RACH_INFO_REQ primitive.
std::vector< struct RachListElement_s > m_rachList
RACH list.
Parameters of the SCHED_DL_TRIGGER_REQ primitive.
std::vector< struct DlInfoListElement_s > m_dlInfoList
DL info list.
Parameters of the SCHED_UL_CQI_INFO_REQ primitive.
std::vector< struct VendorSpecificListElement_s > m_vendorSpecificList
vendor specific list
Parameters of the SCHED_UL_MAC_CTRL_INFO_REQ primitive.
std::vector< struct MacCeListElement_s > m_macCeList
MAC CE list.
Parameters of the SCHED_UL_NOISE_INTERFERENCE_REQ primitive.
Parameters of the SCHED_UL_SR_INFO_REQ primitive.
Parameters of the SCHED_UL_TRIGGER_REQ primitive.
std::vector< struct UlInfoListElement_s > m_ulInfoList
UL info list.
uint8_t m_nrOfPdcchOfdmSymbols
number of PDCCH OFDM symbols
std::vector< struct BuildDataListElement_s > m_buildDataList
build data list
std::vector< struct BuildRarListElement_s > m_buildRarList
build rar list
Parameters of the SCHED_UL_CONFIG_IND primitive.
std::vector< struct UlDciListElement_s > m_dciList
DCI list.
LteFlowId structure.
Definition: lte-common.h:37
See section 4.3.9 rlcPDU_ListElement.
uint8_t m_logicalChannelIdentity
logical channel identity
std::vector< uint16_t > m_sinr
SINR.
See section 4.3.2 ulDciListElement.
int8_t m_pdcchPowerOffset
CCH power offset.
int8_t m_tpc
Tx power control command.
uint8_t m_dai
DL assignment index.
uint8_t m_cceIndex
Control Channel Element index.
uint8_t m_ulIndex
UL index.
uint8_t m_ueTxAntennaSelection
UE antenna selection.
bool m_cqiRequest
CQI request.
uint8_t m_n2Dmrs
n2 DMRS
uint8_t m_freqHopping
freq hopping
uint8_t m_aggrLevel
The aggregation level.
bool m_ulDelay
UL delay?
int8_t m_tpc
Tx power control command.
bool m_cqiRequest
CQI request?
bool m_hopping
hopping?
uint16_t m_tbSize
size
uint8_t m_rbLen
length
uint8_t m_mcs
MCS.
uint8_t m_rbStart
start
uint16_t m_rnti
RNTI.