A Discrete-Event Network Simulator
API
fdtbfq-ff-mac-scheduler.cc
Go to the documentation of this file.
1/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
2/*
3 * Copyright (c) 2011 Centre Tecnologic de Telecomunicacions de Catalunya (CTTC)
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation;
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Author: Marco Miozzo <marco.miozzo@cttc.es>
19 * Modification: Dizhi Zhou <dizhi.zhou@gmail.com> // modify codes related to downlink scheduler
20 */
21
22#include <ns3/log.h>
23#include <ns3/pointer.h>
24#include <ns3/math.h>
25
26#include <ns3/simulator.h>
27#include <ns3/lte-amc.h>
28#include <ns3/fdtbfq-ff-mac-scheduler.h>
29#include <ns3/lte-vendor-specific-parameters.h>
30#include <ns3/boolean.h>
31#include <ns3/integer.h>
32#include <set>
33#include <cfloat>
34
35namespace ns3 {
36
37NS_LOG_COMPONENT_DEFINE ("FdTbfqFfMacScheduler");
38
40static const int FdTbfqType0AllocationRbg[4] = {
41 10, // RGB size 1
42 26, // RGB size 2
43 63, // RGB size 3
44 110 // RGB size 4
45}; // see table 7.1.6.1-1 of 36.213
46
47
48NS_OBJECT_ENSURE_REGISTERED (FdTbfqFfMacScheduler);
49
50
51
53 : m_cschedSapUser (0),
54 m_schedSapUser (0),
55 m_nextRntiUl (0),
56 bankSize (0)
57{
58 m_amc = CreateObject <LteAmc> ();
63}
64
66{
67 NS_LOG_FUNCTION (this);
68}
69
70void
72{
73 NS_LOG_FUNCTION (this);
77 m_dlInfoListBuffered.clear ();
82 delete m_schedSapProvider;
83 delete m_ffrSapUser;
84}
85
88{
89 static TypeId tid = TypeId ("ns3::FdTbfqFfMacScheduler")
91 .SetGroupName ("Lte")
92 .AddConstructor<FdTbfqFfMacScheduler> ()
93 .AddAttribute ("CqiTimerThreshold",
94 "The number of TTIs a CQI is valid (default 1000 - 1 sec.)",
95 UintegerValue (1000),
97 MakeUintegerChecker<uint32_t> ())
98 .AddAttribute ("DebtLimit",
99 "Flow debt limit (default -625000 bytes)",
100 IntegerValue (-625000),
102 MakeIntegerChecker<int> ())
103 .AddAttribute ("CreditLimit",
104 "Flow credit limit (default 625000 bytes)",
105 UintegerValue (625000),
107 MakeUintegerChecker<uint32_t> ())
108 .AddAttribute ("TokenPoolSize",
109 "The maximum value of flow token pool (default 1 bytes)",
110 UintegerValue (1),
112 MakeUintegerChecker<uint32_t> ())
113 .AddAttribute ("CreditableThreshold",
114 "Threshold of flow credit (default 0 bytes)",
115 UintegerValue (0),
117 MakeUintegerChecker<uint32_t> ())
118
119 .AddAttribute ("HarqEnabled",
120 "Activate/Deactivate the HARQ [by default is active].",
121 BooleanValue (true),
124 .AddAttribute ("UlGrantMcs",
125 "The MCS of the UL grant, must be [0..15] (default 0)",
126 UintegerValue (0),
128 MakeUintegerChecker<uint8_t> ())
129 ;
130 return tid;
131}
132
133
134
135void
137{
138 m_cschedSapUser = s;
139}
140
141void
143{
144 m_schedSapUser = s;
145}
146
149{
150 return m_cschedSapProvider;
151}
152
155{
156 return m_schedSapProvider;
157}
158
159void
161{
163}
164
167{
168 return m_ffrSapUser;
169}
170
171void
173{
174 NS_LOG_FUNCTION (this);
175 // Read the subset of parameters used
176 m_cschedCellConfig = params;
179 cnf.m_result = SUCCESS;
181 return;
182}
183
184void
186{
187 NS_LOG_FUNCTION (this << " RNTI " << params.m_rnti << " txMode " << (uint16_t)params.m_transmissionMode);
188 std::map <uint16_t,uint8_t>::iterator it = m_uesTxMode.find (params.m_rnti);
189 if (it == m_uesTxMode.end ())
190 {
191 m_uesTxMode.insert (std::pair <uint16_t, double> (params.m_rnti, params.m_transmissionMode));
192 // generate HARQ buffers
193 m_dlHarqCurrentProcessId.insert (std::pair <uint16_t,uint8_t > (params.m_rnti, 0));
194 DlHarqProcessesStatus_t dlHarqPrcStatus;
195 dlHarqPrcStatus.resize (8,0);
196 m_dlHarqProcessesStatus.insert (std::pair <uint16_t, DlHarqProcessesStatus_t> (params.m_rnti, dlHarqPrcStatus));
197 DlHarqProcessesTimer_t dlHarqProcessesTimer;
198 dlHarqProcessesTimer.resize (8,0);
199 m_dlHarqProcessesTimer.insert (std::pair <uint16_t, DlHarqProcessesTimer_t> (params.m_rnti, dlHarqProcessesTimer));
201 dlHarqdci.resize (8);
202 m_dlHarqProcessesDciBuffer.insert (std::pair <uint16_t, DlHarqProcessesDciBuffer_t> (params.m_rnti, dlHarqdci));
203 DlHarqRlcPduListBuffer_t dlHarqRlcPdu;
204 dlHarqRlcPdu.resize (2);
205 dlHarqRlcPdu.at (0).resize (8);
206 dlHarqRlcPdu.at (1).resize (8);
207 m_dlHarqProcessesRlcPduListBuffer.insert (std::pair <uint16_t, DlHarqRlcPduListBuffer_t> (params.m_rnti, dlHarqRlcPdu));
208 m_ulHarqCurrentProcessId.insert (std::pair <uint16_t,uint8_t > (params.m_rnti, 0));
209 UlHarqProcessesStatus_t ulHarqPrcStatus;
210 ulHarqPrcStatus.resize (8,0);
211 m_ulHarqProcessesStatus.insert (std::pair <uint16_t, UlHarqProcessesStatus_t> (params.m_rnti, ulHarqPrcStatus));
213 ulHarqdci.resize (8);
214 m_ulHarqProcessesDciBuffer.insert (std::pair <uint16_t, UlHarqProcessesDciBuffer_t> (params.m_rnti, ulHarqdci));
215 }
216 else
217 {
218 (*it).second = params.m_transmissionMode;
219 }
220 return;
221}
222
223void
225{
226 NS_LOG_FUNCTION (this << " New LC, rnti: " << params.m_rnti);
227
228 std::map <uint16_t, fdtbfqsFlowPerf_t>::iterator it;
229 for (uint16_t i = 0; i < params.m_logicalChannelConfigList.size (); i++)
230 {
231 it = m_flowStatsDl.find (params.m_rnti);
232
233 if (it == m_flowStatsDl.end ())
234 {
235 uint64_t mbrDlInBytes = params.m_logicalChannelConfigList.at (i).m_eRabMaximulBitrateDl / 8; // byte/s
236 uint64_t mbrUlInBytes = params.m_logicalChannelConfigList.at (i).m_eRabMaximulBitrateUl / 8; // byte/s
237 NS_LOG_DEBUG ("mbrDlInBytes: " << mbrDlInBytes << " mbrUlInBytes: " << mbrUlInBytes);
238
239 fdtbfqsFlowPerf_t flowStatsDl;
240 flowStatsDl.flowStart = Simulator::Now ();
241 flowStatsDl.packetArrivalRate = 0;
242 flowStatsDl.tokenGenerationRate = mbrDlInBytes;
243 flowStatsDl.tokenPoolSize = 0;
244 flowStatsDl.maxTokenPoolSize = m_tokenPoolSize;
245 flowStatsDl.counter = 0;
246 flowStatsDl.burstCredit = m_creditLimit; // bytes
247 flowStatsDl.debtLimit = m_debtLimit; // bytes
249 m_flowStatsDl.insert (std::pair<uint16_t, fdtbfqsFlowPerf_t> (params.m_rnti, flowStatsDl));
250 fdtbfqsFlowPerf_t flowStatsUl;
251 flowStatsUl.flowStart = Simulator::Now ();
252 flowStatsUl.packetArrivalRate = 0;
253 flowStatsUl.tokenGenerationRate = mbrUlInBytes;
254 flowStatsUl.tokenPoolSize = 0;
255 flowStatsUl.maxTokenPoolSize = m_tokenPoolSize;
256 flowStatsUl.counter = 0;
257 flowStatsUl.burstCredit = m_creditLimit; // bytes
258 flowStatsUl.debtLimit = m_debtLimit; // bytes
260 m_flowStatsUl.insert (std::pair<uint16_t, fdtbfqsFlowPerf_t> (params.m_rnti, flowStatsUl));
261 }
262 else
263 {
264 // update MBR and GBR from UeManager::SetupDataRadioBearer ()
265 uint64_t mbrDlInBytes = params.m_logicalChannelConfigList.at (i).m_eRabMaximulBitrateDl / 8; // byte/s
266 uint64_t mbrUlInBytes = params.m_logicalChannelConfigList.at (i).m_eRabMaximulBitrateUl / 8; // byte/s
267 NS_LOG_DEBUG ("mbrDlInBytes: " << mbrDlInBytes << " mbrUlInBytes: " << mbrUlInBytes);
268 m_flowStatsDl[(*it).first].tokenGenerationRate = mbrDlInBytes;
269 m_flowStatsUl[(*it).first].tokenGenerationRate = mbrUlInBytes;
270
271 }
272 }
273
274 return;
275}
276
277void
279{
280 NS_LOG_FUNCTION (this);
281 for (uint16_t i = 0; i < params.m_logicalChannelIdentity.size (); i++)
282 {
283 std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it = m_rlcBufferReq.begin ();
284 std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator temp;
285 while (it != m_rlcBufferReq.end ())
286 {
287 if (((*it).first.m_rnti == params.m_rnti) && ((*it).first.m_lcId == params.m_logicalChannelIdentity.at (i)))
288 {
289 temp = it;
290 it++;
291 m_rlcBufferReq.erase (temp);
292 }
293 else
294 {
295 it++;
296 }
297 }
298 }
299 return;
300}
301
302void
304{
305 NS_LOG_FUNCTION (this);
306
307 m_uesTxMode.erase (params.m_rnti);
308 m_dlHarqCurrentProcessId.erase (params.m_rnti);
309 m_dlHarqProcessesStatus.erase (params.m_rnti);
310 m_dlHarqProcessesTimer.erase (params.m_rnti);
311 m_dlHarqProcessesDciBuffer.erase (params.m_rnti);
313 m_ulHarqCurrentProcessId.erase (params.m_rnti);
314 m_ulHarqProcessesStatus.erase (params.m_rnti);
315 m_ulHarqProcessesDciBuffer.erase (params.m_rnti);
316 m_flowStatsDl.erase (params.m_rnti);
317 m_flowStatsUl.erase (params.m_rnti);
318 m_ceBsrRxed.erase (params.m_rnti);
319 std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it = m_rlcBufferReq.begin ();
320 std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator temp;
321 while (it != m_rlcBufferReq.end ())
322 {
323 if ((*it).first.m_rnti == params.m_rnti)
324 {
325 temp = it;
326 it++;
327 m_rlcBufferReq.erase (temp);
328 }
329 else
330 {
331 it++;
332 }
333 }
334 if (m_nextRntiUl == params.m_rnti)
335 {
336 m_nextRntiUl = 0;
337 }
338
339 return;
340}
341
342
343void
345{
346 NS_LOG_FUNCTION (this << params.m_rnti << (uint32_t) params.m_logicalChannelIdentity);
347 // API generated by RLC for updating RLC parameters on a LC (tx and retx queues)
348
349 std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
350
351 LteFlowId_t flow (params.m_rnti, params.m_logicalChannelIdentity);
352
353 it = m_rlcBufferReq.find (flow);
354
355 if (it == m_rlcBufferReq.end ())
356 {
357 m_rlcBufferReq.insert (std::pair <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters> (flow, params));
358 }
359 else
360 {
361 (*it).second = params;
362 }
363
364 return;
365}
366
367void
369{
370 NS_LOG_FUNCTION (this);
371 NS_FATAL_ERROR ("method not implemented");
372 return;
373}
374
375void
377{
378 NS_LOG_FUNCTION (this);
379 NS_FATAL_ERROR ("method not implemented");
380 return;
381}
382
383int
385{
386 for (int i = 0; i < 4; i++)
387 {
388 if (dlbandwidth < FdTbfqType0AllocationRbg[i])
389 {
390 return (i + 1);
391 }
392 }
393
394 return (-1);
395}
396
397
398unsigned int
400{
401 std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
402 unsigned int lcActive = 0;
403 for (it = m_rlcBufferReq.begin (); it != m_rlcBufferReq.end (); it++)
404 {
405 if (((*it).first.m_rnti == rnti) && (((*it).second.m_rlcTransmissionQueueSize > 0)
406 || ((*it).second.m_rlcRetransmissionQueueSize > 0)
407 || ((*it).second.m_rlcStatusPduSize > 0) ))
408 {
409 lcActive++;
410 }
411 if ((*it).first.m_rnti > rnti)
412 {
413 break;
414 }
415 }
416 return (lcActive);
417
418}
419
420
421uint8_t
423{
424 NS_LOG_FUNCTION (this << rnti);
425
426 std::map <uint16_t, uint8_t>::iterator it = m_dlHarqCurrentProcessId.find (rnti);
427 if (it == m_dlHarqCurrentProcessId.end ())
428 {
429 NS_FATAL_ERROR ("No Process Id found for this RNTI " << rnti);
430 }
431 std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find (rnti);
432 if (itStat == m_dlHarqProcessesStatus.end ())
433 {
434 NS_FATAL_ERROR ("No Process Id Statusfound for this RNTI " << rnti);
435 }
436 uint8_t i = (*it).second;
437 do
438 {
439 i = (i + 1) % HARQ_PROC_NUM;
440 }
441 while ( ((*itStat).second.at (i) != 0)&&(i != (*it).second));
442 if ((*itStat).second.at (i) == 0)
443 {
444 return (true);
445 }
446 else
447 {
448 return (false); // return a not valid harq proc id
449 }
450}
451
452
453
454uint8_t
456{
457 NS_LOG_FUNCTION (this << rnti);
458
459 if (m_harqOn == false)
460 {
461 return (0);
462 }
463
464
465 std::map <uint16_t, uint8_t>::iterator it = m_dlHarqCurrentProcessId.find (rnti);
466 if (it == m_dlHarqCurrentProcessId.end ())
467 {
468 NS_FATAL_ERROR ("No Process Id found for this RNTI " << rnti);
469 }
470 std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find (rnti);
471 if (itStat == m_dlHarqProcessesStatus.end ())
472 {
473 NS_FATAL_ERROR ("No Process Id Statusfound for this RNTI " << rnti);
474 }
475 uint8_t i = (*it).second;
476 do
477 {
478 i = (i + 1) % HARQ_PROC_NUM;
479 }
480 while ( ((*itStat).second.at (i) != 0)&&(i != (*it).second));
481 if ((*itStat).second.at (i) == 0)
482 {
483 (*it).second = i;
484 (*itStat).second.at (i) = 1;
485 }
486 else
487 {
488 NS_FATAL_ERROR ("No HARQ process available for RNTI " << rnti << " check before update with HarqProcessAvailability");
489 }
490
491 return ((*it).second);
492}
493
494
495void
497{
498 NS_LOG_FUNCTION (this);
499
500 std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itTimers;
501 for (itTimers = m_dlHarqProcessesTimer.begin (); itTimers != m_dlHarqProcessesTimer.end (); itTimers++)
502 {
503 for (uint16_t i = 0; i < HARQ_PROC_NUM; i++)
504 {
505 if ((*itTimers).second.at (i) == HARQ_DL_TIMEOUT)
506 {
507 // reset HARQ process
508
509 NS_LOG_DEBUG (this << " Reset HARQ proc " << i << " for RNTI " << (*itTimers).first);
510 std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find ((*itTimers).first);
511 if (itStat == m_dlHarqProcessesStatus.end ())
512 {
513 NS_FATAL_ERROR ("No Process Id Status found for this RNTI " << (*itTimers).first);
514 }
515 (*itStat).second.at (i) = 0;
516 (*itTimers).second.at (i) = 0;
517 }
518 else
519 {
520 (*itTimers).second.at (i)++;
521 }
522 }
523 }
524
525}
526
527
528void
530{
531 NS_LOG_FUNCTION (this << " Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf));
532 // API generated by RLC for triggering the scheduling of a DL subframe
533
534
535 // evaluate the relative channel quality indicator for each UE per each RBG
536 // (since we are using allocation type 0 the small unit of allocation is RBG)
537 // Resource allocation type 0 (see sec 7.1.6.1 of 36.213)
538
540
542 int rbgNum = m_cschedCellConfig.m_dlBandwidth / rbgSize;
543 std::map <uint16_t, std::vector <uint16_t> > allocationMap; // RBs map per RNTI
544 std::vector <bool> rbgMap; // global RBGs map
545 uint16_t rbgAllocatedNum = 0;
546 std::set <uint16_t> rntiAllocated;
547 rbgMap.resize (m_cschedCellConfig.m_dlBandwidth / rbgSize, false);
548
550 for (std::vector<bool>::iterator it = rbgMap.begin (); it != rbgMap.end (); it++)
551 {
552 if ((*it) == true )
553 {
554 rbgAllocatedNum++;
555 }
556 }
557
559
560 // update UL HARQ proc id
561 std::map <uint16_t, uint8_t>::iterator itProcId;
562 for (itProcId = m_ulHarqCurrentProcessId.begin (); itProcId != m_ulHarqCurrentProcessId.end (); itProcId++)
563 {
564 (*itProcId).second = ((*itProcId).second + 1) % HARQ_PROC_NUM;
565 }
566
567 // RACH Allocation
568 uint16_t rbAllocatedNum = 0;
569 std::vector <bool> ulRbMap;
570 ulRbMap.resize (m_cschedCellConfig.m_ulBandwidth, false);
572 uint8_t maxContinuousUlBandwidth = 0;
573 uint8_t tmpMinBandwidth = 0;
574 uint16_t ffrRbStartOffset = 0;
575 uint16_t tmpFfrRbStartOffset = 0;
576 uint16_t index = 0;
577
578 for (std::vector<bool>::iterator it = ulRbMap.begin (); it != ulRbMap.end (); it++)
579 {
580 if ((*it) == true )
581 {
582 rbAllocatedNum++;
583 if (tmpMinBandwidth > maxContinuousUlBandwidth)
584 {
585 maxContinuousUlBandwidth = tmpMinBandwidth;
586 ffrRbStartOffset = tmpFfrRbStartOffset;
587 }
588 tmpMinBandwidth = 0;
589 }
590 else
591 {
592 if (tmpMinBandwidth == 0)
593 {
594 tmpFfrRbStartOffset = index;
595 }
596 tmpMinBandwidth++;
597 }
598 index++;
599 }
600
601 if (tmpMinBandwidth > maxContinuousUlBandwidth)
602 {
603 maxContinuousUlBandwidth = tmpMinBandwidth;
604 ffrRbStartOffset = tmpFfrRbStartOffset;
605 }
606
608 uint16_t rbStart = 0;
609 rbStart = ffrRbStartOffset;
610 std::vector <struct RachListElement_s>::iterator itRach;
611 for (itRach = m_rachList.begin (); itRach != m_rachList.end (); itRach++)
612 {
613 NS_ASSERT_MSG (m_amc->GetUlTbSizeFromMcs (m_ulGrantMcs, m_cschedCellConfig.m_ulBandwidth) > (*itRach).m_estimatedSize, " Default UL Grant MCS does not allow to send RACH messages");
615 newRar.m_rnti = (*itRach).m_rnti;
616 // DL-RACH Allocation
617 // Ideal: no needs of configuring m_dci
618 // UL-RACH Allocation
619 newRar.m_grant.m_rnti = newRar.m_rnti;
620 newRar.m_grant.m_mcs = m_ulGrantMcs;
621 uint16_t rbLen = 1;
622 uint16_t tbSizeBits = 0;
623 // find lowest TB size that fits UL grant estimated size
624 while ((tbSizeBits < (*itRach).m_estimatedSize) && (rbStart + rbLen < (ffrRbStartOffset + maxContinuousUlBandwidth)))
625 {
626 rbLen++;
627 tbSizeBits = m_amc->GetUlTbSizeFromMcs (m_ulGrantMcs, rbLen);
628 }
629 if (tbSizeBits < (*itRach).m_estimatedSize)
630 {
631 // no more allocation space: finish allocation
632 break;
633 }
634 newRar.m_grant.m_rbStart = rbStart;
635 newRar.m_grant.m_rbLen = rbLen;
636 newRar.m_grant.m_tbSize = tbSizeBits / 8;
637 newRar.m_grant.m_hopping = false;
638 newRar.m_grant.m_tpc = 0;
639 newRar.m_grant.m_cqiRequest = false;
640 newRar.m_grant.m_ulDelay = false;
641 NS_LOG_INFO (this << " UL grant allocated to RNTI " << (*itRach).m_rnti << " rbStart " << rbStart << " rbLen " << rbLen << " MCS " << (uint16_t) m_ulGrantMcs << " tbSize " << newRar.m_grant.m_tbSize);
642 for (uint16_t i = rbStart; i < rbStart + rbLen; i++)
643 {
644 m_rachAllocationMap.at (i) = (*itRach).m_rnti;
645 }
646
647 if (m_harqOn == true)
648 {
649 // generate UL-DCI for HARQ retransmissions
650 UlDciListElement_s uldci;
651 uldci.m_rnti = newRar.m_rnti;
652 uldci.m_rbLen = rbLen;
653 uldci.m_rbStart = rbStart;
654 uldci.m_mcs = m_ulGrantMcs;
655 uldci.m_tbSize = tbSizeBits / 8;
656 uldci.m_ndi = 1;
657 uldci.m_cceIndex = 0;
658 uldci.m_aggrLevel = 1;
659 uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
660 uldci.m_hopping = false;
661 uldci.m_n2Dmrs = 0;
662 uldci.m_tpc = 0; // no power control
663 uldci.m_cqiRequest = false; // only period CQI at this stage
664 uldci.m_ulIndex = 0; // TDD parameter
665 uldci.m_dai = 1; // TDD parameter
666 uldci.m_freqHopping = 0;
667 uldci.m_pdcchPowerOffset = 0; // not used
668
669 uint8_t harqId = 0;
670 std::map <uint16_t, uint8_t>::iterator itProcId;
671 itProcId = m_ulHarqCurrentProcessId.find (uldci.m_rnti);
672 if (itProcId == m_ulHarqCurrentProcessId.end ())
673 {
674 NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << uldci.m_rnti);
675 }
676 harqId = (*itProcId).second;
677 std::map <uint16_t, UlHarqProcessesDciBuffer_t>::iterator itDci = m_ulHarqProcessesDciBuffer.find (uldci.m_rnti);
678 if (itDci == m_ulHarqProcessesDciBuffer.end ())
679 {
680 NS_FATAL_ERROR ("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI " << uldci.m_rnti);
681 }
682 (*itDci).second.at (harqId) = uldci;
683 }
684
685 rbStart = rbStart + rbLen;
686 ret.m_buildRarList.push_back (newRar);
687 }
688 m_rachList.clear ();
689
690
691 // Process DL HARQ feedback
693 // retrieve past HARQ retx buffered
694 if (m_dlInfoListBuffered.size () > 0)
695 {
696 if (params.m_dlInfoList.size () > 0)
697 {
698 NS_LOG_INFO (this << " Received DL-HARQ feedback");
699 m_dlInfoListBuffered.insert (m_dlInfoListBuffered.end (), params.m_dlInfoList.begin (), params.m_dlInfoList.end ());
700 }
701 }
702 else
703 {
704 if (params.m_dlInfoList.size () > 0)
705 {
707 }
708 }
709 if (m_harqOn == false)
710 {
711 // Ignore HARQ feedback
712 m_dlInfoListBuffered.clear ();
713 }
714 std::vector <struct DlInfoListElement_s> dlInfoListUntxed;
715 for (uint16_t i = 0; i < m_dlInfoListBuffered.size (); i++)
716 {
717 std::set <uint16_t>::iterator itRnti = rntiAllocated.find (m_dlInfoListBuffered.at (i).m_rnti);
718 if (itRnti != rntiAllocated.end ())
719 {
720 // RNTI already allocated for retx
721 continue;
722 }
723 uint8_t nLayers = m_dlInfoListBuffered.at (i).m_harqStatus.size ();
724 std::vector <bool> retx;
725 NS_LOG_INFO (this << " Processing DLHARQ feedback");
726 if (nLayers == 1)
727 {
728 retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (0) == DlInfoListElement_s::NACK);
729 retx.push_back (false);
730 }
731 else
732 {
733 retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (0) == DlInfoListElement_s::NACK);
734 retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (1) == DlInfoListElement_s::NACK);
735 }
736 if (retx.at (0) || retx.at (1))
737 {
738 // retrieve HARQ process information
739 uint16_t rnti = m_dlInfoListBuffered.at (i).m_rnti;
740 uint8_t harqId = m_dlInfoListBuffered.at (i).m_harqProcessId;
741 NS_LOG_INFO (this << " HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId);
742 std::map <uint16_t, DlHarqProcessesDciBuffer_t>::iterator itHarq = m_dlHarqProcessesDciBuffer.find (rnti);
743 if (itHarq == m_dlHarqProcessesDciBuffer.end ())
744 {
745 NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << rnti);
746 }
747
748 DlDciListElement_s dci = (*itHarq).second.at (harqId);
749 int rv = 0;
750 if (dci.m_rv.size () == 1)
751 {
752 rv = dci.m_rv.at (0);
753 }
754 else
755 {
756 rv = (dci.m_rv.at (0) > dci.m_rv.at (1) ? dci.m_rv.at (0) : dci.m_rv.at (1));
757 }
758
759 if (rv == 3)
760 {
761 // maximum number of retx reached -> drop process
762 NS_LOG_INFO ("Maximum number of retransmissions reached -> drop process");
763 std::map <uint16_t, DlHarqProcessesStatus_t>::iterator it = m_dlHarqProcessesStatus.find (rnti);
764 if (it == m_dlHarqProcessesStatus.end ())
765 {
766 NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << m_dlInfoListBuffered.at (i).m_rnti);
767 }
768 (*it).second.at (harqId) = 0;
769 std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (rnti);
770 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
771 {
772 NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << m_dlInfoListBuffered.at (i).m_rnti);
773 }
774 for (uint16_t k = 0; k < (*itRlcPdu).second.size (); k++)
775 {
776 (*itRlcPdu).second.at (k).at (harqId).clear ();
777 }
778 continue;
779 }
780 // check the feasibility of retransmitting on the same RBGs
781 // translate the DCI to Spectrum framework
782 std::vector <int> dciRbg;
783 uint32_t mask = 0x1;
784 NS_LOG_INFO ("Original RBGs " << dci.m_rbBitmap << " rnti " << dci.m_rnti);
785 for (int j = 0; j < 32; j++)
786 {
787 if (((dci.m_rbBitmap & mask) >> j) == 1)
788 {
789 dciRbg.push_back (j);
790 NS_LOG_INFO ("\t" << j);
791 }
792 mask = (mask << 1);
793 }
794 bool free = true;
795 for (uint8_t j = 0; j < dciRbg.size (); j++)
796 {
797 if (rbgMap.at (dciRbg.at (j)) == true)
798 {
799 free = false;
800 break;
801 }
802 }
803 if (free)
804 {
805 // use the same RBGs for the retx
806 // reserve RBGs
807 for (uint8_t j = 0; j < dciRbg.size (); j++)
808 {
809 rbgMap.at (dciRbg.at (j)) = true;
810 NS_LOG_INFO ("RBG " << dciRbg.at (j) << " assigned");
811 rbgAllocatedNum++;
812 }
813
814 NS_LOG_INFO (this << " Send retx in the same RBGs");
815 }
816 else
817 {
818 // find RBGs for sending HARQ retx
819 uint8_t j = 0;
820 uint8_t rbgId = (dciRbg.at (dciRbg.size () - 1) + 1) % rbgNum;
821 uint8_t startRbg = dciRbg.at (dciRbg.size () - 1);
822 std::vector <bool> rbgMapCopy = rbgMap;
823 while ((j < dciRbg.size ())&&(startRbg != rbgId))
824 {
825 if (rbgMapCopy.at (rbgId) == false)
826 {
827 rbgMapCopy.at (rbgId) = true;
828 dciRbg.at (j) = rbgId;
829 j++;
830 }
831 rbgId = (rbgId + 1) % rbgNum;
832 }
833 if (j == dciRbg.size ())
834 {
835 // find new RBGs -> update DCI map
836 uint32_t rbgMask = 0;
837 for (uint16_t k = 0; k < dciRbg.size (); k++)
838 {
839 rbgMask = rbgMask + (0x1 << dciRbg.at (k));
840 rbgAllocatedNum++;
841 }
842 dci.m_rbBitmap = rbgMask;
843 rbgMap = rbgMapCopy;
844 NS_LOG_INFO (this << " Move retx in RBGs " << dciRbg.size ());
845 }
846 else
847 {
848 // HARQ retx cannot be performed on this TTI -> store it
849 dlInfoListUntxed.push_back (m_dlInfoListBuffered.at (i));
850 NS_LOG_INFO (this << " No resource for this retx -> buffer it");
851 }
852 }
853 // retrieve RLC PDU list for retx TBsize and update DCI
855 std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (rnti);
856 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
857 {
858 NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << rnti);
859 }
860 for (uint8_t j = 0; j < nLayers; j++)
861 {
862 if (retx.at (j))
863 {
864 if (j >= dci.m_ndi.size ())
865 {
866 // for avoiding errors in MIMO transient phases
867 dci.m_ndi.push_back (0);
868 dci.m_rv.push_back (0);
869 dci.m_mcs.push_back (0);
870 dci.m_tbsSize.push_back (0);
871 NS_LOG_INFO (this << " layer " << (uint16_t)j << " no txed (MIMO transition)");
872 }
873 else
874 {
875 dci.m_ndi.at (j) = 0;
876 dci.m_rv.at (j)++;
877 (*itHarq).second.at (harqId).m_rv.at (j)++;
878 NS_LOG_INFO (this << " layer " << (uint16_t)j << " RV " << (uint16_t)dci.m_rv.at (j));
879 }
880 }
881 else
882 {
883 // empty TB of layer j
884 dci.m_ndi.at (j) = 0;
885 dci.m_rv.at (j) = 0;
886 dci.m_mcs.at (j) = 0;
887 dci.m_tbsSize.at (j) = 0;
888 NS_LOG_INFO (this << " layer " << (uint16_t)j << " no retx");
889 }
890 }
891 for (uint16_t k = 0; k < (*itRlcPdu).second.at (0).at (dci.m_harqProcess).size (); k++)
892 {
893 std::vector <struct RlcPduListElement_s> rlcPduListPerLc;
894 for (uint8_t j = 0; j < nLayers; j++)
895 {
896 if (retx.at (j))
897 {
898 if (j < dci.m_ndi.size ())
899 {
900 NS_LOG_INFO (" layer " << (uint16_t)j << " tb size " << dci.m_tbsSize.at (j));
901 rlcPduListPerLc.push_back ((*itRlcPdu).second.at (j).at (dci.m_harqProcess).at (k));
902 }
903 }
904 else
905 { // if no retx needed on layer j, push an RlcPduListElement_s object with m_size=0 to keep the size of rlcPduListPerLc vector = 2 in case of MIMO
906 NS_LOG_INFO (" layer " << (uint16_t)j << " tb size " << dci.m_tbsSize.at (j));
907 RlcPduListElement_s emptyElement;
908 emptyElement.m_logicalChannelIdentity = (*itRlcPdu).second.at (j).at (dci.m_harqProcess).at (k).m_logicalChannelIdentity;
909 emptyElement.m_size = 0;
910 rlcPduListPerLc.push_back (emptyElement);
911 }
912 }
913
914 if (rlcPduListPerLc.size () > 0)
915 {
916 newEl.m_rlcPduList.push_back (rlcPduListPerLc);
917 }
918 }
919 newEl.m_rnti = rnti;
920 newEl.m_dci = dci;
921 (*itHarq).second.at (harqId).m_rv = dci.m_rv;
922 // refresh timer
923 std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itHarqTimer = m_dlHarqProcessesTimer.find (rnti);
924 if (itHarqTimer == m_dlHarqProcessesTimer.end ())
925 {
926 NS_FATAL_ERROR ("Unable to find HARQ timer for RNTI " << (uint16_t)rnti);
927 }
928 (*itHarqTimer).second.at (harqId) = 0;
929 ret.m_buildDataList.push_back (newEl);
930 rntiAllocated.insert (rnti);
931 }
932 else
933 {
934 // update HARQ process status
935 NS_LOG_INFO (this << " HARQ received ACK for UE " << m_dlInfoListBuffered.at (i).m_rnti);
936 std::map <uint16_t, DlHarqProcessesStatus_t>::iterator it = m_dlHarqProcessesStatus.find (m_dlInfoListBuffered.at (i).m_rnti);
937 if (it == m_dlHarqProcessesStatus.end ())
938 {
939 NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << m_dlInfoListBuffered.at (i).m_rnti);
940 }
941 (*it).second.at (m_dlInfoListBuffered.at (i).m_harqProcessId) = 0;
942 std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (m_dlInfoListBuffered.at (i).m_rnti);
943 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
944 {
945 NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << m_dlInfoListBuffered.at (i).m_rnti);
946 }
947 for (uint16_t k = 0; k < (*itRlcPdu).second.size (); k++)
948 {
949 (*itRlcPdu).second.at (k).at (m_dlInfoListBuffered.at (i).m_harqProcessId).clear ();
950 }
951 }
952 }
953 m_dlInfoListBuffered.clear ();
954 m_dlInfoListBuffered = dlInfoListUntxed;
955
956 if (rbgAllocatedNum == rbgNum)
957 {
958 // all the RBGs are already allocated -> exit
959 if ((ret.m_buildDataList.size () > 0) || (ret.m_buildRarList.size () > 0))
960 {
962 }
963 return;
964 }
965
966 // update token pool, counter and bank size
967 std::map <uint16_t, fdtbfqsFlowPerf_t>::iterator itStats;
968 for (itStats = m_flowStatsDl.begin (); itStats != m_flowStatsDl.end (); itStats++)
969 {
970 if ( (*itStats).second.tokenGenerationRate / 1000 + (*itStats).second.tokenPoolSize > (*itStats).second.maxTokenPoolSize )
971 {
972 (*itStats).second.counter += (*itStats).second.tokenGenerationRate / 1000 - ( (*itStats).second.maxTokenPoolSize - (*itStats).second.tokenPoolSize );
973 (*itStats).second.tokenPoolSize = (*itStats).second.maxTokenPoolSize;
974 bankSize += (*itStats).second.tokenGenerationRate / 1000 - ( (*itStats).second.maxTokenPoolSize - (*itStats).second.tokenPoolSize );
975 }
976 else
977 {
978 (*itStats).second.tokenPoolSize += (*itStats).second.tokenGenerationRate / 1000;
979 }
980 }
981
982 std::set <uint16_t> allocatedRnti; // store UEs which are already assigned RBGs
983 std::set <uint8_t> allocatedRbg; // store RBGs which are already allocated to UE
984
985 int totalRbg = 0;
986 while (totalRbg < rbgNum)
987 {
988 // select UE with largest metric
989 std::map <uint16_t, fdtbfqsFlowPerf_t>::iterator it;
990 std::map <uint16_t, fdtbfqsFlowPerf_t>::iterator itMax = m_flowStatsDl.end ();
991 double metricMax = 0.0;
992 bool firstRnti = true;
993 for (it = m_flowStatsDl.begin (); it != m_flowStatsDl.end (); it++)
994 {
995 std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it).first);
996 if ((itRnti != rntiAllocated.end ())||(!HarqProcessAvailability ((*it).first)))
997 {
998 // UE already allocated for HARQ or without HARQ process available -> drop it
999 if (itRnti != rntiAllocated.end ())
1000 {
1001 NS_LOG_DEBUG (this << " RNTI discared for HARQ tx" << (uint16_t)(*it).first);
1002 }
1003 if (!HarqProcessAvailability ((*it).first))
1004 {
1005 NS_LOG_DEBUG (this << " RNTI discared for HARQ id" << (uint16_t)(*it).first);
1006 }
1007 continue;
1008 }
1009 // check first the channel conditions for this UE, if CQI!=0
1010 std::map <uint16_t,SbMeasResult_s>::iterator itCqi;
1011 itCqi = m_a30CqiRxed.find ((*it).first);
1012 std::map <uint16_t,uint8_t>::iterator itTxMode;
1013 itTxMode = m_uesTxMode.find ((*it).first);
1014 if (itTxMode == m_uesTxMode.end ())
1015 {
1016 NS_FATAL_ERROR ("No Transmission Mode info on user " << (*it).first);
1017 }
1018 int nLayer = TransmissionModesLayers::TxMode2LayerNum ((*itTxMode).second);
1019
1020 uint8_t cqiSum = 0;
1021 for (int k = 0; k < rbgNum; k++)
1022 {
1023 for (uint8_t j = 0; j < nLayer; j++)
1024 {
1025 if (itCqi == m_a30CqiRxed.end ())
1026 {
1027 cqiSum += 1; // no info on this user -> lowest MCS
1028 }
1029 else
1030 {
1031 cqiSum += (*itCqi).second.m_higherLayerSelected.at (k).m_sbCqi.at (j);
1032 }
1033 }
1034 }
1035
1036 if (cqiSum == 0)
1037 {
1038 NS_LOG_INFO ("Skip this flow, CQI==0, rnti:" << (*it).first);
1039 continue;
1040 }
1041
1042 if (LcActivePerFlow ((*it).first) == 0)
1043 {
1044 continue;
1045 }
1046
1047 std::set <uint16_t>::iterator rnti;
1048 rnti = allocatedRnti.find ((*it).first);
1049 if (rnti != allocatedRnti.end ()) // already allocated RBGs to this UE
1050 {
1051 continue;
1052 }
1053
1054 double metric = ( ( (double)(*it).second.counter ) / ( (double)(*it).second.tokenGenerationRate ) );
1055
1056 if (firstRnti == true)
1057 {
1058 metricMax = metric;
1059 itMax = it;
1060 firstRnti = false;
1061 continue;
1062 }
1063 if (metric > metricMax)
1064 {
1065 metricMax = metric;
1066 itMax = it;
1067 }
1068 } // end for m_flowStatsDl
1069
1070 if (itMax == m_flowStatsDl.end ())
1071 {
1072 // all UEs are allocated RBG or all UEs already allocated for HARQ or without HARQ process available
1073 break;
1074 }
1075
1076 // mark this UE as "allocated"
1077 allocatedRnti.insert ((*itMax).first);
1078
1079 // calculate the maximum number of byte that the scheduler can assigned to this UE
1080 uint32_t budget = 0;
1081 if ( bankSize > 0 )
1082 {
1083 budget = (*itMax).second.counter - (*itMax).second.debtLimit;
1084 if ( budget > (*itMax).second.burstCredit )
1085 {
1086 budget = (*itMax).second.burstCredit;
1087 }
1088 if ( budget > bankSize )
1089 {
1090 budget = bankSize;
1091 }
1092 }
1093 budget = budget + (*itMax).second.tokenPoolSize;
1094
1095 // calculate how much bytes this UE actally need
1096 if (budget == 0)
1097 {
1098 // there are no tokens for this UE
1099 continue;
1100 }
1101 else
1102 {
1103 // calculate rlc buffer size
1104 uint32_t rlcBufSize = 0;
1105 uint8_t lcid = 0;
1106 std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator itRlcBuf;
1107 for (itRlcBuf = m_rlcBufferReq.begin (); itRlcBuf != m_rlcBufferReq.end (); itRlcBuf++)
1108 {
1109 if ( (*itRlcBuf).first.m_rnti == (*itMax).first )
1110 {
1111 lcid = (*itRlcBuf).first.m_lcId;
1112 }
1113 }
1114 LteFlowId_t flow ((*itMax).first, lcid);
1115 itRlcBuf = m_rlcBufferReq.find (flow);
1116 if (itRlcBuf != m_rlcBufferReq.end ())
1117 {
1118 rlcBufSize = (*itRlcBuf).second.m_rlcTransmissionQueueSize + (*itRlcBuf).second.m_rlcRetransmissionQueueSize + (*itRlcBuf).second.m_rlcStatusPduSize;
1119 }
1120 if (budget > rlcBufSize)
1121 {
1122 budget = rlcBufSize;
1123 NS_LOG_DEBUG ("budget > rlcBufSize. budget: " << budget << " RLC buffer size: " << rlcBufSize);
1124 }
1125 }
1126
1127 // assign RBGs to this UE
1128 uint32_t bytesTxed = 0;
1129 uint32_t bytesTxedTmp = 0;
1130 int rbgIndex = 0;
1131 while ( bytesTxed <= budget )
1132 {
1133 totalRbg++;
1134
1135 std::map <uint16_t,SbMeasResult_s>::iterator itCqi;
1136 itCqi = m_a30CqiRxed.find ((*itMax).first);
1137 std::map <uint16_t,uint8_t>::iterator itTxMode;
1138 itTxMode = m_uesTxMode.find ((*itMax).first);
1139 if (itTxMode == m_uesTxMode.end ())
1140 {
1141 NS_FATAL_ERROR ("No Transmission Mode info on user " << (*it).first);
1142 }
1143 int nLayer = TransmissionModesLayers::TxMode2LayerNum ((*itTxMode).second);
1144
1145 // find RBG with largest achievableRate
1146 double achievableRateMax = 0.0;
1147 rbgIndex = rbgNum;
1148 for (int k = 0; k < rbgNum; k++)
1149 {
1150 std::set <uint8_t>::iterator rbg;
1151 rbg = allocatedRbg.find (k);
1152 if (rbg != allocatedRbg.end ()) // RBGs are already allocated to this UE
1153 {
1154 continue;
1155 }
1156
1157 if ( rbgMap.at (k) == true) // this RBG is allocated in RACH procedure
1158 {
1159 continue;
1160 }
1161
1162 if ((m_ffrSapProvider->IsDlRbgAvailableForUe (k, (*itMax).first)) == false)
1163 {
1164 continue;
1165 }
1166
1167 std::vector <uint8_t> sbCqi;
1168 if (itCqi == m_a30CqiRxed.end ())
1169 {
1170 for (uint8_t k = 0; k < nLayer; k++)
1171 {
1172 sbCqi.push_back (1); // start with lowest value
1173 }
1174 }
1175 else
1176 {
1177 sbCqi = (*itCqi).second.m_higherLayerSelected.at (k).m_sbCqi;
1178 }
1179 uint8_t cqi1 = sbCqi.at (0);
1180 uint8_t cqi2 = 0;
1181 if (sbCqi.size () > 1)
1182 {
1183 cqi2 = sbCqi.at (1);
1184 }
1185
1186 if ((cqi1 > 0)||(cqi2 > 0)) // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
1187 {
1188 if (LcActivePerFlow ((*itMax).first) > 0)
1189 {
1190 // this UE has data to transmit
1191 double achievableRate = 0.0;
1192 for (uint8_t j = 0; j < nLayer; j++)
1193 {
1194 uint8_t mcs = 0;
1195 if (sbCqi.size () > j)
1196 {
1197 mcs = m_amc->GetMcsFromCqi (sbCqi.at (j));
1198 }
1199 else
1200 {
1201 // no info on this subband -> worst MCS
1202 mcs = 0;
1203 }
1204 achievableRate += ((m_amc->GetDlTbSizeFromMcs (mcs, rbgSize) / 8) / 0.001); // = TB size / TTI
1205 }
1206
1207 if ( achievableRate > achievableRateMax )
1208 {
1209 achievableRateMax = achievableRate;
1210 rbgIndex = k;
1211 }
1212 } // end of LcActivePerFlow
1213 } // end of cqi
1214 } // end of for rbgNum
1215
1216 if ( rbgIndex == rbgNum) // impossible
1217 {
1218 // all RBGs are already assigned
1219 totalRbg = rbgNum;
1220 break;
1221 }
1222 else
1223 {
1224 // mark this UE as "allocated"
1225 allocatedRbg.insert (rbgIndex);
1226 }
1227
1228 // assign this RBG to UE
1229 std::map <uint16_t, std::vector <uint16_t> >::iterator itMap;
1230 itMap = allocationMap.find ((*itMax).first);
1231 uint16_t RbgPerRnti;
1232 if (itMap == allocationMap.end ())
1233 {
1234 // insert new element
1235 std::vector <uint16_t> tempMap;
1236 tempMap.push_back (rbgIndex);
1237 allocationMap.insert (std::pair <uint16_t, std::vector <uint16_t> > ((*itMax).first, tempMap));
1238 itMap = allocationMap.find ((*itMax).first); // point itMap to the first RBGs assigned to this UE
1239 }
1240 else
1241 {
1242 (*itMap).second.push_back (rbgIndex);
1243 }
1244 rbgMap.at (rbgIndex) = true; // Mark this RBG as allocated
1245
1246 RbgPerRnti = (*itMap).second.size ();
1247
1248 // calculate tb size
1249 std::vector <uint8_t> worstCqi (2, 15);
1250 if (itCqi != m_a30CqiRxed.end ())
1251 {
1252 for (uint16_t k = 0; k < (*itMap).second.size (); k++)
1253 {
1254 if ((*itCqi).second.m_higherLayerSelected.size () > (*itMap).second.at (k))
1255 {
1256 for (uint8_t j = 0; j < nLayer; j++)
1257 {
1258 if ((*itCqi).second.m_higherLayerSelected.at ((*itMap).second.at (k)).m_sbCqi.size () > j)
1259 {
1260 if (((*itCqi).second.m_higherLayerSelected.at ((*itMap).second.at (k)).m_sbCqi.at (j)) < worstCqi.at (j))
1261 {
1262 worstCqi.at (j) = ((*itCqi).second.m_higherLayerSelected.at ((*itMap).second.at (k)).m_sbCqi.at (j));
1263 }
1264 }
1265 else
1266 {
1267 // no CQI for this layer of this suband -> worst one
1268 worstCqi.at (j) = 1;
1269 }
1270 }
1271 }
1272 else
1273 {
1274 for (uint8_t j = 0; j < nLayer; j++)
1275 {
1276 worstCqi.at (j) = 1; // try with lowest MCS in RBG with no info on channel
1277 }
1278 }
1279 }
1280 }
1281 else
1282 {
1283 for (uint8_t j = 0; j < nLayer; j++)
1284 {
1285 worstCqi.at (j) = 1; // try with lowest MCS in RBG with no info on channel
1286 }
1287 }
1288
1289 bytesTxedTmp = bytesTxed;
1290 bytesTxed = 0;
1291 for (uint8_t j = 0; j < nLayer; j++)
1292 {
1293 int tbSize = (m_amc->GetDlTbSizeFromMcs (m_amc->GetMcsFromCqi (worstCqi.at (j)), RbgPerRnti * rbgSize) / 8); // (size of TB in bytes according to table 7.1.7.2.1-1 of 36.213)
1294 bytesTxed += tbSize;
1295 }
1296
1297 } // end of while()
1298
1299 // remove and unmark last RBG assigned to UE
1300 if ( bytesTxed > budget )
1301 {
1302 NS_LOG_DEBUG ("budget: " << budget << " bytesTxed: " << bytesTxed << " at " << Simulator::Now ().As (Time::MS));
1303 std::map <uint16_t, std::vector <uint16_t> >::iterator itMap;
1304 itMap = allocationMap.find ((*itMax).first);
1305 (*itMap).second.pop_back ();
1306 allocatedRbg.erase (rbgIndex);
1307 bytesTxed = bytesTxedTmp; // recovery bytesTxed
1308 totalRbg--;
1309 rbgMap.at (rbgIndex) = false; // unmark this RBG
1310 //If all the RBGs are removed from the allocation
1311 //of this RNTI, we remove the UE from the allocation map
1312 if ((*itMap).second.size () == 0)
1313 {
1314 itMap = allocationMap.erase (itMap);
1315 }
1316 }
1317
1318 //only update the UE stats if it exists in the allocation map
1319 if (allocationMap.find ((*itMax).first) != allocationMap.end ())
1320 {
1321 // update UE stats
1322 if ( bytesTxed <= (*itMax).second.tokenPoolSize )
1323 {
1324 (*itMax).second.tokenPoolSize -= bytesTxed;
1325 }
1326 else
1327 {
1328 (*itMax).second.counter = (*itMax).second.counter - ( bytesTxed - (*itMax).second.tokenPoolSize );
1329 (*itMax).second.tokenPoolSize = 0;
1330 if (bankSize <= ( bytesTxed - (*itMax).second.tokenPoolSize ))
1331 {
1332 bankSize = 0;
1333 }
1334 else
1335 {
1336 bankSize = bankSize - ( bytesTxed - (*itMax).second.tokenPoolSize );
1337 }
1338 }
1339 }
1340 } // end of RBGs
1341
1342 // generate the transmission opportunities by grouping the RBGs of the same RNTI and
1343 // creating the correspondent DCIs
1344 std::map <uint16_t, std::vector <uint16_t> >::iterator itMap = allocationMap.begin ();
1345 while (itMap != allocationMap.end ())
1346 {
1347 NS_LOG_DEBUG ("Preparing DCI for RNTI " << (*itMap).first);
1348 // create new BuildDataListElement_s for this LC
1350 newEl.m_rnti = (*itMap).first;
1351 // create the DlDciListElement_s
1352 DlDciListElement_s newDci;
1353 newDci.m_rnti = (*itMap).first;
1354 newDci.m_harqProcess = UpdateHarqProcessId ((*itMap).first);
1355
1356 uint16_t lcActives = LcActivePerFlow ((*itMap).first);
1357 NS_LOG_INFO (this << "Allocate user " << newEl.m_rnti << " rbg " << lcActives);
1358 if (lcActives == 0)
1359 {
1360 // Set to max value, to avoid divide by 0 below
1361 lcActives = (uint16_t)65535; // UINT16_MAX;
1362 }
1363 uint16_t RgbPerRnti = (*itMap).second.size ();
1364 std::map <uint16_t,SbMeasResult_s>::iterator itCqi;
1365 itCqi = m_a30CqiRxed.find ((*itMap).first);
1366 std::map <uint16_t,uint8_t>::iterator itTxMode;
1367 itTxMode = m_uesTxMode.find ((*itMap).first);
1368 if (itTxMode == m_uesTxMode.end ())
1369 {
1370 NS_FATAL_ERROR ("No Transmission Mode info on user " << (*itMap).first);
1371 }
1372 int nLayer = TransmissionModesLayers::TxMode2LayerNum ((*itTxMode).second);
1373 std::vector <uint8_t> worstCqi (2, 15);
1374 if (itCqi != m_a30CqiRxed.end ())
1375 {
1376 for (uint16_t k = 0; k < (*itMap).second.size (); k++)
1377 {
1378 if ((*itCqi).second.m_higherLayerSelected.size () > (*itMap).second.at (k))
1379 {
1380 NS_LOG_INFO (this << " RBG " << (*itMap).second.at (k) << " CQI " << (uint16_t)((*itCqi).second.m_higherLayerSelected.at ((*itMap).second.at (k)).m_sbCqi.at (0)) );
1381 for (uint8_t j = 0; j < nLayer; j++)
1382 {
1383 if ((*itCqi).second.m_higherLayerSelected.at ((*itMap).second.at (k)).m_sbCqi.size () > j)
1384 {
1385 if (((*itCqi).second.m_higherLayerSelected.at ((*itMap).second.at (k)).m_sbCqi.at (j)) < worstCqi.at (j))
1386 {
1387 worstCqi.at (j) = ((*itCqi).second.m_higherLayerSelected.at ((*itMap).second.at (k)).m_sbCqi.at (j));
1388 }
1389 }
1390 else
1391 {
1392 // no CQI for this layer of this suband -> worst one
1393 worstCqi.at (j) = 1;
1394 }
1395 }
1396 }
1397 else
1398 {
1399 for (uint8_t j = 0; j < nLayer; j++)
1400 {
1401 worstCqi.at (j) = 1; // try with lowest MCS in RBG with no info on channel
1402 }
1403 }
1404 }
1405 }
1406 else
1407 {
1408 for (uint8_t j = 0; j < nLayer; j++)
1409 {
1410 worstCqi.at (j) = 1; // try with lowest MCS in RBG with no info on channel
1411 }
1412 }
1413 for (uint8_t j = 0; j < nLayer; j++)
1414 {
1415 NS_LOG_INFO (this << " Layer " << (uint16_t)j << " CQI selected " << (uint16_t)worstCqi.at (j));
1416 }
1417 for (uint8_t j = 0; j < nLayer; j++)
1418 {
1419 newDci.m_mcs.push_back (m_amc->GetMcsFromCqi (worstCqi.at (j)));
1420 int tbSize = (m_amc->GetDlTbSizeFromMcs (newDci.m_mcs.at (j), RgbPerRnti * rbgSize) / 8); // (size of TB in bytes according to table 7.1.7.2.1-1 of 36.213)
1421 newDci.m_tbsSize.push_back (tbSize);
1422 NS_LOG_INFO (this << " Layer " << (uint16_t)j << " MCS selected" << (uint16_t) m_amc->GetMcsFromCqi (worstCqi.at (j)));
1423 }
1424
1425 newDci.m_resAlloc = 0; // only allocation type 0 at this stage
1426 newDci.m_rbBitmap = 0; // TBD (32 bit bitmap see 7.1.6 of 36.213)
1427 uint32_t rbgMask = 0;
1428 for (uint16_t k = 0; k < (*itMap).second.size (); k++)
1429 {
1430 rbgMask = rbgMask + (0x1 << (*itMap).second.at (k));
1431 NS_LOG_INFO (this << " Allocated RBG " << (*itMap).second.at (k));
1432 }
1433 newDci.m_rbBitmap = rbgMask; // (32 bit bitmap see 7.1.6 of 36.213)
1434
1435 // create the rlc PDUs -> equally divide resources among actives LCs
1436 std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator itBufReq;
1437 for (itBufReq = m_rlcBufferReq.begin (); itBufReq != m_rlcBufferReq.end (); itBufReq++)
1438 {
1439 if (((*itBufReq).first.m_rnti == (*itMap).first)
1440 && (((*itBufReq).second.m_rlcTransmissionQueueSize > 0)
1441 || ((*itBufReq).second.m_rlcRetransmissionQueueSize > 0)
1442 || ((*itBufReq).second.m_rlcStatusPduSize > 0) ))
1443 {
1444 std::vector <struct RlcPduListElement_s> newRlcPduLe;
1445 for (uint8_t j = 0; j < nLayer; j++)
1446 {
1447 RlcPduListElement_s newRlcEl;
1448 newRlcEl.m_logicalChannelIdentity = (*itBufReq).first.m_lcId;
1449 newRlcEl.m_size = newDci.m_tbsSize.at (j) / lcActives;
1450 NS_LOG_INFO (this << " LCID " << (uint32_t) newRlcEl.m_logicalChannelIdentity << " size " << newRlcEl.m_size << " layer " << (uint16_t)j);
1451 newRlcPduLe.push_back (newRlcEl);
1452 UpdateDlRlcBufferInfo (newDci.m_rnti, newRlcEl.m_logicalChannelIdentity, newRlcEl.m_size);
1453 if (m_harqOn == true)
1454 {
1455 // store RLC PDU list for HARQ
1456 std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find ((*itMap).first);
1457 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
1458 {
1459 NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << (*itMap).first);
1460 }
1461 (*itRlcPdu).second.at (j).at (newDci.m_harqProcess).push_back (newRlcEl);
1462 }
1463 }
1464 newEl.m_rlcPduList.push_back (newRlcPduLe);
1465 }
1466 if ((*itBufReq).first.m_rnti > (*itMap).first)
1467 {
1468 break;
1469 }
1470 }
1471 for (uint8_t j = 0; j < nLayer; j++)
1472 {
1473 newDci.m_ndi.push_back (1);
1474 newDci.m_rv.push_back (0);
1475 }
1476
1477 newDci.m_tpc = m_ffrSapProvider->GetTpc ((*itMap).first);
1478
1479 newEl.m_dci = newDci;
1480
1481 if (m_harqOn == true)
1482 {
1483 // store DCI for HARQ
1484 std::map <uint16_t, DlHarqProcessesDciBuffer_t>::iterator itDci = m_dlHarqProcessesDciBuffer.find (newEl.m_rnti);
1485 if (itDci == m_dlHarqProcessesDciBuffer.end ())
1486 {
1487 NS_FATAL_ERROR ("Unable to find RNTI entry in DCI HARQ buffer for RNTI " << newEl.m_rnti);
1488 }
1489 (*itDci).second.at (newDci.m_harqProcess) = newDci;
1490 // refresh timer
1491 std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itHarqTimer = m_dlHarqProcessesTimer.find (newEl.m_rnti);
1492 if (itHarqTimer == m_dlHarqProcessesTimer.end ())
1493 {
1494 NS_FATAL_ERROR ("Unable to find HARQ timer for RNTI " << (uint16_t)newEl.m_rnti);
1495 }
1496 (*itHarqTimer).second.at (newDci.m_harqProcess) = 0;
1497 }
1498
1499 // ...more parameters -> ignored in this version
1500
1501 ret.m_buildDataList.push_back (newEl);
1502
1503 itMap++;
1504 } // end while allocation
1505 ret.m_nrOfPdcchOfdmSymbols = 1;
1506
1508
1509
1510 return;
1511}
1512
1513void
1515{
1516 NS_LOG_FUNCTION (this);
1517
1518 m_rachList = params.m_rachList;
1519
1520 return;
1521}
1522
1523void
1525{
1526 NS_LOG_FUNCTION (this);
1528
1529 for (unsigned int i = 0; i < params.m_cqiList.size (); i++)
1530 {
1531 if ( params.m_cqiList.at (i).m_cqiType == CqiListElement_s::P10 )
1532 {
1533 NS_LOG_LOGIC ("wideband CQI " << (uint32_t) params.m_cqiList.at (i).m_wbCqi.at (0) << " reported");
1534 std::map <uint16_t,uint8_t>::iterator it;
1535 uint16_t rnti = params.m_cqiList.at (i).m_rnti;
1536 it = m_p10CqiRxed.find (rnti);
1537 if (it == m_p10CqiRxed.end ())
1538 {
1539 // create the new entry
1540 m_p10CqiRxed.insert ( std::pair<uint16_t, uint8_t > (rnti, params.m_cqiList.at (i).m_wbCqi.at (0)) ); // only codeword 0 at this stage (SISO)
1541 // generate correspondent timer
1542 m_p10CqiTimers.insert ( std::pair<uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1543 }
1544 else
1545 {
1546 // update the CQI value and refresh correspondent timer
1547 (*it).second = params.m_cqiList.at (i).m_wbCqi.at (0);
1548 // update correspondent timer
1549 std::map <uint16_t,uint32_t>::iterator itTimers;
1550 itTimers = m_p10CqiTimers.find (rnti);
1551 (*itTimers).second = m_cqiTimersThreshold;
1552 }
1553 }
1554 else if ( params.m_cqiList.at (i).m_cqiType == CqiListElement_s::A30 )
1555 {
1556 // subband CQI reporting high layer configured
1557 std::map <uint16_t,SbMeasResult_s>::iterator it;
1558 uint16_t rnti = params.m_cqiList.at (i).m_rnti;
1559 it = m_a30CqiRxed.find (rnti);
1560 if (it == m_a30CqiRxed.end ())
1561 {
1562 // create the new entry
1563 m_a30CqiRxed.insert ( std::pair<uint16_t, SbMeasResult_s > (rnti, params.m_cqiList.at (i).m_sbMeasResult) );
1564 m_a30CqiTimers.insert ( std::pair<uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1565 }
1566 else
1567 {
1568 // update the CQI value and refresh correspondent timer
1569 (*it).second = params.m_cqiList.at (i).m_sbMeasResult;
1570 std::map <uint16_t,uint32_t>::iterator itTimers;
1571 itTimers = m_a30CqiTimers.find (rnti);
1572 (*itTimers).second = m_cqiTimersThreshold;
1573 }
1574 }
1575 else
1576 {
1577 NS_LOG_ERROR (this << " CQI type unknown");
1578 }
1579 }
1580
1581 return;
1582}
1583
1584
1585double
1586FdTbfqFfMacScheduler::EstimateUlSinr (uint16_t rnti, uint16_t rb)
1587{
1588 std::map <uint16_t, std::vector <double> >::iterator itCqi = m_ueCqi.find (rnti);
1589 if (itCqi == m_ueCqi.end ())
1590 {
1591 // no cqi info about this UE
1592 return (NO_SINR);
1593
1594 }
1595 else
1596 {
1597 // take the average SINR value among the available
1598 double sinrSum = 0;
1599 unsigned int sinrNum = 0;
1600 for (uint32_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1601 {
1602 double sinr = (*itCqi).second.at (i);
1603 if (sinr != NO_SINR)
1604 {
1605 sinrSum += sinr;
1606 sinrNum++;
1607 }
1608 }
1609 double estimatedSinr = (sinrNum > 0) ? (sinrSum / sinrNum) : DBL_MAX;
1610 // store the value
1611 (*itCqi).second.at (rb) = estimatedSinr;
1612 return (estimatedSinr);
1613 }
1614}
1615
1616void
1618{
1619 NS_LOG_FUNCTION (this << " UL - Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf) << " size " << params.m_ulInfoList.size ());
1620
1623
1624 // Generate RBs map
1626 std::vector <bool> rbMap;
1627 uint16_t rbAllocatedNum = 0;
1628 std::set <uint16_t> rntiAllocated;
1629 std::vector <uint16_t> rbgAllocationMap;
1630 // update with RACH allocation map
1631 rbgAllocationMap = m_rachAllocationMap;
1632 //rbgAllocationMap.resize (m_cschedCellConfig.m_ulBandwidth, 0);
1633 m_rachAllocationMap.clear ();
1635
1636 rbMap.resize (m_cschedCellConfig.m_ulBandwidth, false);
1637
1639
1640 for (std::vector<bool>::iterator it = rbMap.begin (); it != rbMap.end (); it++)
1641 {
1642 if ((*it) == true )
1643 {
1644 rbAllocatedNum++;
1645 }
1646 }
1647
1648 uint8_t minContinuousUlBandwidth = m_ffrSapProvider->GetMinContinuousUlBandwidth ();
1649 uint8_t ffrUlBandwidth = m_cschedCellConfig.m_ulBandwidth - rbAllocatedNum;
1650
1651 // remove RACH allocation
1652 for (uint16_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1653 {
1654 if (rbgAllocationMap.at (i) != 0)
1655 {
1656 rbMap.at (i) = true;
1657 NS_LOG_DEBUG (this << " Allocated for RACH " << i);
1658 }
1659 }
1660
1661
1662 if (m_harqOn == true)
1663 {
1664 // Process UL HARQ feedback
1665 for (uint16_t i = 0; i < params.m_ulInfoList.size (); i++)
1666 {
1667 if (params.m_ulInfoList.at (i).m_receptionStatus == UlInfoListElement_s::NotOk)
1668 {
1669 // retx correspondent block: retrieve the UL-DCI
1670 uint16_t rnti = params.m_ulInfoList.at (i).m_rnti;
1671 std::map <uint16_t, uint8_t>::iterator itProcId = m_ulHarqCurrentProcessId.find (rnti);
1672 if (itProcId == m_ulHarqCurrentProcessId.end ())
1673 {
1674 NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1675 }
1676 uint8_t harqId = (uint8_t)((*itProcId).second - HARQ_PERIOD) % HARQ_PROC_NUM;
1677 NS_LOG_INFO (this << " UL-HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId << " i " << i << " size " << params.m_ulInfoList.size ());
1678 std::map <uint16_t, UlHarqProcessesDciBuffer_t>::iterator itHarq = m_ulHarqProcessesDciBuffer.find (rnti);
1679 if (itHarq == m_ulHarqProcessesDciBuffer.end ())
1680 {
1681 NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1682 continue;
1683 }
1684 UlDciListElement_s dci = (*itHarq).second.at (harqId);
1685 std::map <uint16_t, UlHarqProcessesStatus_t>::iterator itStat = m_ulHarqProcessesStatus.find (rnti);
1686 if (itStat == m_ulHarqProcessesStatus.end ())
1687 {
1688 NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1689 }
1690 if ((*itStat).second.at (harqId) >= 3)
1691 {
1692 NS_LOG_INFO ("Max number of retransmissions reached (UL)-> drop process");
1693 continue;
1694 }
1695 bool free = true;
1696 for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1697 {
1698 if (rbMap.at (j) == true)
1699 {
1700 free = false;
1701 NS_LOG_INFO (this << " BUSY " << j);
1702 }
1703 }
1704 if (free)
1705 {
1706 // retx on the same RBs
1707 for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1708 {
1709 rbMap.at (j) = true;
1710 rbgAllocationMap.at (j) = dci.m_rnti;
1711 NS_LOG_INFO ("\tRB " << j);
1712 rbAllocatedNum++;
1713 }
1714 NS_LOG_INFO (this << " Send retx in the same RBs " << (uint16_t)dci.m_rbStart << " to " << dci.m_rbStart + dci.m_rbLen << " RV " << (*itStat).second.at (harqId) + 1);
1715 }
1716 else
1717 {
1718 NS_LOG_INFO ("Cannot allocate retx due to RACH allocations for UE " << rnti);
1719 continue;
1720 }
1721 dci.m_ndi = 0;
1722 // Update HARQ buffers with new HarqId
1723 (*itStat).second.at ((*itProcId).second) = (*itStat).second.at (harqId) + 1;
1724 (*itStat).second.at (harqId) = 0;
1725 (*itHarq).second.at ((*itProcId).second) = dci;
1726 ret.m_dciList.push_back (dci);
1727 rntiAllocated.insert (dci.m_rnti);
1728 }
1729 else
1730 {
1731 NS_LOG_INFO (this << " HARQ-ACK feedback from RNTI " << params.m_ulInfoList.at (i).m_rnti);
1732 }
1733 }
1734 }
1735
1736 std::map <uint16_t,uint32_t>::iterator it;
1737 int nflows = 0;
1738
1739 for (it = m_ceBsrRxed.begin (); it != m_ceBsrRxed.end (); it++)
1740 {
1741 std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it).first);
1742 // select UEs with queues not empty and not yet allocated for HARQ
1743 if (((*it).second > 0)&&(itRnti == rntiAllocated.end ()))
1744 {
1745 nflows++;
1746 }
1747 }
1748
1749 if (nflows == 0)
1750 {
1751 if (ret.m_dciList.size () > 0)
1752 {
1753 m_allocationMaps.insert (std::pair <uint16_t, std::vector <uint16_t> > (params.m_sfnSf, rbgAllocationMap));
1755 }
1756
1757 return; // no flows to be scheduled
1758 }
1759
1760
1761 // Divide the remaining resources equally among the active users starting from the subsequent one served last scheduling trigger
1762 uint16_t tempRbPerFlow = (ffrUlBandwidth) / (nflows + rntiAllocated.size ());
1763 uint16_t rbPerFlow = (minContinuousUlBandwidth < tempRbPerFlow) ? minContinuousUlBandwidth : tempRbPerFlow;
1764
1765 if (rbPerFlow < 3)
1766 {
1767 rbPerFlow = 3; // at least 3 rbg per flow (till available resource) to ensure TxOpportunity >= 7 bytes
1768 }
1769 int rbAllocated = 0;
1770
1771 std::map <uint16_t, fdtbfqsFlowPerf_t>::iterator itStats;
1772 if (m_nextRntiUl != 0)
1773 {
1774 for (it = m_ceBsrRxed.begin (); it != m_ceBsrRxed.end (); it++)
1775 {
1776 if ((*it).first == m_nextRntiUl)
1777 {
1778 break;
1779 }
1780 }
1781 if (it == m_ceBsrRxed.end ())
1782 {
1783 NS_LOG_ERROR (this << " no user found");
1784 }
1785 }
1786 else
1787 {
1788 it = m_ceBsrRxed.begin ();
1789 m_nextRntiUl = (*it).first;
1790 }
1791 do
1792 {
1793 std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it).first);
1794 if ((itRnti != rntiAllocated.end ())||((*it).second == 0))
1795 {
1796 // UE already allocated for UL-HARQ -> skip it
1797 NS_LOG_DEBUG (this << " UE already allocated in HARQ -> discared, RNTI " << (*it).first);
1798 it++;
1799 if (it == m_ceBsrRxed.end ())
1800 {
1801 // restart from the first
1802 it = m_ceBsrRxed.begin ();
1803 }
1804 continue;
1805 }
1806 if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1807 {
1808 // limit to physical resources last resource assignment
1809 rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1810 // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1811 if (rbPerFlow < 3)
1812 {
1813 // terminate allocation
1814 rbPerFlow = 0;
1815 }
1816 }
1817
1818 rbAllocated = 0;
1819 UlDciListElement_s uldci;
1820 uldci.m_rnti = (*it).first;
1821 uldci.m_rbLen = rbPerFlow;
1822 bool allocated = false;
1823 NS_LOG_INFO (this << " RB Allocated " << rbAllocated << " rbPerFlow " << rbPerFlow << " flows " << nflows);
1824 while ((!allocated)&&((rbAllocated + rbPerFlow - m_cschedCellConfig.m_ulBandwidth) < 1) && (rbPerFlow != 0))
1825 {
1826 // check availability
1827 bool free = true;
1828 for (uint16_t j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1829 {
1830 if (rbMap.at (j) == true)
1831 {
1832 free = false;
1833 break;
1834 }
1835 if ((m_ffrSapProvider->IsUlRbgAvailableForUe (j, (*it).first)) == false)
1836 {
1837 free = false;
1838 break;
1839 }
1840 }
1841 if (free)
1842 {
1843 NS_LOG_INFO (this << "RNTI: " << (*it).first << " RB Allocated " << rbAllocated << " rbPerFlow " << rbPerFlow << " flows " << nflows);
1844 uldci.m_rbStart = rbAllocated;
1845
1846 for (uint16_t j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1847 {
1848 rbMap.at (j) = true;
1849 // store info on allocation for managing ul-cqi interpretation
1850 rbgAllocationMap.at (j) = (*it).first;
1851 }
1852 rbAllocated += rbPerFlow;
1853 allocated = true;
1854 break;
1855 }
1856 rbAllocated++;
1857 if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1858 {
1859 // limit to physical resources last resource assignment
1860 rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1861 // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1862 if (rbPerFlow < 3)
1863 {
1864 // terminate allocation
1865 rbPerFlow = 0;
1866 }
1867 }
1868 }
1869 if (!allocated)
1870 {
1871 // unable to allocate new resource: finish scheduling
1872// m_nextRntiUl = (*it).first;
1873// if (ret.m_dciList.size () > 0)
1874// {
1875// m_schedSapUser->SchedUlConfigInd (ret);
1876// }
1877// m_allocationMaps.insert (std::pair <uint16_t, std::vector <uint16_t> > (params.m_sfnSf, rbgAllocationMap));
1878// return;
1879 break;
1880 }
1881
1882
1883
1884 std::map <uint16_t, std::vector <double> >::iterator itCqi = m_ueCqi.find ((*it).first);
1885 int cqi = 0;
1886 if (itCqi == m_ueCqi.end ())
1887 {
1888 // no cqi info about this UE
1889 uldci.m_mcs = 0; // MCS 0 -> UL-AMC TBD
1890 }
1891 else
1892 {
1893 // take the lowest CQI value (worst RB)
1894 NS_ABORT_MSG_IF ((*itCqi).second.size () == 0, "CQI of RNTI = " << (*it).first << " has expired");
1895 double minSinr = (*itCqi).second.at (uldci.m_rbStart);
1896 if (minSinr == NO_SINR)
1897 {
1898 minSinr = EstimateUlSinr ((*it).first, uldci.m_rbStart);
1899 }
1900 for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1901 {
1902 double sinr = (*itCqi).second.at (i);
1903 if (sinr == NO_SINR)
1904 {
1905 sinr = EstimateUlSinr ((*it).first, i);
1906 }
1907 if (sinr < minSinr)
1908 {
1909 minSinr = sinr;
1910 }
1911 }
1912
1913 // translate SINR -> cqi: WILD ACK: same as DL
1914 double s = log2 ( 1 + (
1915 std::pow (10, minSinr / 10 ) /
1916 ( (-std::log (5.0 * 0.00005 )) / 1.5) ));
1917 cqi = m_amc->GetCqiFromSpectralEfficiency (s);
1918 if (cqi == 0)
1919 {
1920 it++;
1921 if (it == m_ceBsrRxed.end ())
1922 {
1923 // restart from the first
1924 it = m_ceBsrRxed.begin ();
1925 }
1926 NS_LOG_DEBUG (this << " UE discarded for CQI = 0, RNTI " << uldci.m_rnti);
1927 // remove UE from allocation map
1928 for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1929 {
1930 rbgAllocationMap.at (i) = 0;
1931 }
1932 continue; // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
1933 }
1934 uldci.m_mcs = m_amc->GetMcsFromCqi (cqi);
1935 }
1936
1937 uldci.m_tbSize = (m_amc->GetUlTbSizeFromMcs (uldci.m_mcs, rbPerFlow) / 8);
1938 UpdateUlRlcBufferInfo (uldci.m_rnti, uldci.m_tbSize);
1939 uldci.m_ndi = 1;
1940 uldci.m_cceIndex = 0;
1941 uldci.m_aggrLevel = 1;
1942 uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
1943 uldci.m_hopping = false;
1944 uldci.m_n2Dmrs = 0;
1945 uldci.m_tpc = 0; // no power control
1946 uldci.m_cqiRequest = false; // only period CQI at this stage
1947 uldci.m_ulIndex = 0; // TDD parameter
1948 uldci.m_dai = 1; // TDD parameter
1949 uldci.m_freqHopping = 0;
1950 uldci.m_pdcchPowerOffset = 0; // not used
1951 ret.m_dciList.push_back (uldci);
1952 // store DCI for HARQ_PERIOD
1953 uint8_t harqId = 0;
1954 if (m_harqOn == true)
1955 {
1956 std::map <uint16_t, uint8_t>::iterator itProcId;
1957 itProcId = m_ulHarqCurrentProcessId.find (uldci.m_rnti);
1958 if (itProcId == m_ulHarqCurrentProcessId.end ())
1959 {
1960 NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << uldci.m_rnti);
1961 }
1962 harqId = (*itProcId).second;
1963 std::map <uint16_t, UlHarqProcessesDciBuffer_t>::iterator itDci = m_ulHarqProcessesDciBuffer.find (uldci.m_rnti);
1964 if (itDci == m_ulHarqProcessesDciBuffer.end ())
1965 {
1966 NS_FATAL_ERROR ("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI " << uldci.m_rnti);
1967 }
1968 (*itDci).second.at (harqId) = uldci;
1969 // Update HARQ process status (RV 0)
1970 std::map <uint16_t, UlHarqProcessesStatus_t>::iterator itStat = m_ulHarqProcessesStatus.find (uldci.m_rnti);
1971 if (itStat == m_ulHarqProcessesStatus.end ())
1972 {
1973 NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << uldci.m_rnti);
1974 }
1975 (*itStat).second.at (harqId) = 0;
1976 }
1977
1978 NS_LOG_INFO (this << " UE Allocation RNTI " << (*it).first << " startPRB " << (uint32_t)uldci.m_rbStart << " nPRB " << (uint32_t)uldci.m_rbLen << " CQI " << cqi << " MCS " << (uint32_t)uldci.m_mcs << " TBsize " << uldci.m_tbSize << " RbAlloc " << rbAllocated << " harqId " << (uint16_t)harqId);
1979
1980 it++;
1981 if (it == m_ceBsrRxed.end ())
1982 {
1983 // restart from the first
1984 it = m_ceBsrRxed.begin ();
1985 }
1986 if ((rbAllocated == m_cschedCellConfig.m_ulBandwidth) || (rbPerFlow == 0))
1987 {
1988 // Stop allocation: no more PRBs
1989 m_nextRntiUl = (*it).first;
1990 break;
1991 }
1992 }
1993 while (((*it).first != m_nextRntiUl)&&(rbPerFlow != 0));
1994
1995
1996 m_allocationMaps.insert (std::pair <uint16_t, std::vector <uint16_t> > (params.m_sfnSf, rbgAllocationMap));
1998
1999 return;
2000}
2001
2002void
2004{
2005 NS_LOG_FUNCTION (this);
2006 return;
2007}
2008
2009void
2011{
2012 NS_LOG_FUNCTION (this);
2013 return;
2014}
2015
2016void
2018{
2019 NS_LOG_FUNCTION (this);
2020
2021 std::map <uint16_t,uint32_t>::iterator it;
2022
2023 for (unsigned int i = 0; i < params.m_macCeList.size (); i++)
2024 {
2025 if ( params.m_macCeList.at (i).m_macCeType == MacCeListElement_s::BSR )
2026 {
2027 // buffer status report
2028 // note that this scheduler does not differentiate the
2029 // allocation according to which LCGs have more/less bytes
2030 // to send.
2031 // Hence the BSR of different LCGs are just summed up to get
2032 // a total queue size that is used for allocation purposes.
2033
2034 uint32_t buffer = 0;
2035 for (uint8_t lcg = 0; lcg < 4; ++lcg)
2036 {
2037 uint8_t bsrId = params.m_macCeList.at (i).m_macCeValue.m_bufferStatus.at (lcg);
2038 buffer += BufferSizeLevelBsr::BsrId2BufferSize (bsrId);
2039 }
2040
2041 uint16_t rnti = params.m_macCeList.at (i).m_rnti;
2042 NS_LOG_LOGIC (this << "RNTI=" << rnti << " buffer=" << buffer);
2043 it = m_ceBsrRxed.find (rnti);
2044 if (it == m_ceBsrRxed.end ())
2045 {
2046 // create the new entry
2047 m_ceBsrRxed.insert ( std::pair<uint16_t, uint32_t > (rnti, buffer));
2048 }
2049 else
2050 {
2051 // update the buffer size value
2052 (*it).second = buffer;
2053 }
2054 }
2055 }
2056
2057 return;
2058}
2059
2060void
2062{
2063 NS_LOG_FUNCTION (this);
2064// retrieve the allocation for this subframe
2065 switch (m_ulCqiFilter)
2066 {
2068 {
2069 // filter all the CQIs that are not SRS based
2070 if (params.m_ulCqi.m_type != UlCqi_s::SRS)
2071 {
2072 return;
2073 }
2074 }
2075 break;
2077 {
2078 // filter all the CQIs that are not SRS based
2079 if (params.m_ulCqi.m_type != UlCqi_s::PUSCH)
2080 {
2081 return;
2082 }
2083 }
2084 break;
2085 default:
2086 NS_FATAL_ERROR ("Unknown UL CQI type");
2087 }
2088
2089 switch (params.m_ulCqi.m_type)
2090 {
2091 case UlCqi_s::PUSCH:
2092 {
2093 std::map <uint16_t, std::vector <uint16_t> >::iterator itMap;
2094 std::map <uint16_t, std::vector <double> >::iterator itCqi;
2095 NS_LOG_DEBUG (this << " Collect PUSCH CQIs of Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf));
2096 itMap = m_allocationMaps.find (params.m_sfnSf);
2097 if (itMap == m_allocationMaps.end ())
2098 {
2099 return;
2100 }
2101 for (uint32_t i = 0; i < (*itMap).second.size (); i++)
2102 {
2103 // convert from fixed point notation Sxxxxxxxxxxx.xxx to double
2104 double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (i));
2105 itCqi = m_ueCqi.find ((*itMap).second.at (i));
2106 if (itCqi == m_ueCqi.end ())
2107 {
2108 // create a new entry
2109 std::vector <double> newCqi;
2110 for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
2111 {
2112 if (i == j)
2113 {
2114 newCqi.push_back (sinr);
2115 }
2116 else
2117 {
2118 // initialize with NO_SINR value.
2119 newCqi.push_back (NO_SINR);
2120 }
2121
2122 }
2123 m_ueCqi.insert (std::pair <uint16_t, std::vector <double> > ((*itMap).second.at (i), newCqi));
2124 // generate correspondent timer
2125 m_ueCqiTimers.insert (std::pair <uint16_t, uint32_t > ((*itMap).second.at (i), m_cqiTimersThreshold));
2126 }
2127 else
2128 {
2129 // update the value
2130 (*itCqi).second.at (i) = sinr;
2131 NS_LOG_DEBUG (this << " RNTI " << (*itMap).second.at (i) << " RB " << i << " SINR " << sinr);
2132 // update correspondent timer
2133 std::map <uint16_t, uint32_t>::iterator itTimers;
2134 itTimers = m_ueCqiTimers.find ((*itMap).second.at (i));
2135 (*itTimers).second = m_cqiTimersThreshold;
2136
2137 }
2138
2139 }
2140 // remove obsolete info on allocation
2141 m_allocationMaps.erase (itMap);
2142 }
2143 break;
2144 case UlCqi_s::SRS:
2145 {
2146 // get the RNTI from vendor specific parameters
2147 uint16_t rnti = 0;
2148 NS_ASSERT (params.m_vendorSpecificList.size () > 0);
2149 for (uint16_t i = 0; i < params.m_vendorSpecificList.size (); i++)
2150 {
2151 if (params.m_vendorSpecificList.at (i).m_type == SRS_CQI_RNTI_VSP)
2152 {
2153 Ptr<SrsCqiRntiVsp> vsp = DynamicCast<SrsCqiRntiVsp> (params.m_vendorSpecificList.at (i).m_value);
2154 rnti = vsp->GetRnti ();
2155 }
2156 }
2157 std::map <uint16_t, std::vector <double> >::iterator itCqi;
2158 itCqi = m_ueCqi.find (rnti);
2159 if (itCqi == m_ueCqi.end ())
2160 {
2161 // create a new entry
2162 std::vector <double> newCqi;
2163 for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
2164 {
2165 double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (j));
2166 newCqi.push_back (sinr);
2167 NS_LOG_INFO (this << " RNTI " << rnti << " new SRS-CQI for RB " << j << " value " << sinr);
2168
2169 }
2170 m_ueCqi.insert (std::pair <uint16_t, std::vector <double> > (rnti, newCqi));
2171 // generate correspondent timer
2172 m_ueCqiTimers.insert (std::pair <uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
2173 }
2174 else
2175 {
2176 // update the values
2177 for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
2178 {
2179 double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (j));
2180 (*itCqi).second.at (j) = sinr;
2181 NS_LOG_INFO (this << " RNTI " << rnti << " update SRS-CQI for RB " << j << " value " << sinr);
2182 }
2183 // update correspondent timer
2184 std::map <uint16_t, uint32_t>::iterator itTimers;
2185 itTimers = m_ueCqiTimers.find (rnti);
2186 (*itTimers).second = m_cqiTimersThreshold;
2187
2188 }
2189
2190
2191 }
2192 break;
2193 case UlCqi_s::PUCCH_1:
2194 case UlCqi_s::PUCCH_2:
2195 case UlCqi_s::PRACH:
2196 {
2197 NS_FATAL_ERROR ("FdTbfqFfMacScheduler supports only PUSCH and SRS UL-CQIs");
2198 }
2199 break;
2200 default:
2201 NS_FATAL_ERROR ("Unknown type of UL-CQI");
2202 }
2203 return;
2204}
2205
2206void
2208{
2209 // refresh DL CQI P01 Map
2210 std::map <uint16_t,uint32_t>::iterator itP10 = m_p10CqiTimers.begin ();
2211 while (itP10 != m_p10CqiTimers.end ())
2212 {
2213 NS_LOG_INFO (this << " P10-CQI for user " << (*itP10).first << " is " << (uint32_t)(*itP10).second << " thr " << (uint32_t)m_cqiTimersThreshold);
2214 if ((*itP10).second == 0)
2215 {
2216 // delete correspondent entries
2217 std::map <uint16_t,uint8_t>::iterator itMap = m_p10CqiRxed.find ((*itP10).first);
2218 NS_ASSERT_MSG (itMap != m_p10CqiRxed.end (), " Does not find CQI report for user " << (*itP10).first);
2219 NS_LOG_INFO (this << " P10-CQI expired for user " << (*itP10).first);
2220 m_p10CqiRxed.erase (itMap);
2221 std::map <uint16_t,uint32_t>::iterator temp = itP10;
2222 itP10++;
2223 m_p10CqiTimers.erase (temp);
2224 }
2225 else
2226 {
2227 (*itP10).second--;
2228 itP10++;
2229 }
2230 }
2231
2232 // refresh DL CQI A30 Map
2233 std::map <uint16_t,uint32_t>::iterator itA30 = m_a30CqiTimers.begin ();
2234 while (itA30 != m_a30CqiTimers.end ())
2235 {
2236 NS_LOG_INFO (this << " A30-CQI for user " << (*itA30).first << " is " << (uint32_t)(*itA30).second << " thr " << (uint32_t)m_cqiTimersThreshold);
2237 if ((*itA30).second == 0)
2238 {
2239 // delete correspondent entries
2240 std::map <uint16_t,SbMeasResult_s>::iterator itMap = m_a30CqiRxed.find ((*itA30).first);
2241 NS_ASSERT_MSG (itMap != m_a30CqiRxed.end (), " Does not find CQI report for user " << (*itA30).first);
2242 NS_LOG_INFO (this << " A30-CQI expired for user " << (*itA30).first);
2243 m_a30CqiRxed.erase (itMap);
2244 std::map <uint16_t,uint32_t>::iterator temp = itA30;
2245 itA30++;
2246 m_a30CqiTimers.erase (temp);
2247 }
2248 else
2249 {
2250 (*itA30).second--;
2251 itA30++;
2252 }
2253 }
2254
2255 return;
2256}
2257
2258
2259void
2261{
2262 // refresh UL CQI Map
2263 std::map <uint16_t,uint32_t>::iterator itUl = m_ueCqiTimers.begin ();
2264 while (itUl != m_ueCqiTimers.end ())
2265 {
2266 NS_LOG_INFO (this << " UL-CQI for user " << (*itUl).first << " is " << (uint32_t)(*itUl).second << " thr " << (uint32_t)m_cqiTimersThreshold);
2267 if ((*itUl).second == 0)
2268 {
2269 // delete correspondent entries
2270 std::map <uint16_t, std::vector <double> >::iterator itMap = m_ueCqi.find ((*itUl).first);
2271 NS_ASSERT_MSG (itMap != m_ueCqi.end (), " Does not find CQI report for user " << (*itUl).first);
2272 NS_LOG_INFO (this << " UL-CQI exired for user " << (*itUl).first);
2273 (*itMap).second.clear ();
2274 m_ueCqi.erase (itMap);
2275 std::map <uint16_t,uint32_t>::iterator temp = itUl;
2276 itUl++;
2277 m_ueCqiTimers.erase (temp);
2278 }
2279 else
2280 {
2281 (*itUl).second--;
2282 itUl++;
2283 }
2284 }
2285
2286 return;
2287}
2288
2289void
2290FdTbfqFfMacScheduler::UpdateDlRlcBufferInfo (uint16_t rnti, uint8_t lcid, uint16_t size)
2291{
2292 std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
2293 LteFlowId_t flow (rnti, lcid);
2294 it = m_rlcBufferReq.find (flow);
2295 if (it != m_rlcBufferReq.end ())
2296 {
2297 NS_LOG_INFO (this << " UE " << rnti << " LC " << (uint16_t)lcid << " txqueue " << (*it).second.m_rlcTransmissionQueueSize << " retxqueue " << (*it).second.m_rlcRetransmissionQueueSize << " status " << (*it).second.m_rlcStatusPduSize << " decrease " << size);
2298 // Update queues: RLC tx order Status, ReTx, Tx
2299 // Update status queue
2300 if (((*it).second.m_rlcStatusPduSize > 0) && (size >= (*it).second.m_rlcStatusPduSize))
2301 {
2302 (*it).second.m_rlcStatusPduSize = 0;
2303 }
2304 else if (((*it).second.m_rlcRetransmissionQueueSize > 0) && (size >= (*it).second.m_rlcRetransmissionQueueSize))
2305 {
2306 (*it).second.m_rlcRetransmissionQueueSize = 0;
2307 }
2308 else if ((*it).second.m_rlcTransmissionQueueSize > 0)
2309 {
2310 uint32_t rlcOverhead;
2311 if (lcid == 1)
2312 {
2313 // for SRB1 (using RLC AM) it's better to
2314 // overestimate RLC overhead rather than
2315 // underestimate it and risk unneeded
2316 // segmentation which increases delay
2317 rlcOverhead = 4;
2318 }
2319 else
2320 {
2321 // minimum RLC overhead due to header
2322 rlcOverhead = 2;
2323 }
2324 // update transmission queue
2325 if ((*it).second.m_rlcTransmissionQueueSize <= size - rlcOverhead)
2326 {
2327 (*it).second.m_rlcTransmissionQueueSize = 0;
2328 }
2329 else
2330 {
2331 (*it).second.m_rlcTransmissionQueueSize -= size - rlcOverhead;
2332 }
2333 }
2334 }
2335 else
2336 {
2337 NS_LOG_ERROR (this << " Does not find DL RLC Buffer Report of UE " << rnti);
2338 }
2339}
2340
2341void
2343{
2344
2345 size = size - 2; // remove the minimum RLC overhead
2346 std::map <uint16_t,uint32_t>::iterator it = m_ceBsrRxed.find (rnti);
2347 if (it != m_ceBsrRxed.end ())
2348 {
2349 NS_LOG_INFO (this << " UE " << rnti << " size " << size << " BSR " << (*it).second);
2350 if ((*it).second >= size)
2351 {
2352 (*it).second -= size;
2353 }
2354 else
2355 {
2356 (*it).second = 0;
2357 }
2358 }
2359 else
2360 {
2361 NS_LOG_ERROR (this << " Does not find BSR report info of UE " << rnti);
2362 }
2363
2364}
2365
2366void
2368{
2369 NS_LOG_FUNCTION (this << " RNTI " << rnti << " txMode " << (uint16_t)txMode);
2371 params.m_rnti = rnti;
2372 params.m_transmissionMode = txMode;
2374}
2375
2376
2377}
AttributeValue implementation for Boolean.
Definition: boolean.h:37
static uint32_t BsrId2BufferSize(uint8_t val)
Convert BSR ID to buffer size.
Definition: lte-common.cc:184
Implements the SCHED SAP and CSCHED SAP for a Frequency Domain Token Bank Fair Queue scheduler.
virtual void SetFfMacSchedSapUser(FfMacSchedSapUser *s)
Set FF MAC sched SAP user function.
std::vector< uint16_t > m_rachAllocationMap
RACH allocation map.
std::map< uint16_t, uint8_t > m_uesTxMode
txMode of the UEs
void DoCschedLcConfigReq(const struct FfMacCschedSapProvider::CschedLcConfigReqParameters &params)
CSched LC config request function.
std::vector< struct RachListElement_s > m_rachList
RACH list.
uint32_t m_tokenPoolSize
maximum size of token pool (byte)
std::map< uint16_t, fdtbfqsFlowPerf_t > m_flowStatsUl
Map of UE statistics (per RNTI basis)
void DoSchedUlCqiInfoReq(const struct FfMacSchedSapProvider::SchedUlCqiInfoReqParameters &params)
Sched UL CQI info request function.
LteFfrSapProvider * m_ffrSapProvider
FFR SAP provider.
std::map< LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters > m_rlcBufferReq
Vectors of UE's LC info.
virtual ~FdTbfqFfMacScheduler()
Destructor.
std::map< uint16_t, SbMeasResult_s > m_a30CqiRxed
Map of UE's DL CQI A30 received.
uint64_t bankSize
the number of bytes in token bank
uint8_t UpdateHarqProcessId(uint16_t rnti)
Update and return a new process Id for the RNTI specified.
void DoCschedUeReleaseReq(const struct FfMacCschedSapProvider::CschedUeReleaseReqParameters &params)
CSched UE release request function.
LteFfrSapUser * m_ffrSapUser
FFR SAP user.
std::map< uint16_t, uint8_t > m_ulHarqCurrentProcessId
UL HARQ current process ID.
void DoSchedUlTriggerReq(const struct FfMacSchedSapProvider::SchedUlTriggerReqParameters &params)
Sched UL trigger request function.
std::map< uint16_t, DlHarqProcessesDciBuffer_t > m_dlHarqProcessesDciBuffer
DL HARQ process DCI buffer.
friend class MemberSchedSapProvider< FdTbfqFfMacScheduler >
allow MemberSchedSapProvider<FdTbfqFfMacScheduler> claass friend access
void RefreshHarqProcesses()
Refresh HARQ processes according to the timers.
virtual void DoDispose(void)
Destructor implementation.
void RefreshDlCqiMaps(void)
Refresh DL CQI maps function.
void DoSchedDlRachInfoReq(const struct FfMacSchedSapProvider::SchedDlRachInfoReqParameters &params)
Sched DL RACH info request function.
std::map< uint16_t, uint32_t > m_ceBsrRxed
Map of UE's buffer status reports received.
void DoCschedUeConfigReq(const struct FfMacCschedSapProvider::CschedUeConfigReqParameters &params)
CSched UE config request function.
virtual void SetLteFfrSapProvider(LteFfrSapProvider *s)
Set FFR SAP provider function.
uint32_t m_creditableThreshold
threshold of flow credit
void UpdateDlRlcBufferInfo(uint16_t rnti, uint8_t lcid, uint16_t size)
Update DL RLC buffer info function.
std::map< uint16_t, std::vector< uint16_t > > m_allocationMaps
Map of previous allocated UE per RBG (used to retrieve info from UL-CQI)
std::map< uint16_t, uint8_t > m_dlHarqCurrentProcessId
DL HARQ current process ID.
std::map< uint16_t, uint32_t > m_a30CqiTimers
Map of UE's timers on DL CQI A30 received.
static TypeId GetTypeId(void)
Get the type ID.
void DoSchedDlCqiInfoReq(const struct FfMacSchedSapProvider::SchedDlCqiInfoReqParameters &params)
Sched DL CQI info request function.
void DoSchedDlPagingBufferReq(const struct FfMacSchedSapProvider::SchedDlPagingBufferReqParameters &params)
Sched DL paging buffer request function.
void DoSchedUlMacCtrlInfoReq(const struct FfMacSchedSapProvider::SchedUlMacCtrlInfoReqParameters &params)
Sched UL MAC control info request function.
std::vector< DlInfoListElement_s > m_dlInfoListBuffered
HARQ retx buffered.
FfMacCschedSapProvider::CschedCellConfigReqParameters m_cschedCellConfig
Csched cell config.
std::map< uint16_t, std::vector< double > > m_ueCqi
Map of UEs' UL-CQI per RBG.
double EstimateUlSinr(uint16_t rnti, uint16_t rb)
Estimate UL SNR function.
virtual void SetFfMacCschedSapUser(FfMacCschedSapUser *s)
Set FF MAC Csched SAP user function.
void DoSchedDlRlcBufferReq(const struct FfMacSchedSapProvider::SchedDlRlcBufferReqParameters &params)
Sched DL RLC buffer request function.
std::map< uint16_t, UlHarqProcessesDciBuffer_t > m_ulHarqProcessesDciBuffer
UL HARQ process DCI buffer.
std::map< uint16_t, uint32_t > m_ueCqiTimers
Map of UEs' timers on UL-CQI per RBG.
virtual FfMacSchedSapProvider * GetFfMacSchedSapProvider()
Get FF MAC sched SAP provider function.
void TransmissionModeConfigurationUpdate(uint16_t rnti, uint8_t txMode)
Transmisson mode config update function.
void DoSchedUlNoiseInterferenceReq(const struct FfMacSchedSapProvider::SchedUlNoiseInterferenceReqParameters &params)
Sched UL noise interference request function.
std::map< uint16_t, uint32_t > m_p10CqiTimers
Map of UE's timers on DL CQI P01 received.
std::map< uint16_t, uint8_t > m_p10CqiRxed
Map of UE's DL CQI P01 received.
std::map< uint16_t, UlHarqProcessesStatus_t > m_ulHarqProcessesStatus
UL HARQ process status.
uint32_t m_creditLimit
flow credit limit (byte)
int m_debtLimit
flow debt limit (byte)
void DoSchedUlSrInfoReq(const struct FfMacSchedSapProvider::SchedUlSrInfoReqParameters &params)
Sched UL SR info request function.
uint8_t m_ulGrantMcs
MCS for UL grant (default 0)
FfMacCschedSapProvider * m_cschedSapProvider
CSched SAP provider.
virtual FfMacCschedSapProvider * GetFfMacCschedSapProvider()
Get FF MAC CSched SAP provider function.
std::map< uint16_t, DlHarqProcessesStatus_t > m_dlHarqProcessesStatus
DL HARQ process status.
void DoCschedCellConfigReq(const struct FfMacCschedSapProvider::CschedCellConfigReqParameters &params)
Csched cell config request function.
FfMacSchedSapProvider * m_schedSapProvider
sched SAP provider
std::map< uint16_t, DlHarqRlcPduListBuffer_t > m_dlHarqProcessesRlcPduListBuffer
DL HARQ process RLC PDU list buffer.
void DoSchedDlTriggerReq(const struct FfMacSchedSapProvider::SchedDlTriggerReqParameters &params)
Sched DL trigger request function.
void RefreshUlCqiMaps(void)
Refresh UL CQI maps function.
void DoSchedDlMacBufferReq(const struct FfMacSchedSapProvider::SchedDlMacBufferReqParameters &params)
Sched DL MAC buffer request function.
std::map< uint16_t, fdtbfqsFlowPerf_t > m_flowStatsDl
Map of UE statistics (per RNTI basis) in downlink.
uint8_t HarqProcessAvailability(uint16_t rnti)
Return the availability of free process for the RNTI specified.
FfMacSchedSapUser * m_schedSapUser
sched SAP user
uint16_t m_nextRntiUl
RNTI of the next user to be served next scheduling in UL.
unsigned int LcActivePerFlow(uint16_t rnti)
LC Active per flow function.
std::map< uint16_t, DlHarqProcessesTimer_t > m_dlHarqProcessesTimer
DL HARQ process timer.
FfMacCschedSapUser * m_cschedSapUser
Csched SAP user.
friend class MemberCschedSapProvider< FdTbfqFfMacScheduler >
allow MemberCschedSapProvider<FdTbfqFfMacScheduler> class friend access
void UpdateUlRlcBufferInfo(uint16_t rnti, uint16_t size)
Update UL RLC buffer info function.
int GetRbgSize(int dlbandwidth)
Get RBG size function.
virtual LteFfrSapUser * GetLteFfrSapUser()
Get FFR SAP user function.
bool m_harqOn
m_harqOn when false inhibit the HARQ mechanisms (by default active)
void DoCschedLcReleaseReq(const struct FfMacCschedSapProvider::CschedLcReleaseReqParameters &params)
CSched LC release request function.
Provides the CSCHED SAP.
FfMacCschedSapUser class.
virtual void CschedUeConfigUpdateInd(const struct CschedUeConfigUpdateIndParameters &params)=0
CSCHED_UE_UPDATE_IND.
virtual void CschedUeConfigCnf(const struct CschedUeConfigCnfParameters &params)=0
CSCHED_UE_CONFIG_CNF.
Provides the SCHED SAP.
FfMacSchedSapUser class.
virtual void SchedUlConfigInd(const struct SchedUlConfigIndParameters &params)=0
SCHED_UL_CONFIG_IND.
virtual void SchedDlConfigInd(const struct SchedDlConfigIndParameters &params)=0
SCHED_DL_CONFIG_IND.
This abstract base class identifies the interface by means of which the helper object can plug on the...
UlCqiFilter_t m_ulCqiFilter
UL CQI filter.
Hold a signed integer type.
Definition: integer.h:44
static double fpS11dot3toDouble(uint16_t val)
Convert from fixed point S11.3 notation to double.
Definition: lte-common.cc:155
Service Access Point (SAP) offered by the Frequency Reuse algorithm instance to the MAC Scheduler ins...
Definition: lte-ffr-sap.h:40
virtual uint8_t GetTpc(uint16_t rnti)=0
GetTpc.
virtual void ReportUlCqiInfo(const struct FfMacSchedSapProvider::SchedUlCqiInfoReqParameters &params)=0
ReportUlCqiInfo.
virtual std::vector< bool > GetAvailableUlRbg()=0
Get vector of available RB in UL for this Cell.
virtual bool IsUlRbgAvailableForUe(int i, uint16_t rnti)=0
Check if UE can be served on i-th RB in UL.
virtual std::vector< bool > GetAvailableDlRbg()=0
Get vector of available RBG in DL for this Cell.
virtual uint16_t GetMinContinuousUlBandwidth()=0
Get the minimum continuous Ul bandwidth.
virtual bool IsDlRbgAvailableForUe(int i, uint16_t rnti)=0
Check if UE can be served on i-th RB in DL.
virtual void ReportDlCqiInfo(const struct FfMacSchedSapProvider::SchedDlCqiInfoReqParameters &params)=0
ReportDlCqiInfo.
Service Access Point (SAP) offered by the eNodeB RRC instance to the Frequency Reuse algorithm instan...
Definition: lte-ffr-sap.h:139
Template for the implementation of the LteFfrSapUser as a member of an owner class of type C to which...
Definition: lte-ffr-sap.h:256
Smart pointer class similar to boost::intrusive_ptr.
Definition: ptr.h:74
static Time Now(void)
Return the current simulation virtual time.
Definition: simulator.cc:195
@ MS
millisecond
Definition: nstime.h:115
static uint8_t TxMode2LayerNum(uint8_t txMode)
Transmit mode 2 layer number.
Definition: lte-common.cc:212
a unique identifier for an interface.
Definition: type-id.h:59
TypeId SetParent(TypeId tid)
Set the parent TypeId.
Definition: type-id.cc:922
Hold an unsigned integer type.
Definition: uinteger.h:44
#define NO_SINR
#define HARQ_PROC_NUM
#define HARQ_DL_TIMEOUT
#define NS_ASSERT(condition)
At runtime, in debugging builds, if this condition is not true, the program prints the source file,...
Definition: assert.h:67
#define NS_ASSERT_MSG(condition, message)
At runtime, in debugging builds, if this condition is not true, the program prints the message to out...
Definition: assert.h:88
Ptr< const AttributeChecker > MakeBooleanChecker(void)
Definition: boolean.cc:121
Ptr< const AttributeAccessor > MakeBooleanAccessor(T1 a1)
Definition: boolean.h:85
Ptr< const AttributeAccessor > MakeIntegerAccessor(T1 a1)
Definition: integer.h:45
Ptr< const AttributeAccessor > MakeUintegerAccessor(T1 a1)
Definition: uinteger.h:45
#define NS_FATAL_ERROR(msg)
Report a fatal error with a message and terminate.
Definition: fatal-error.h:165
#define NS_ABORT_MSG_IF(cond, msg)
Abnormal program termination if a condition is true, with a message.
Definition: abort.h:108
#define NS_LOG_ERROR(msg)
Use NS_LOG to output a message of level LOG_ERROR.
Definition: log.h:257
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:205
#define NS_LOG_DEBUG(msg)
Use NS_LOG to output a message of level LOG_DEBUG.
Definition: log.h:273
#define NS_LOG_LOGIC(msg)
Use NS_LOG to output a message of level LOG_LOGIC.
Definition: log.h:289
#define NS_LOG_FUNCTION(parameters)
If log level LOG_FUNCTION is enabled, this macro will output all input parameters separated by ",...
#define NS_LOG_INFO(msg)
Use NS_LOG to output a message of level LOG_INFO.
Definition: log.h:281
#define NS_OBJECT_ENSURE_REGISTERED(type)
Register an Object subclass with the TypeId system.
Definition: object-base.h:45
#define HARQ_PERIOD
Definition: lte-common.h:30
#define SRS_CQI_RNTI_VSP
Every class exported by the ns3 library is enclosed in the ns3 namespace.
std::vector< UlDciListElement_s > UlHarqProcessesDciBuffer_t
UL HARQ process DCI buffer vector.
std::vector< uint8_t > DlHarqProcessesTimer_t
DL HARQ process timer vector typedef.
std::vector< uint8_t > DlHarqProcessesStatus_t
DL HARQ process status vector typedef.
std::vector< RlcPduList_t > DlHarqRlcPduListBuffer_t
vector of the 8 HARQ processes per UE
@ SUCCESS
Definition: ff-mac-common.h:62
static const int FdTbfqType0AllocationRbg[4]
FdTbfqType0AllocationRbg value array.
std::vector< DlDciListElement_s > DlHarqProcessesDciBuffer_t
DL HARQ process DCI buffer vector typedef.
std::vector< uint8_t > UlHarqProcessesStatus_t
UL HARQ process status vector.
See section 4.3.8 builDataListElement.
struct DlDciListElement_s m_dci
DCI.
std::vector< std::vector< struct RlcPduListElement_s > > m_rlcPduList
RLC PDU list.
See section 4.3.10 buildRARListElement.
See section 4.3.1 dlDciListElement.
Definition: ff-mac-common.h:94
std::vector< uint8_t > m_ndi
New data indicator.
uint8_t m_harqProcess
HARQ process.
uint32_t m_rbBitmap
RB bitmap.
Definition: ff-mac-common.h:96
std::vector< uint8_t > m_mcs
MCS.
uint8_t m_resAlloc
The type of resource allocation.
Definition: ff-mac-common.h:98
std::vector< uint16_t > m_tbsSize
The TBs size.
Definition: ff-mac-common.h:99
std::vector< uint8_t > m_rv
Redundancy version.
uint8_t m_tpc
Tx power control command.
Parameters of the CSCHED_LC_CONFIG_REQ primitive.
std::vector< struct LogicalChannelConfigListElement_s > m_logicalChannelConfigList
logicalChannelConfigList
Parameters of the CSCHED_LC_RELEASE_REQ primitive.
std::vector< uint8_t > m_logicalChannelIdentity
logical channel identity
Parameters of the CSCHED_UE_CONFIG_REQ primitive.
Parameters of the CSCHED_UE_RELEASE_REQ primitive.
Parameters of the CSCHED_UE_CONFIG_CNF primitive.
Parameters of the CSCHED_UE_CONFIG_UPDATE_IND primitive.
Parameters of the SCHED_DL_CQI_INFO_REQ primitive.
std::vector< struct CqiListElement_s > m_cqiList
CQI list.
Parameters of the SCHED_DL_MAC_BUFFER_REQ primitive.
Parameters of the SCHED_DL_PAGING_BUFFER_REQ primitive.
Parameters of the SCHED_DL_RACH_INFO_REQ primitive.
std::vector< struct RachListElement_s > m_rachList
RACH list.
Parameters of the SCHED_DL_TRIGGER_REQ primitive.
std::vector< struct DlInfoListElement_s > m_dlInfoList
DL info list.
Parameters of the SCHED_UL_CQI_INFO_REQ primitive.
std::vector< struct VendorSpecificListElement_s > m_vendorSpecificList
vendor specific list
Parameters of the SCHED_UL_MAC_CTRL_INFO_REQ primitive.
std::vector< struct MacCeListElement_s > m_macCeList
MAC CE list.
Parameters of the SCHED_UL_NOISE_INTERFERENCE_REQ primitive.
Parameters of the SCHED_UL_SR_INFO_REQ primitive.
Parameters of the SCHED_UL_TRIGGER_REQ primitive.
std::vector< struct UlInfoListElement_s > m_ulInfoList
UL info list.
uint8_t m_nrOfPdcchOfdmSymbols
number of PDCCH OFDM symbols
std::vector< struct BuildDataListElement_s > m_buildDataList
build data list
std::vector< struct BuildRarListElement_s > m_buildRarList
build rar list
Parameters of the SCHED_UL_CONFIG_IND primitive.
std::vector< struct UlDciListElement_s > m_dciList
DCI list.
LteFlowId structure.
Definition: lte-common.h:37
See section 4.3.9 rlcPDU_ListElement.
uint8_t m_logicalChannelIdentity
logical channel identity
std::vector< uint16_t > m_sinr
SINR.
See section 4.3.2 ulDciListElement.
int8_t m_pdcchPowerOffset
CCH power offset.
int8_t m_tpc
Tx power control command.
uint8_t m_dai
DL assignment index.
uint8_t m_cceIndex
Control Channel Element index.
uint8_t m_ulIndex
UL index.
uint8_t m_ueTxAntennaSelection
UE antenna selection.
bool m_cqiRequest
CQI request.
uint8_t m_n2Dmrs
n2 DMRS
uint8_t m_freqHopping
freq hopping
uint8_t m_aggrLevel
The aggregation level.
bool m_ulDelay
UL delay?
int8_t m_tpc
Tx power control command.
bool m_cqiRequest
CQI request?
bool m_hopping
hopping?
uint16_t m_tbSize
size
uint8_t m_rbLen
length
uint8_t m_mcs
MCS.
uint8_t m_rbStart
start
uint16_t m_rnti
RNTI.
Time flowStart
flow start time
int counter
the number of token borrow or given to token bank
uint32_t burstCredit
the maximum number of tokens connection i can borrow from the bank each time
int debtLimit
counter threshold that the flow cannot further borrow tokens from bank
uint32_t creditableThreshold
the flow cannot borrow token from bank until the number of token it has deposited to bank reaches thi...
uint64_t packetArrivalRate
packet arrival rate( byte/s)
uint32_t tokenPoolSize
current size of token pool (byte)
uint32_t maxTokenPoolSize
maximum size of token pool (byte)
uint64_t tokenGenerationRate
token generation rate ( byte/s )