A Discrete-Event Network Simulator
API
lte-ue-phy.cc
Go to the documentation of this file.
1/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
2/*
3 * Copyright (c) 2010 TELEMATICS LAB, DEE - Politecnico di Bari
4 * Copyright (c) 2018 Fraunhofer ESK : RLF extensions
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation;
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 *
19 * Author: Giuseppe Piro <g.piro@poliba.it>
20 * Marco Miozzo <marco.miozzo@cttc.es>
21 * Nicola Baldo <nbaldo@cttc.es>
22 * Modified by:
23 * Vignesh Babu <ns3-dev@esk.fraunhofer.de> (RLF extensions)
24 */
25
26#include <ns3/object-factory.h>
27#include <ns3/log.h>
28#include <ns3/node.h>
29#include <cfloat>
30#include <cmath>
31#include <ns3/simulator.h>
32#include <ns3/double.h>
33#include "lte-ue-phy.h"
34#include "lte-enb-phy.h"
35#include "lte-net-device.h"
36#include "lte-ue-net-device.h"
37#include "lte-enb-net-device.h"
39#include "lte-amc.h"
40#include "lte-ue-mac.h"
41#include "ff-mac-common.h"
42#include "lte-chunk-processor.h"
43#include <ns3/lte-common.h>
44#include <ns3/pointer.h>
45#include <ns3/boolean.h>
46#include <ns3/lte-ue-power-control.h>
47
48namespace ns3 {
49
50NS_LOG_COMPONENT_DEFINE ("LteUePhy");
51
52
53
61static const Time UL_DATA_DURATION = NanoSeconds (1e6 - 71429 - 1);
62
68
69
70
71
73// member SAP forwarders
75
78{
79public:
86
87 // inherited from LtePhySapProvider
88 virtual void SendMacPdu (Ptr<Packet> p);
90 virtual void SendRachPreamble (uint32_t prachId, uint32_t raRnti);
91 virtual void NotifyConnectionSuccessful ();
92
93private:
95};
96
98{}
99
100void
102{
103 m_phy->DoSendMacPdu (p);
104}
105
106void
108{
110}
111
112void
114{
115 m_phy->DoSendRachPreamble (prachId, raRnti);
116}
117
118void
120{
122}
123
124
126// LteUePhy methods
128
130static const std::string g_uePhyStateName[LteUePhy::NUM_STATES] =
131{
132 "CELL_SEARCH",
133 "SYNCHRONIZED"
134};
135
140static inline const std::string & ToString (LteUePhy::State s)
141{
142 return g_uePhyStateName[s];
143}
144
145
147
148
150{
151 NS_LOG_FUNCTION (this);
152 NS_FATAL_ERROR ("This constructor should not be called");
153}
154
156 : LtePhy (dlPhy, ulPhy),
157 m_uePhySapUser (0),
158 m_ueCphySapUser (0),
159 m_state (CELL_SEARCH),
160 m_subframeNo (0),
161 m_rsReceivedPowerUpdated (false),
162 m_rsInterferencePowerUpdated (false),
163 m_dataInterferencePowerUpdated (false),
164 m_pssReceived (false),
165 m_ueMeasurementsFilterPeriod (MilliSeconds (200)),
166 m_ueMeasurementsFilterLast (MilliSeconds (0)),
167 m_rsrpSinrSampleCounter (0),
168 m_imsi (0)
169{
170 m_amc = CreateObject <LteAmc> ();
171 m_powerControl = CreateObject <LteUePowerControl> ();
175
176 NS_ASSERT_MSG (Simulator::Now ().GetNanoSeconds () == 0,
177 "Cannot create UE devices after simulation started");
179
180 DoReset ();
181}
182
183
185{
186 m_txModeGain.clear ();
187}
188
189void
191{
192 NS_LOG_FUNCTION (this);
193 delete m_uePhySapProvider;
194 delete m_ueCphySapProvider;
196}
197
198
199
200TypeId
202{
203 static TypeId tid = TypeId ("ns3::LteUePhy")
204 .SetParent<LtePhy> ()
205 .SetGroupName ("Lte")
206 .AddConstructor<LteUePhy> ()
207 .AddAttribute ("TxPower",
208 "Transmission power in dBm",
209 DoubleValue (10.0),
212 MakeDoubleChecker<double> ())
213 .AddAttribute ("NoiseFigure",
214 "Loss (dB) in the Signal-to-Noise-Ratio due to non-idealities in the receiver."
215 " According to Wikipedia (http://en.wikipedia.org/wiki/Noise_figure), this is "
216 "\"the difference in decibels (dB) between"
217 " the noise output of the actual receiver to the noise output of an "
218 " ideal receiver with the same overall gain and bandwidth when the receivers "
219 " are connected to sources at the standard noise temperature T0.\" "
220 "In this model, we consider T0 = 290K.",
221 DoubleValue (9.0),
224 MakeDoubleChecker<double> ())
225 .AddAttribute ("TxMode1Gain",
226 "Transmission mode 1 gain in dB",
227 DoubleValue (0.0),
229 MakeDoubleChecker<double> ())
230 .AddAttribute ("TxMode2Gain",
231 "Transmission mode 2 gain in dB",
232 DoubleValue (4.2),
234 MakeDoubleChecker<double> ())
235 .AddAttribute ("TxMode3Gain",
236 "Transmission mode 3 gain in dB",
237 DoubleValue (-2.8),
239 MakeDoubleChecker<double> ())
240 .AddAttribute ("TxMode4Gain",
241 "Transmission mode 4 gain in dB",
242 DoubleValue (0.0),
244 MakeDoubleChecker<double> ())
245 .AddAttribute ("TxMode5Gain",
246 "Transmission mode 5 gain in dB",
247 DoubleValue (0.0),
249 MakeDoubleChecker<double> ())
250 .AddAttribute ("TxMode6Gain",
251 "Transmission mode 6 gain in dB",
252 DoubleValue (0.0),
254 MakeDoubleChecker<double> ())
255 .AddAttribute ("TxMode7Gain",
256 "Transmission mode 7 gain in dB",
257 DoubleValue (0.0),
259 MakeDoubleChecker<double> ())
260 .AddTraceSource ("ReportCurrentCellRsrpSinr",
261 "RSRP and SINR statistics.",
263 "ns3::LteUePhy::RsrpSinrTracedCallback")
264 .AddAttribute ("RsrpSinrSamplePeriod",
265 "The sampling period for reporting RSRP-SINR stats (default value 1)",
266 UintegerValue (1),
268 MakeUintegerChecker<uint16_t> ())
269 .AddTraceSource ("ReportUlPhyResourceBlocks",
270 "UL transmission PHY layer resource blocks.",
272 "ns3::LteUePhy::UlPhyResourceBlocksTracedCallback")
273 .AddTraceSource ("ReportPowerSpectralDensity",
274 "Power Spectral Density data.",
276 "ns3::LteUePhy::PowerSpectralDensityTracedCallback")
277 .AddTraceSource ("UlPhyTransmission",
278 "DL transmission PHY layer statistics.",
280 "ns3::PhyTransmissionStatParameters::TracedCallback")
281 .AddAttribute ("DlSpectrumPhy",
282 "The downlink LteSpectrumPhy associated to this LtePhy",
284 PointerValue (),
286 MakePointerChecker <LteSpectrumPhy> ())
287 .AddAttribute ("UlSpectrumPhy",
288 "The uplink LteSpectrumPhy associated to this LtePhy",
290 PointerValue (),
292 MakePointerChecker <LteSpectrumPhy> ())
293 .AddAttribute ("RsrqUeMeasThreshold",
294 "Receive threshold for PSS on RSRQ [dB]",
295 DoubleValue (-1000.0),
297 MakeDoubleChecker<double> ())
298 .AddAttribute ("UeMeasurementsFilterPeriod",
299 "Time period for reporting UE measurements, i.e., the"
300 "length of layer-1 filtering.",
301 TimeValue (MilliSeconds (200)),
304 .AddAttribute ("DownlinkCqiPeriodicity",
305 "Periodicity in milliseconds for reporting the"
306 "wideband and subband downlink CQIs to the eNB",
310 .AddTraceSource ("ReportUeMeasurements",
311 "Report UE measurements RSRP (dBm) and RSRQ (dB).",
313 "ns3::LteUePhy::RsrpRsrqTracedCallback")
314 .AddTraceSource ("StateTransition",
315 "Trace fired upon every UE PHY state transition",
317 "ns3::LteUePhy::StateTracedCallback")
318 .AddAttribute ("EnableUplinkPowerControl",
319 "If true, Uplink Power Control will be enabled.",
320 BooleanValue (true),
323 .AddAttribute ("Qout",
324 "corresponds to 10% block error rate of a hypothetical PDCCH transmission"
325 "taking into account the PCFICH errors with transmission parameters."
326 "see 3GPP TS 36.213 4.2.1 and TS 36.133 7.6",
327 DoubleValue (-5),
329 MakeDoubleChecker<double> ())
330 .AddAttribute ("Qin",
331 "corresponds to 2% block error rate of a hypothetical PDCCH transmission"
332 "taking into account the PCFICH errors with transmission parameters."
333 "see 3GPP TS 36.213 4.2.1 and TS 36.133 7.6",
334 DoubleValue (-3.9),
336 MakeDoubleChecker<double> ())
337 .AddAttribute ("NumQoutEvalSf",
338 "This specifies the total number of consecutive subframes"
339 "which corresponds to the Qout evaluation period",
340 UintegerValue (200), //see 3GPP 3GPP TS 36.133 7.6.2.1
343 MakeUintegerChecker<uint16_t> ())
344 .AddAttribute ("NumQinEvalSf",
345 "This specifies the total number of consecutive subframes"
346 "which corresponds to the Qin evaluation period",
347 UintegerValue (100), //see 3GPP 3GPP TS 36.133 7.6.2.1
350 MakeUintegerChecker<uint16_t> ())
351 .AddAttribute ("EnableRlfDetection",
352 "If true, RLF detection will be enabled.",
353 BooleanValue (true),
356 ;
357 return tid;
358}
359
360void
362{
363 NS_LOG_FUNCTION (this);
364
365 NS_ABORT_MSG_IF (m_netDevice == nullptr, "LteNetDevice is not available in LteUePhy");
366 Ptr<Node> node = m_netDevice->GetNode ();
367 NS_ABORT_MSG_IF (node == nullptr, "Node is not available in the LteNetDevice of LteUePhy");
368 uint32_t nodeId = node->GetId ();
369
370 //ScheduleWithContext() is needed here to set context for logs,
371 //because Initialize() is called outside of Node::AddDevice().
372
374
376}
377
378void
380{
381 NS_LOG_FUNCTION (this);
382 m_uePhySapUser = s;
383}
384
387{
388 NS_LOG_FUNCTION (this);
389 return (m_uePhySapProvider);
390}
391
392
393void
395{
396 NS_LOG_FUNCTION (this);
397 m_ueCphySapUser = s;
398}
399
402{
403 NS_LOG_FUNCTION (this);
404 return (m_ueCphySapProvider);
405}
406
407void
409{
410 NS_LOG_FUNCTION (this << nf);
411 m_noiseFigure = nf;
412}
413
414double
416{
417 NS_LOG_FUNCTION (this);
418 return m_noiseFigure;
419}
420
421void
423{
424 NS_LOG_FUNCTION (this << pow);
425 m_txPower = pow;
427}
428
429double
431{
432 NS_LOG_FUNCTION (this);
433 return m_txPower;
434}
435
438{
439 NS_LOG_FUNCTION (this);
440 return m_powerControl;
441}
442
443uint8_t
445{
446 return (m_macChTtiDelay);
447}
448
451{
453}
454
457{
458 return m_uplinkSpectrumPhy;
459}
460
461void
462LteUePhy::SetNumQoutEvalSf (uint16_t numSubframes)
463{
464 NS_LOG_FUNCTION (this << numSubframes);
465 NS_ABORT_MSG_IF (numSubframes % 10 != 0, "Number of subframes used for Qout "
466 "evaluation must be multiple of 10");
467 m_numOfQoutEvalSf = numSubframes;
468}
469
470void
471LteUePhy::SetNumQinEvalSf (uint16_t numSubframes)
472{
473 NS_LOG_FUNCTION (this << numSubframes);
474 NS_ABORT_MSG_IF (numSubframes % 10 != 0, "Number of subframes used for Qin "
475 "evaluation must be multiple of 10");
476 m_numOfQinEvalSf = numSubframes;
477}
478
479uint16_t
481{
482 NS_LOG_FUNCTION (this);
483 return m_numOfQoutEvalSf;
484}
485
486uint16_t
488{
489 NS_LOG_FUNCTION (this);
490 return m_numOfQinEvalSf;
491}
492
493void
495{
496 NS_LOG_FUNCTION (this);
497
498 SetMacPdu (p);
499}
500
501
502void
504{
506}
507
508void
510{
511 NS_LOG_FUNCTION (this);
512
514
516 m_uplinkSpectrumPhy->SetTxPowerSpectralDensity (txPsd);
517}
518
519
520void
522{
523 NS_LOG_FUNCTION (this);
525}
526
527
528std::vector <int>
530{
531 NS_LOG_FUNCTION (this);
533}
534
535
536std::vector <int>
538{
539 NS_LOG_FUNCTION (this);
541}
542
543
546{
547 NS_LOG_FUNCTION (this);
548 LteSpectrumValueHelper psdHelper;
551
552 return psd;
553}
554
555void
557{
558 NS_LOG_FUNCTION (this);
568 if (m_cellId == 0)
569 {
570 return;
571 }
572 m_ctrlSinrForRlf = sinr;
573 GenerateCqiRsrpRsrq (sinr);
574}
575
576void
578{
579 NS_LOG_FUNCTION (this << sinr);
580
582 NS_ASSERT (m_cellId > 0);
583
584 if (m_dlConfigured && m_ulConfigured && (m_rnti > 0))
585 {
586 // check periodic wideband CQI
588 {
589 NS_LOG_DEBUG ("Reporting P10 CQI at : " << Simulator::Now ().As (Time::MS)
590 << ". Last reported at : " << m_p10CqiLast.As (Time::MS));
591 Ptr<LteUeNetDevice> thisDevice = GetDevice ()->GetObject<LteUeNetDevice> ();
593 if (msg)
594 {
596 }
598 }
599 // check aperiodic high-layer configured subband CQI
601 {
602 NS_LOG_DEBUG ("Reporting A30 CQI at : " << Simulator::Now ().As (Time::MS)
603 << ". Last reported at : " << m_a30CqiLast.As (Time::MS));
604 Ptr<LteUeNetDevice> thisDevice = GetDevice ()->GetObject<LteUeNetDevice> ();
606 if (msg)
607 {
609 }
611 }
612 }
613
614 // Generate PHY trace
617 {
618 NS_ASSERT_MSG (m_rsReceivedPowerUpdated, " RS received power info obsolete");
619 // RSRP evaluated as averaged received power among RBs
620 double sum = 0.0;
621 uint8_t rbNum = 0;
622 Values::const_iterator it;
624 {
625 // convert PSD [W/Hz] to linear power [W] for the single RE
626 // we consider only one RE for the RS since the channel is
627 // flat within the same RB
628 double powerTxW = ((*it) * 180000.0) / 12.0;
629 sum += powerTxW;
630 rbNum++;
631 }
632 double rsrp = (rbNum > 0) ? (sum / rbNum) : DBL_MAX;
633 // averaged SINR among RBs
634 double avSinr = ComputeAvgSinr (sinr);
635
636 NS_LOG_INFO (this << " cellId " << m_cellId << " rnti " << m_rnti << " RSRP " << rsrp << " SINR " << avSinr << " ComponentCarrierId " << (uint16_t) m_componentCarrierId);
637 //trigger RLF detection only when UE has an active RRC connection
638 //and RLF detection attribute is set to true
640 {
641 double avrgSinrForRlf = ComputeAvgSinr (m_ctrlSinrForRlf);
642 RlfDetection (10 * log10 (avrgSinrForRlf));
643 }
644
647 }
648
649 if (m_pssReceived)
650 {
651 // measure instantaneous RSRQ now
652 NS_ASSERT_MSG (m_rsInterferencePowerUpdated, " RS interference power info obsolete");
653
654 std::list <PssElement>::iterator itPss = m_pssList.begin ();
655 while (itPss != m_pssList.end ())
656 {
657 uint16_t rbNum = 0;
658 double rssiSum = 0.0;
659
660 Values::const_iterator itIntN = m_rsInterferencePower.ConstValuesBegin ();
661 Values::const_iterator itPj = m_rsReceivedPower.ConstValuesBegin ();
662 for (itPj = m_rsReceivedPower.ConstValuesBegin ();
664 itIntN++, itPj++)
665 {
666 rbNum++;
667 // convert PSD [W/Hz] to linear power [W] for the single RE
668 double interfPlusNoisePowerTxW = ((*itIntN) * 180000.0) / 12.0;
669 double signalPowerTxW = ((*itPj) * 180000.0) / 12.0;
670 rssiSum += (2 * (interfPlusNoisePowerTxW + signalPowerTxW));
671 }
672
673 NS_ASSERT (rbNum == (*itPss).nRB);
674 double rsrq_dB = 10 * log10 ((*itPss).pssPsdSum / rssiSum);
675
676 if (rsrq_dB > m_pssReceptionThreshold)
677 {
678 NS_LOG_INFO (this << " PSS RNTI " << m_rnti << " cellId " << m_cellId
679 << " has RSRQ " << rsrq_dB << " and RBnum " << rbNum);
680 // store measurements
681 std::map <uint16_t, UeMeasurementsElement>::iterator itMeasMap;
682 itMeasMap = m_ueMeasurementsMap.find ((*itPss).cellId);
683 if (itMeasMap != m_ueMeasurementsMap.end ())
684 {
685 (*itMeasMap).second.rsrqSum += rsrq_dB;
686 (*itMeasMap).second.rsrqNum++;
687 }
688 else
689 {
690 NS_LOG_WARN ("race condition of bug 2091 occurred");
691 }
692 }
693
694 itPss++;
695
696 } // end of while (itPss != m_pssList.end ())
697
698 m_pssList.clear ();
699
700 } // end of if (m_pssReceived)
701
702} // end of void LteUePhy::GenerateCtrlCqiReport (const SpectrumValue& sinr)
703
704double
706{
707 NS_LOG_FUNCTION (this);
708
709 // averaged SINR among RBs
710 double sum = 0.0;
711 uint8_t rbNum = 0;
712 Values::const_iterator it;
713
714 for (it = sinr.ConstValuesBegin (); it != sinr.ConstValuesEnd (); it++)
715 {
716 sum += (*it);
717 rbNum++;
718 }
719
720 double avrgSinr = (rbNum > 0) ? (sum / rbNum) : DBL_MAX;
721
722 return avrgSinr;
723}
724
725void
727{
728 // Not used by UE, CQI are based only on RS
729}
730
731void
733{
734 NS_LOG_FUNCTION (this);
735
745 if (m_cellId == 0)
746 {
747 return;
748 }
749
751 //NOTE: The SINR received by this method is
752 //based on CTRL, which is not used to compute
753 //PDSCH (i.e., data) based SINR. It is used
754 //for RLF detection.
755 m_ctrlSinrForRlf = sinr;
756
759 {
760 // we have a measurement of interf + noise for the denominator
761 // of SINR = S/(I+N)
762 mixedSinr /= m_dataInterferencePower;
764 NS_LOG_LOGIC ("data interf measurement available, SINR = " << mixedSinr);
765 }
766 else
767 {
768 // we did not see any interference on data, so interference is
769 // there and we have only noise at the denominator of SINR
770 mixedSinr /= (*m_noisePsd);
771 NS_LOG_LOGIC ("no data interf measurement available, SINR = " << mixedSinr);
772 }
773
774 /*
775 * some RBs are not used in PDSCH and their SINR is very high
776 * for example with bandwidth 25, last RB is not used
777 * it can make avgSinr value very high, what is incorrect
778 */
779 uint32_t rbgSize = GetRbgSize ();
780 uint32_t modulo = m_dlBandwidth % rbgSize;
781 double avgMixedSinr = 0;
782 uint32_t usedRbgNum = 0;
783 for (uint32_t i = 0; i < (m_dlBandwidth - 1 - modulo); i++)
784 {
785 usedRbgNum++;
786 avgMixedSinr += mixedSinr[i];
787 }
788 avgMixedSinr = avgMixedSinr / usedRbgNum;
789 for (uint32_t i = 0; i < modulo; i++)
790 {
791 mixedSinr[m_dlBandwidth - 1 - i] = avgMixedSinr;
792 }
793
794 GenerateCqiRsrpRsrq (mixedSinr);
795}
796
797void
799{
800 NS_LOG_FUNCTION (this << interf);
802 m_rsInterferencePower = interf;
803}
804
805void
807{
808 NS_LOG_FUNCTION (this << interf);
809
812}
813
814void
816{
817 NS_LOG_FUNCTION (this << power);
819 m_rsReceivedPower = power;
820
822 {
823 double sum = 0;
824 uint32_t rbNum = 0;
825 Values::const_iterator it;
827 {
828 double powerTxW = ((*it) * 180000);
829 sum += powerTxW;
830 rbNum++;
831 }
832 double rsrp = 10 * log10 (sum) + 30;
833
834 NS_LOG_INFO ("RSRP: " << rsrp);
835 m_powerControl->SetRsrp (rsrp);
836 }
837}
838
841{
842 NS_LOG_FUNCTION (this);
843
844
845 // apply transmission mode gain
847 SpectrumValue newSinr = sinr;
848 newSinr *= m_txModeGain.at (m_transmissionMode);
849
850 // CREATE DlCqiLteControlMessage
851 Ptr<DlCqiLteControlMessage> msg = Create<DlCqiLteControlMessage> ();
852 CqiListElement_s dlcqi;
853 std::vector<int> cqi;
855 {
856 cqi = m_amc->CreateCqiFeedbacks (newSinr, m_dlBandwidth);
857
859 int nbSubChannels = cqi.size ();
860 double cqiSum = 0.0;
861 int activeSubChannels = 0;
862 // average the CQIs of the different RBs
863 for (int i = 0; i < nbSubChannels; i++)
864 {
865 if (cqi.at (i) != -1)
866 {
867 cqiSum += cqi.at (i);
868 activeSubChannels++;
869 }
870 NS_LOG_DEBUG (this << " subch " << i << " cqi " << cqi.at (i));
871 }
872 dlcqi.m_rnti = m_rnti;
873 dlcqi.m_ri = 1; // not yet used
874 dlcqi.m_cqiType = CqiListElement_s::P10; // Peridic CQI using PUCCH wideband
875 NS_ASSERT_MSG (nLayer > 0, " nLayer negative");
876 NS_ASSERT_MSG (nLayer < 3, " nLayer limit is 2s");
877 for (int i = 0; i < nLayer; i++)
878 {
879 if (activeSubChannels > 0)
880 {
881 dlcqi.m_wbCqi.push_back ((uint16_t) cqiSum / activeSubChannels);
882 }
883 else
884 {
885 // approximate with the worst case -> CQI = 1
886 dlcqi.m_wbCqi.push_back (1);
887 }
888 }
889 //NS_LOG_DEBUG (this << " Generate P10 CQI feedback " << (uint16_t) cqiSum / activeSubChannels);
890 dlcqi.m_wbPmi = 0; // not yet used
891 // dl.cqi.m_sbMeasResult others CQI report modes: not yet implemented
892 }
894 {
895 cqi = m_amc->CreateCqiFeedbacks (newSinr, GetRbgSize ());
897 int nbSubChannels = cqi.size ();
898 int rbgSize = GetRbgSize ();
899 double cqiSum = 0.0;
900 int cqiNum = 0;
901 SbMeasResult_s rbgMeas;
902 //NS_LOG_DEBUG (this << " Create A30 CQI feedback, RBG " << rbgSize << " cqiNum " << nbSubChannels << " band " << (uint16_t)m_dlBandwidth);
903 for (int i = 0; i < nbSubChannels; i++)
904 {
905 if (cqi.at (i) != -1)
906 {
907 cqiSum += cqi.at (i);
908 }
909 // else "nothing" no CQI is treated as CQI = 0 (worst case scenario)
910 cqiNum++;
911 if (cqiNum == rbgSize)
912 {
913 // average the CQIs of the different RBGs
914 //NS_LOG_DEBUG (this << " RBG CQI " << (uint16_t) cqiSum / rbgSize);
916 hlCqi.m_sbPmi = 0; // not yet used
917 for (int i = 0; i < nLayer; i++)
918 {
919 hlCqi.m_sbCqi.push_back ((uint16_t) cqiSum / rbgSize);
920 }
921 rbgMeas.m_higherLayerSelected.push_back (hlCqi);
922 cqiSum = 0.0;
923 cqiNum = 0;
924 }
925 }
926 dlcqi.m_rnti = m_rnti;
927 dlcqi.m_ri = 1; // not yet used
928 dlcqi.m_cqiType = CqiListElement_s::A30; // Aperidic CQI using PUSCH
929 //dlcqi.m_wbCqi.push_back ((uint16_t) cqiSum / nbSubChannels);
930 dlcqi.m_wbPmi = 0; // not yet used
931 dlcqi.m_sbMeasResult = rbgMeas;
932 }
933
934 msg->SetDlCqi (dlcqi);
935 return msg;
936}
937
938
939void
941{
942 NS_LOG_FUNCTION (this << Simulator::Now ());
943 NS_LOG_DEBUG (this << " Report UE Measurements ");
944
946
947 std::map <uint16_t, UeMeasurementsElement>::iterator it;
948 for (it = m_ueMeasurementsMap.begin (); it != m_ueMeasurementsMap.end (); it++)
949 {
950 double avg_rsrp = (*it).second.rsrpSum / (double)(*it).second.rsrpNum;
951 double avg_rsrq = (*it).second.rsrqSum / (double)(*it).second.rsrqNum;
952 /*
953 * In CELL_SEARCH state, this may result in avg_rsrq = 0/0 = -nan.
954 * UE RRC must take this into account when receiving measurement reports.
955 * TODO remove this shortcoming by calculating RSRQ during CELL_SEARCH
956 */
957 NS_LOG_DEBUG (this << " CellId " << (*it).first
958 << " RSRP " << avg_rsrp
959 << " (nSamples " << (uint16_t)(*it).second.rsrpNum << ")"
960 << " RSRQ " << avg_rsrq
961 << " (nSamples " << (uint16_t)(*it).second.rsrqNum << ")"
962 << " ComponentCarrierID " << (uint16_t)m_componentCarrierId);
963
965 newEl.m_cellId = (*it).first;
966 newEl.m_rsrp = avg_rsrp;
967 newEl.m_rsrq = avg_rsrq;
968 ret.m_ueMeasurementsList.push_back (newEl);
970
971 // report to UE measurements trace
972 m_reportUeMeasurements (m_rnti, (*it).first, avg_rsrp, avg_rsrq, ((*it).first == m_cellId ? 1 : 0), m_componentCarrierId);
973 }
974
975 // report to RRC
977
978 m_ueMeasurementsMap.clear ();
980}
981
982void
984{
985 NS_LOG_FUNCTION (this << cqiPeriodicity);
986 m_a30CqiPeriodicity = cqiPeriodicity;
987 m_p10CqiPeriodicity = cqiPeriodicity;
988}
989
990void
992{
993 NS_LOG_FUNCTION (this << msg);
994
995 SetControlMessages (msg);
996}
997
998void
1000{
1001 NS_LOG_FUNCTION (this << raPreambleId);
1002
1003 // unlike other control messages, RACH preamble is sent ASAP
1004 Ptr<RachPreambleLteControlMessage> msg = Create<RachPreambleLteControlMessage> ();
1005 msg->SetRapId (raPreambleId);
1006 m_raPreambleId = raPreambleId;
1007 m_raRnti = raRnti;
1008 m_controlMessagesQueue.at (0).push_back (msg);
1009}
1010
1011void
1013{
1019 if (m_componentCarrierId == 0)
1020 {
1021 m_isConnected = true;
1022 // Initialize the parameters for radio link failure detection
1024 }
1025}
1026
1027
1028
1029void
1031{
1032 NS_LOG_FUNCTION (this);
1033
1034 std::list<Ptr<LteControlMessage> >::iterator it;
1035 NS_LOG_DEBUG (this << " I am rnti = " << m_rnti << " and I received msgs " << (uint16_t) msgList.size ());
1036 for (it = msgList.begin (); it != msgList.end (); it++)
1037 {
1038 Ptr<LteControlMessage> msg = (*it);
1039
1040 if (msg->GetMessageType () == LteControlMessage::DL_DCI)
1041 {
1042 Ptr<DlDciLteControlMessage> msg2 = DynamicCast<DlDciLteControlMessage> (msg);
1043
1044 DlDciListElement_s dci = msg2->GetDci ();
1045 if (dci.m_rnti != m_rnti)
1046 {
1047 // DCI not for me
1048 continue;
1049 }
1050
1051 if (dci.m_resAlloc != 0)
1052 {
1053 NS_FATAL_ERROR ("Resource Allocation type not implemented");
1054 }
1055
1056 std::vector <int> dlRb;
1057
1058 // translate the DCI to Spectrum framework
1059 uint32_t mask = 0x1;
1060 for (int i = 0; i < 32; i++)
1061 {
1062 if (((dci.m_rbBitmap & mask) >> i) == 1)
1063 {
1064 for (int k = 0; k < GetRbgSize (); k++)
1065 {
1066 dlRb.push_back ((i * GetRbgSize ()) + k);
1067// NS_LOG_DEBUG(this << " RNTI " << m_rnti << " RBG " << i << " DL-DCI allocated PRB " << (i*GetRbgSize()) + k);
1068 }
1069 }
1070 mask = (mask << 1);
1071 }
1073 {
1075 }
1076
1077
1078 // send TB info to LteSpectrumPhy
1079 NS_LOG_DEBUG (this << " UE " << m_rnti << " DL-DCI " << dci.m_rnti << " bitmap " << dci.m_rbBitmap);
1080 for (uint8_t i = 0; i < dci.m_tbsSize.size (); i++)
1081 {
1082 m_downlinkSpectrumPhy->AddExpectedTb (dci.m_rnti, dci.m_ndi.at (i), dci.m_tbsSize.at (i), dci.m_mcs.at (i), dlRb, i, dci.m_harqProcess, dci.m_rv.at (i), true /* DL */);
1083 }
1084
1086
1087
1088 }
1089 else if (msg->GetMessageType () == LteControlMessage::UL_DCI)
1090 {
1091 // set the uplink bandwidth according to the UL-CQI
1092 Ptr<UlDciLteControlMessage> msg2 = DynamicCast<UlDciLteControlMessage> (msg);
1093 UlDciListElement_s dci = msg2->GetDci ();
1094 if (dci.m_rnti != m_rnti)
1095 {
1096 // DCI not for me
1097 continue;
1098 }
1099 NS_LOG_INFO (this << " UL DCI");
1100 std::vector <int> ulRb;
1101 for (int i = 0; i < dci.m_rbLen; i++)
1102 {
1103 ulRb.push_back (i + dci.m_rbStart);
1104 //NS_LOG_DEBUG (this << " UE RB " << i + dci.m_rbStart);
1105 }
1108 // fire trace of UL Tx PHY stats
1109 HarqProcessInfoList_t harqInfoList = m_harqPhyModule->GetHarqProcessInfoUl (m_rnti, 0);
1111 params.m_cellId = m_cellId;
1112 params.m_imsi = 0; // it will be set by DlPhyTransmissionCallback in LteHelper
1114 params.m_rnti = m_rnti;
1115 params.m_txMode = 0; // always SISO for UE
1116 params.m_layer = 0;
1117 params.m_mcs = dci.m_mcs;
1118 params.m_size = dci.m_tbSize;
1119 params.m_rv = harqInfoList.size ();
1120 params.m_ndi = dci.m_ndi;
1122 m_ulPhyTransmission (params);
1123 // pass the info to the MAC
1125 }
1126 else if (msg->GetMessageType () == LteControlMessage::RAR)
1127 {
1128 Ptr<RarLteControlMessage> rarMsg = DynamicCast<RarLteControlMessage> (msg);
1129 if (rarMsg->GetRaRnti () == m_raRnti)
1130 {
1131 for (std::list<RarLteControlMessage::Rar>::const_iterator it = rarMsg->RarListBegin (); it != rarMsg->RarListEnd (); ++it)
1132 {
1133 if (it->rapId != m_raPreambleId)
1134 {
1135 // UL grant not for me
1136 continue;
1137 }
1138 else
1139 {
1140 NS_LOG_INFO ("received RAR RNTI " << m_raRnti);
1141 // set the uplink bandwidth according to the UL grant
1142 std::vector <int> ulRb;
1143 for (int i = 0; i < it->rarPayload.m_grant.m_rbLen; i++)
1144 {
1145 ulRb.push_back (i + it->rarPayload.m_grant.m_rbStart);
1146 }
1147
1149 // pass the info to the MAC
1151 // reset RACH variables with out of range values
1152 m_raPreambleId = 255;
1153 m_raRnti = 11;
1154 }
1155 }
1156 }
1157 }
1158 else if (msg->GetMessageType () == LteControlMessage::MIB)
1159 {
1160 NS_LOG_INFO ("received MIB");
1161 NS_ASSERT (m_cellId > 0);
1162 Ptr<MibLteControlMessage> msg2 = DynamicCast<MibLteControlMessage> (msg);
1164 }
1165 else if (msg->GetMessageType () == LteControlMessage::SIB1)
1166 {
1167 NS_LOG_INFO ("received SIB1");
1168 NS_ASSERT (m_cellId > 0);
1169 Ptr<Sib1LteControlMessage> msg2 = DynamicCast<Sib1LteControlMessage> (msg);
1171 }
1172 else
1173 {
1174 // pass the message to UE-MAC
1176 }
1177
1178 }
1179
1180
1181}
1182
1183
1184void
1186{
1187 NS_LOG_FUNCTION (this << cellId << (*p));
1188
1189 double sum = 0.0;
1190 uint16_t nRB = 0;
1191 Values::const_iterator itPi;
1192 for (itPi = p->ConstValuesBegin (); itPi != p->ConstValuesEnd (); itPi++)
1193 {
1194 // convert PSD [W/Hz] to linear power [W] for the single RE
1195 double powerTxW = ((*itPi) * 180000.0) / 12.0;
1196 sum += powerTxW;
1197 nRB++;
1198 }
1199
1200 // measure instantaneous RSRP now
1201 double rsrp_dBm = 10 * log10 (1000 * (sum / (double)nRB));
1202 NS_LOG_INFO (this << " PSS RNTI " << m_rnti << " cellId " << m_cellId
1203 << " has RSRP " << rsrp_dBm << " and RBnum " << nRB);
1204 // note that m_pssReceptionThreshold does not apply here
1205
1206 // store measurements
1207 std::map <uint16_t, UeMeasurementsElement>::iterator itMeasMap = m_ueMeasurementsMap.find (cellId);
1208 if (itMeasMap == m_ueMeasurementsMap.end ())
1209 {
1210 // insert new entry
1212 newEl.rsrpSum = rsrp_dBm;
1213 newEl.rsrpNum = 1;
1214 newEl.rsrqSum = 0;
1215 newEl.rsrqNum = 0;
1216 m_ueMeasurementsMap.insert (std::pair <uint16_t, UeMeasurementsElement> (cellId, newEl));
1217 }
1218 else
1219 {
1220 (*itMeasMap).second.rsrpSum += rsrp_dBm;
1221 (*itMeasMap).second.rsrpNum++;
1222 }
1223
1224 /*
1225 * Collect the PSS for later processing in GenerateCtrlCqiReport()
1226 * (to be called from ChunkProcessor after RX is finished).
1227 */
1228 m_pssReceived = true;
1229 PssElement el;
1230 el.cellId = cellId;
1231 el.pssPsdSum = sum;
1232 el.nRB = nRB;
1233 m_pssList.push_back (el);
1234
1235} // end of void LteUePhy::ReceivePss (uint16_t cellId, Ptr<SpectrumValue> p)
1236
1237
1238void
1240{
1242}
1243
1244
1245void
1247{
1248 NS_LOG_FUNCTION (this << frameNo << subframeNo);
1249
1250 NS_ASSERT_MSG (frameNo > 0, "the SRS index check code assumes that frameNo starts at 1");
1251
1252 // refresh internal variables
1255 m_pssReceived = false;
1256
1257 if (m_ulConfigured)
1258 {
1259 // update uplink transmission mask according to previous UL-CQIs
1260 std::vector <int> rbMask = m_subChannelsForTransmissionQueue.at (0);
1262
1263 // shift the queue
1264 for (uint8_t i = 1; i < m_macChTtiDelay; i++)
1265 {
1267 }
1269
1271 {
1272
1273 NS_ASSERT_MSG (subframeNo > 0 && subframeNo <= 10, "the SRS index check code assumes that subframeNo starts at 1");
1274 if ((((frameNo - 1) * 10 + (subframeNo - 1)) % m_srsPeriodicity) == m_srsSubframeOffset)
1275 {
1276 NS_LOG_INFO ("frame " << frameNo << " subframe " << subframeNo << " sending SRS (offset=" << m_srsSubframeOffset << ", period=" << m_srsPeriodicity << ")");
1279 this);
1280 }
1281 }
1282
1283 std::list<Ptr<LteControlMessage> > ctrlMsg = GetControlMessages ();
1284 // send packets in queue
1285 NS_LOG_LOGIC (this << " UE - start slot for PUSCH + PUCCH - RNTI " << m_rnti << " CELLID " << m_cellId);
1286 // send the current burts of packets
1288 if (pb)
1289 {
1291 {
1294 }
1295 m_uplinkSpectrumPhy->StartTxDataFrame (pb, ctrlMsg, UL_DATA_DURATION);
1296 }
1297 else
1298 {
1299 // send only PUCCH (ideal: fake null bandwidth signal)
1300 if (ctrlMsg.size () > 0)
1301 {
1302 NS_LOG_LOGIC (this << " UE - start TX PUCCH (NO PUSCH)");
1303 std::vector <int> dlRb;
1304
1306 {
1308 }
1309
1311 m_uplinkSpectrumPhy->StartTxDataFrame (pb, ctrlMsg, UL_DATA_DURATION);
1312 }
1313 else
1314 {
1315 NS_LOG_LOGIC (this << " UE - UL NOTHING TO SEND");
1316 }
1317 }
1318 } // m_configured
1319
1320 // trigger the MAC
1321 m_uePhySapUser->SubframeIndication (frameNo, subframeNo);
1322
1323 m_subframeNo = subframeNo;
1324 ++subframeNo;
1325 if (subframeNo > 10)
1326 {
1327 ++frameNo;
1328 subframeNo = 1;
1329 }
1330
1331 // schedule next subframe indication
1332 Simulator::Schedule (Seconds (GetTti ()), &LteUePhy::SubframeIndication, this, frameNo, subframeNo);
1333}
1334
1335
1336void
1338{
1339 NS_LOG_FUNCTION (this << " UE " << m_rnti << " start tx SRS, cell Id " << (uint32_t) m_cellId);
1340 NS_ASSERT (m_cellId > 0);
1341 // set the current tx power spectral density (full bandwidth)
1342 std::vector <int> dlRb;
1343 for (uint8_t i = 0; i < m_ulBandwidth; i++)
1344 {
1345 dlRb.push_back (i);
1346 }
1347
1349 {
1351 }
1352
1354 m_uplinkSpectrumPhy->StartTxUlSrsFrame ();
1355}
1356
1357
1358void
1360{
1361 NS_LOG_FUNCTION (this);
1362
1363 m_rnti = 0;
1364 m_cellId = 0;
1365 m_isConnected = false;
1367 m_srsPeriodicity = 0;
1368 m_srsConfigured = false;
1369 m_dlConfigured = false;
1370 m_ulConfigured = false;
1371 m_raPreambleId = 255; // value out of range
1372 m_raRnti = 11; // value out of range
1376 m_paLinear = 1;
1377
1381
1382 m_packetBurstQueue.clear ();
1383 m_controlMessagesQueue.clear ();
1385 for (int i = 0; i < m_macChTtiDelay; i++)
1386 {
1387 Ptr<PacketBurst> pb = CreateObject <PacketBurst> ();
1388 m_packetBurstQueue.push_back (pb);
1389 std::list<Ptr<LteControlMessage> > l;
1390 m_controlMessagesQueue.push_back (l);
1391 }
1392 std::vector <int> ulRb;
1394
1396 m_downlinkSpectrumPhy->Reset ();
1397 m_uplinkSpectrumPhy->Reset ();
1398 m_pssList.clear ();
1403 m_downlinkSpectrumPhy->m_interferenceCtrl->EndRx ();
1404 m_downlinkSpectrumPhy->m_interferenceData->EndRx ();
1405
1406} // end of void LteUePhy::DoReset ()
1407
1408void
1410{
1411 NS_LOG_FUNCTION (this << dlEarfcn);
1412 m_dlEarfcn = dlEarfcn;
1413 DoSetDlBandwidth (6); // configure DL for receiving PSS
1415}
1416
1417void
1418LteUePhy::DoSynchronizeWithEnb (uint16_t cellId, uint32_t dlEarfcn)
1419{
1420 NS_LOG_FUNCTION (this << cellId << dlEarfcn);
1421 m_dlEarfcn = dlEarfcn;
1422 DoSynchronizeWithEnb (cellId);
1423}
1424
1425void
1427{
1428 NS_LOG_FUNCTION (this << cellId);
1429
1430 if (cellId == 0)
1431 {
1432 NS_FATAL_ERROR ("Cell ID shall not be zero");
1433 }
1434
1435 m_cellId = cellId;
1436 m_downlinkSpectrumPhy->SetCellId (cellId);
1437 m_uplinkSpectrumPhy->SetCellId (cellId);
1438
1439 // configure DL for receiving the BCH with the minimum bandwidth
1440 DoSetDlBandwidth (6);
1441
1442 m_dlConfigured = false;
1443 m_ulConfigured = false;
1444
1446}
1447
1448uint16_t
1450{
1451 return m_cellId;
1452}
1453
1456{
1457 return m_dlEarfcn;
1458}
1459
1460void
1461LteUePhy::DoSetDlBandwidth (uint16_t dlBandwidth)
1462{
1463 NS_LOG_FUNCTION (this << (uint32_t) dlBandwidth);
1464 if (m_dlBandwidth != dlBandwidth or !m_dlConfigured)
1465 {
1466 m_dlBandwidth = dlBandwidth;
1467
1468 static const int Type0AllocationRbg[4] = {
1469 10, // RGB size 1
1470 26, // RGB size 2
1471 63, // RGB size 3
1472 110 // RGB size 4
1473 }; // see table 7.1.6.1-1 of 36.213
1474 for (int i = 0; i < 4; i++)
1475 {
1476 if (dlBandwidth < Type0AllocationRbg[i])
1477 {
1478 m_rbgSize = i + 1;
1479 break;
1480 }
1481 }
1482
1484 m_downlinkSpectrumPhy->SetNoisePowerSpectralDensity (m_noisePsd);
1485 m_downlinkSpectrumPhy->GetChannel ()->AddRx (m_downlinkSpectrumPhy);
1486 }
1487 m_dlConfigured = true;
1488}
1489
1490
1491void
1492LteUePhy::DoConfigureUplink (uint32_t ulEarfcn, uint16_t ulBandwidth)
1493{
1494 m_ulEarfcn = ulEarfcn;
1495 m_ulBandwidth = ulBandwidth;
1496 m_ulConfigured = true;
1497}
1498
1499void
1501{
1502 NS_LOG_FUNCTION (this);
1503 m_powerControl->ConfigureReferenceSignalPower (referenceSignalPower);
1504}
1505
1506void
1507LteUePhy::DoSetRnti (uint16_t rnti)
1508{
1509 NS_LOG_FUNCTION (this << rnti);
1510 m_rnti = rnti;
1511
1514}
1515
1516void
1518{
1519 NS_LOG_FUNCTION (this << (uint16_t)txMode);
1520 m_transmissionMode = txMode;
1521 m_downlinkSpectrumPhy->SetTransmissionMode (txMode);
1522}
1523
1524void
1526{
1527 NS_LOG_FUNCTION (this << srcCi);
1530 m_srsConfigured = true;
1531
1532 // a guard time is needed for the case where the SRS periodicity is changed dynamically at run time
1533 // if we use a static one, we can have a 0ms guard time
1535 NS_LOG_DEBUG (this << " UE SRS P " << m_srsPeriodicity << " RNTI " << m_rnti << " offset " << m_srsSubframeOffset << " cellId " << m_cellId << " CI " << srcCi);
1536}
1537
1538void
1540{
1541 NS_LOG_FUNCTION (this << pa);
1542 m_paLinear = pow (10,(pa / 10));
1543}
1544
1545void
1546LteUePhy::DoSetRsrpFilterCoefficient (uint8_t rsrpFilterCoefficient)
1547{
1548 NS_LOG_FUNCTION (this << (uint16_t) (rsrpFilterCoefficient));
1549 m_powerControl->SetRsrpFilterCoefficient (rsrpFilterCoefficient);
1550}
1551
1552void
1554{
1555 NS_LOG_FUNCTION (this);
1556 m_downlinkSpectrumPhy->m_harqPhyModule->ClearDlHarqBuffer (m_rnti); //flush HARQ buffers
1559 m_pssReceived = false;
1560 DoReset ();
1561}
1562
1563void
1565{
1566 NS_LOG_FUNCTION (this);
1567
1569}
1570
1571void
1573{
1574 NS_LOG_FUNCTION (this);
1575 // indicates that the downlink radio link quality has to be monitored for in-sync indications
1576 m_downlinkInSync = false;
1577}
1578
1579void
1580LteUePhy::DoSetImsi (uint64_t imsi)
1581{
1582 NS_LOG_FUNCTION (this);
1583 m_imsi = imsi;
1584}
1585
1586void
1588{
1589 NS_LOG_FUNCTION (this);
1590 m_numOfSubframes = 0;
1591 m_sinrDbFrame = 0;
1592 m_numOfFrames = 0;
1593 m_downlinkInSync = true;
1594}
1595
1596void
1598{
1599 NS_LOG_FUNCTION (this << sinrDb);
1600 m_sinrDbFrame += sinrDb;
1602 NS_LOG_LOGIC ("No of Subframes: " << m_numOfSubframes << " UE synchronized: " << m_downlinkInSync);
1603 //check for out_of_snyc indications first when UE is both DL and UL synchronized
1604 //m_downlinkInSync=true indicates that the evaluation is for out-of-sync indications
1606 {
1612 {
1613 m_numOfFrames++; //increment the counter if a frame cannot be decoded
1614 NS_LOG_LOGIC ("No of Frames which cannot be decoded: " << m_numOfFrames);
1615 }
1616 else
1617 {
1623 NS_LOG_INFO ("Resetting frame counter at phy. Current value = " << m_numOfFrames);
1624 m_numOfFrames = 0;
1625 // Also reset the sync indicator counter at RRC
1627 }
1628 m_numOfSubframes = 0;
1629 m_sinrDbFrame = 0;
1630 }
1637 {
1638 NS_LOG_LOGIC ("At " << Simulator::Now ().As (Time::MS)
1639 << " ms UE PHY sending out of snyc indication to UE RRC layer");
1641 m_numOfFrames = 0;
1642 }
1643 //check for in_snyc indications when T310 timer is started
1644 //m_downlinkInSync=false indicates that the evaluation is for in-sync indications
1645 if (!m_downlinkInSync && m_numOfSubframes == 10)
1646 {
1653 {
1654 m_numOfFrames++; //increment the counter if a frame can be decoded
1655 NS_LOG_LOGIC ("No of Frames successfully decoded: " << m_numOfFrames);
1656 }
1657 else
1658 {
1664 m_numOfFrames = 0;
1665 // Also reset the sync indicator counter at RRC
1667 }
1668 m_numOfSubframes = 0;
1669 m_sinrDbFrame = 0;
1670 }
1676 {
1677 NS_LOG_LOGIC ("At " << Simulator::Now ().As (Time::MS)
1678 << " ms UE PHY sending in snyc indication to UE RRC layer");
1680 m_numOfFrames = 0;
1681 }
1682}
1683
1684
1685void
1687{
1688 SetTxModeGain (1, gain);
1689}
1690
1691void
1693{
1694 SetTxModeGain (2, gain);
1695}
1696
1697void
1699{
1700 SetTxModeGain (3, gain);
1701}
1702
1703void
1705{
1706 SetTxModeGain (4, gain);
1707}
1708
1709void
1711{
1712 SetTxModeGain (5, gain);
1713}
1714
1715void
1717{
1718 SetTxModeGain (6, gain);
1719}
1720
1721void
1723{
1724 SetTxModeGain (7, gain);
1725}
1726
1727
1728void
1729LteUePhy::SetTxModeGain (uint8_t txMode, double gain)
1730{
1731 NS_LOG_FUNCTION (this << gain);
1732 // convert to linear
1733 double gainLin = std::pow (10.0, (gain / 10.0));
1734 if (m_txModeGain.size () < txMode)
1735 {
1736 m_txModeGain.resize (txMode);
1737 }
1738 std::vector <double> temp;
1739 temp = m_txModeGain;
1740 m_txModeGain.clear ();
1741 for (uint8_t i = 0; i < temp.size (); i++)
1742 {
1743 if (i == txMode - 1)
1744 {
1745 m_txModeGain.push_back (gainLin);
1746 }
1747 else
1748 {
1749 m_txModeGain.push_back (temp.at (i));
1750 }
1751 }
1752 // forward the info to DL LteSpectrumPhy
1753 m_downlinkSpectrumPhy->SetTxModeGain (txMode, gain);
1754}
1755
1756
1757
1758void
1760{
1761 NS_LOG_FUNCTION (this);
1762 // get the feedback from LteSpectrumPhy and send it through ideal PUCCH to eNB
1763 Ptr<DlHarqFeedbackLteControlMessage> msg = Create<DlHarqFeedbackLteControlMessage> ();
1764 msg->SetDlHarqFeedback (m);
1765 SetControlMessages (msg);
1766}
1767
1768void
1770{
1771 m_harqPhyModule = harq;
1772}
1773
1774
1777{
1778 NS_LOG_FUNCTION (this);
1779 return m_state;
1780}
1781
1782
1783void
1785{
1786 NS_LOG_FUNCTION (this << newState);
1787 State oldState = m_state;
1788 m_state = newState;
1789 NS_LOG_INFO (this << " cellId=" << m_cellId << " rnti=" << m_rnti
1790 << " UePhy " << ToString (oldState)
1791 << " --> " << ToString (newState));
1792 m_stateTransitionTrace (m_cellId, m_rnti, oldState, newState);
1793}
1794
1795
1796} // namespace ns3
AttributeValue implementation for Boolean.
Definition: boolean.h:37
This class can be used to hold variables of floating point type such as 'double' or 'float'.
Definition: double.h:41
void Cancel(void)
This method is syntactic sugar for the ns3::Simulator::Cancel method.
Definition: event-id.cc:53
The LtePhy models the physical layer of LTE.
Definition: lte-phy.h:53
double m_txPower
Transmission power in dBm.
Definition: lte-phy.h:249
void DoDispose()
Destructor implementation.
Definition: lte-phy.cc:78
uint8_t GetRbgSize(void) const
Definition: lte-phy.cc:186
uint16_t GetSrsPeriodicity(uint16_t srcCi) const
Definition: lte-phy.cc:150
std::vector< Ptr< PacketBurst > > m_packetBurstQueue
A queue of packet bursts to be sent.
Definition: lte-phy.h:289
uint16_t m_ulBandwidth
The UL bandwidth in number of PRBs.
Definition: lte-phy.h:269
Ptr< LteNetDevice > GetDevice() const
Get the device where the phy layer is attached.
Definition: lte-phy.cc:100
Ptr< PacketBurst > GetPacketBurst(void)
Definition: lte-phy.cc:198
uint8_t m_componentCarrierId
component carrier Id used to address sap
Definition: lte-phy.h:311
double m_noiseFigure
Loss (dB) in the Signal-to-Noise-Ratio due to non-idealities in the receiver.
Definition: lte-phy.h:261
uint32_t m_ulEarfcn
The uplink carrier frequency.
Definition: lte-phy.h:286
uint16_t m_dlBandwidth
The DL bandwidth in number of PRBs.
Definition: lte-phy.h:274
Ptr< LteSpectrumPhy > m_downlinkSpectrumPhy
The downlink LteSpectrumPhy associated to this LtePhy.
Definition: lte-phy.h:238
void SetMacPdu(Ptr< Packet > p)
Definition: lte-phy.cc:192
uint16_t GetSrsSubframeOffset(uint16_t srcCi) const
Definition: lte-phy.cc:168
Ptr< LteNetDevice > m_netDevice
Pointer to the NetDevice where this PHY layer is attached.
Definition: lte-phy.h:232
std::vector< std::list< Ptr< LteControlMessage > > > m_controlMessagesQueue
A queue of control messages to be sent.
Definition: lte-phy.h:291
uint16_t m_cellId
Cell identifier.
Definition: lte-phy.h:308
void SetControlMessages(Ptr< LteControlMessage > m)
Definition: lte-phy.cc:217
std::list< Ptr< LteControlMessage > > GetControlMessages(void)
Definition: lte-phy.cc:225
uint32_t m_dlEarfcn
The downlink carrier frequency.
Definition: lte-phy.h:281
Ptr< LteSpectrumPhy > m_uplinkSpectrumPhy
The uplink LteSpectrumPhy associated to this LtePhy.
Definition: lte-phy.h:243
double GetTti(void) const
Definition: lte-phy.cc:142
uint8_t m_rbgSize
The RB group size according to the bandwidth.
Definition: lte-phy.h:276
uint8_t m_macChTtiDelay
Delay between MAC and channel layer in terms of TTIs.
Definition: lte-phy.h:301
This class defines all functions to create spectrum model for lte.
static Ptr< SpectrumValue > CreateUlTxPowerSpectralDensity(uint16_t earfcn, uint16_t bandwidth, double powerTx, std::vector< int > activeRbs)
create a spectrum value representing the uplink power spectral density of a signal to be transmitted.
static Ptr< SpectrumValue > CreateNoisePowerSpectralDensity(uint32_t earfcn, uint16_t bandwidth, double noiseFigure)
create a SpectrumValue that models the power spectral density of AWGN
Service Access Point (SAP) offered by the UE PHY to the UE RRC for control purposes.
Service Access Point (SAP) offered by the UE PHY to the UE RRC for control purposes.
virtual void NotifyInSync()=0
Send an in sync indication to UE RRC.
virtual void ReportUeMeasurements(UeMeasurementsParameters params)=0
Send a report of RSRP and RSRQ values perceived from PSS by the PHY entity (after applying layer-1 fi...
virtual void RecvMasterInformationBlock(uint16_t cellId, LteRrcSap::MasterInformationBlock mib)=0
Relay an MIB message from the PHY entity to the RRC layer.
virtual void RecvSystemInformationBlockType1(uint16_t cellId, LteRrcSap::SystemInformationBlockType1 sib1)=0
Relay an SIB1 message from the PHY entity to the RRC layer.
virtual void NotifyOutOfSync()=0
Send an out of sync indication to UE RRC.
virtual void ResetSyncIndicationCounter()=0
Reset the sync indication counter.
The LteUeNetDevice class implements the UE net device.
The LteSpectrumPhy models the physical layer of LTE.
Definition: lte-ue-phy.h:55
void SetTxMode1Gain(double gain)
Set transmit mode 1 gain function.
Definition: lte-ue-phy.cc:1686
SpectrumValue m_dataInterferencePower
data interference power
Definition: lte-ue-phy.h:733
virtual void DoInitialize(void)
Initialize() implementation.
Definition: lte-ue-phy.cc:361
void SetSubChannelsForTransmission(std::vector< int > mask)
Set a list of sub channels to use in TX.
Definition: lte-ue-phy.cc:509
friend class MemberLteUeCphySapProvider< LteUePhy >
allow MemberLteUeCphySapProvider<LteUePhy> class friend access
Definition: lte-ue-phy.h:60
void SetHarqPhyModule(Ptr< LteHarqPhy > harq)
Set the HARQ PHY module.
Definition: lte-ue-phy.cc:1769
void DoSetDlBandwidth(uint16_t dlBandwidth)
Set DL bandwidth function.
Definition: lte-ue-phy.cc:1461
uint16_t GetNumQinEvalSf() const
Get number of Qin evaluation subframes.
Definition: lte-ue-phy.cc:487
void SetTxMode3Gain(double gain)
Set transmit mode 3 gain function.
Definition: lte-ue-phy.cc:1698
uint16_t m_numOfQinEvalSf
the downlink radio link quality is estimated over this period for detecting in-syncs
Definition: lte-ue-phy.h:846
LteUePhySapUser * m_uePhySapUser
UE Phy SAP user.
Definition: lte-ue-phy.h:695
uint16_t DoGetCellId()
Get cell ID.
Definition: lte-ue-phy.cc:1449
uint16_t m_rsrpSinrSampleCounter
The RsrpSinrSampleCounter attribute.
Definition: lte-ue-phy.h:793
virtual void ReportDataInterference(const SpectrumValue &interf)
Create the mixed CQI report.
Definition: lte-ue-phy.cc:806
void QueueSubChannelsForTransmission(std::vector< int > rbMap)
Queue subchannels for transmission function.
Definition: lte-ue-phy.cc:1239
void DoConfigureUplink(uint32_t ulEarfcn, uint16_t ulBandwidth)
Configure UL uplink function.
Definition: lte-ue-phy.cc:1492
virtual void ReceivePss(uint16_t cellId, Ptr< SpectrumValue > p)
Receive PSS function.
Definition: lte-ue-phy.cc:1185
uint16_t m_srsPeriodicity
SRS periodicity.
Definition: lte-ue-phy.h:705
void DoResetPhyAfterRlf()
Reset Phy after radio link failure function.
Definition: lte-ue-phy.cc:1553
virtual void DoNotifyConnectionSuccessful()
Notify PHY about the successful RRC connection establishment.
Definition: lte-ue-phy.cc:1012
bool m_dlConfigured
DL configured?
Definition: lte-ue-phy.h:712
LteUePhySapProvider * GetLteUePhySapProvider()
Get the PHY SAP provider.
Definition: lte-ue-phy.cc:386
Time m_srsStartTime
SRS start time.
Definition: lte-ue-phy.h:708
TracedCallback< uint16_t, Ptr< SpectrumValue > > m_reportPowerSpectralDensity
The ReportsPowerSpectralDensity trace source.
Definition: lte-ue-phy.h:824
double GetNoiseFigure() const
Get noise figure.
Definition: lte-ue-phy.cc:415
virtual void GenerateDataCqiReport(const SpectrumValue &sinr)
generate a CQI report based on the given SINR of Data frame (used for PUSCH CQIs)
Definition: lte-ue-phy.cc:726
Time m_p10CqiLast
last periodic CQI
Definition: lte-ue-phy.h:684
std::map< uint16_t, UeMeasurementsElement > m_ueMeasurementsMap
Store measurement results during the last layer-1 filtering period.
Definition: lte-ue-phy.h:764
LteUePhySapProvider * m_uePhySapProvider
UE Phy SAP provider.
Definition: lte-ue-phy.h:694
uint16_t GetNumQoutEvalSf() const
Get number of Qout evaluation subframes.
Definition: lte-ue-phy.cc:480
bool m_rsInterferencePowerUpdated
RS interference power updated?
Definition: lte-ue-phy.h:729
virtual void ReceiveLteControlMessageList(std::list< Ptr< LteControlMessage > > msgList)
Receive LTE control message list function.
Definition: lte-ue-phy.cc:1030
Ptr< SpectrumValue > m_noisePsd
Noise power spectral density for the configured bandwidth.
Definition: lte-ue-phy.h:827
uint32_t DoGetDlEarfcn()
Get DL EARFCN.
Definition: lte-ue-phy.cc:1455
double ComputeAvgSinr(const SpectrumValue &sinr)
Compute average SINR among the RBs.
Definition: lte-ue-phy.cc:705
void SetLteUePhySapUser(LteUePhySapUser *s)
Set the PHY SAP User.
Definition: lte-ue-phy.cc:379
std::vector< std::vector< int > > m_subChannelsForTransmissionQueue
subchannels for transmission queue
Definition: lte-ue-phy.h:669
virtual void DoSendRachPreamble(uint32_t prachId, uint32_t raRnti)
Send RACH preamble function.
Definition: lte-ue-phy.cc:999
void DoStartCellSearch(uint32_t dlEarfcn)
Start the cell search function.
Definition: lte-ue-phy.cc:1409
void SetTxMode6Gain(double gain)
Set transmit mode 6 gain function.
Definition: lte-ue-phy.cc:1716
LteUeCphySapProvider * m_ueCphySapProvider
UE CPhy SAP provider.
Definition: lte-ue-phy.h:697
void DoReset()
Do Reset function.
Definition: lte-ue-phy.cc:1359
void SetNumQoutEvalSf(uint16_t numSubframes)
Set number of Qout evaluation subframes.
Definition: lte-ue-phy.cc:462
State m_state
The current UE PHY state.
Definition: lte-ue-phy.h:716
bool m_pssReceived
PSS received?
Definition: lte-ue-phy.h:735
TracedCallback< uint16_t, uint16_t, double, double, uint8_t > m_reportCurrentCellRsrpSinrTrace
The ReportCurrentCellRsrpSinr trace source.
Definition: lte-ue-phy.h:783
void DoSetImsi(uint64_t imsi)
Set IMSI.
Definition: lte-ue-phy.cc:1580
void SetTxMode2Gain(double gain)
Set transmit mode 2 gain function.
Definition: lte-ue-phy.cc:1692
void DoSetRsrpFilterCoefficient(uint8_t rsrpFilterCoefficient)
Do set RSRP filter coefficient.
Definition: lte-ue-phy.cc:1546
Ptr< LteUePowerControl > m_powerControl
Pointer to UE Uplink Power Control entity.
Definition: lte-ue-phy.h:680
virtual Ptr< SpectrumValue > CreateTxPowerSpectralDensity()
Create the PSD for the TX.
Definition: lte-ue-phy.cc:545
void DoConfigureReferenceSignalPower(int8_t referenceSignalPower)
Configure reference signal power function.
Definition: lte-ue-phy.cc:1500
std::list< PssElement > m_pssList
PSS list.
Definition: lte-ue-phy.h:743
void SubframeIndication(uint32_t frameNo, uint32_t subframeNo)
trigger from eNB the start from a new frame
Definition: lte-ue-phy.cc:1246
static TypeId GetTypeId(void)
Get the type ID.
Definition: lte-ue-phy.cc:201
Ptr< LteUePowerControl > GetUplinkPowerControl() const
Get Uplink power control.
Definition: lte-ue-phy.cc:437
void RlfDetection(double sinrdB)
Radio link failure detection function.
Definition: lte-ue-phy.cc:1597
std::vector< double > m_txModeGain
the transmit mode gain
Definition: lte-ue-phy.h:703
State GetState() const
Get state of the UE physical layer.
Definition: lte-ue-phy.cc:1776
SpectrumValue m_rsReceivedPower
RS receive power.
Definition: lte-ue-phy.h:727
void DoSynchronizeWithEnb(uint16_t cellId)
Synchronize with ENB function.
Definition: lte-ue-phy.cc:1426
uint8_t GetMacChDelay(void) const
Get MAC to Channel delay.
Definition: lte-ue-phy.cc:444
void DoSetSrsConfigurationIndex(uint16_t srcCi)
Set SRS configuration index function.
Definition: lte-ue-phy.cc:1525
uint16_t m_srsSubframeOffset
SRS subframe offset.
Definition: lte-ue-phy.h:706
uint8_t m_subframeNo
Definition: lte-ue-phy.h:724
uint16_t m_srsConfigured
SRS configured.
Definition: lte-ue-phy.h:707
virtual void GenerateCtrlCqiReport(const SpectrumValue &sinr)
generate a CQI report based on the given SINR of Ctrl frame
Definition: lte-ue-phy.cc:556
uint16_t m_rsrpSinrSamplePeriod
The RsrpSinrSamplePeriod attribute.
Definition: lte-ue-phy.h:788
uint64_t m_imsi
the IMSI of the UE
Definition: lte-ue-phy.h:853
uint16_t m_rnti
the RNTI
Definition: lte-ue-phy.h:700
bool m_enableUplinkPowerControl
The EnableUplinkPowerControl attribute.
Definition: lte-ue-phy.h:678
Ptr< LteSpectrumPhy > GetDlSpectrumPhy() const
Get Downlink spectrum phy.
Definition: lte-ue-phy.cc:450
void SetTxMode5Gain(double gain)
Set transmit mode 5 gain function.
Definition: lte-ue-phy.cc:1710
void DoSetTransmissionMode(uint8_t txMode)
Set transmission mode function.
Definition: lte-ue-phy.cc:1517
bool m_enableRlfDetection
Flag to enable/disable RLF detection.
Definition: lte-ue-phy.h:854
Time m_a30CqiLast
last aperiodic CQI
Definition: lte-ue-phy.h:692
void GenerateCqiRsrpRsrq(const SpectrumValue &sinr)
Get CQI, RSRP, and RSRQ.
Definition: lte-ue-phy.cc:577
SpectrumValue m_rsInterferencePower
RS interference power.
Definition: lte-ue-phy.h:730
std::vector< int > GetSubChannelsForTransmission(void)
Get a list of sub channels to use in RX.
Definition: lte-ue-phy.cc:529
void DoResetRlfParams()
Reset radio link failure parameters.
Definition: lte-ue-phy.cc:1564
void SetDownlinkCqiPeriodicity(Time cqiPeriodicity)
Set the periodicty for the downlink periodic wideband and aperiodic subband CQI reporting.
Definition: lte-ue-phy.cc:983
Ptr< LteHarqPhy > m_harqPhyModule
HARQ phy module.
Definition: lte-ue-phy.h:773
virtual void DoDispose(void)
Destructor implementation.
Definition: lte-ue-phy.cc:190
EventId m_sendSrsEvent
send SRS event
Definition: lte-ue-phy.h:803
double m_qIn
The 'Qin' attribute.
Definition: lte-ue-phy.h:836
void SetNoiseFigure(double nf)
Set noise figure.
Definition: lte-ue-phy.cc:408
virtual void ReportInterference(const SpectrumValue &interf)
generate a report based on the linear interference and noise power perceived during DATA frame NOTE: ...
Definition: lte-ue-phy.cc:798
friend class UeMemberLteUePhySapProvider
allow UeMemberLteUePhySapProvider class friend access
Definition: lte-ue-phy.h:58
TracedCallback< uint16_t, const std::vector< int > & > m_reportUlPhyResourceBlocks
The ReportUlPhyResourceBlocks trace source.
Definition: lte-ue-phy.h:817
void DoSetPa(double pa)
Set PA function.
Definition: lte-ue-phy.cc:1539
Ptr< DlCqiLteControlMessage > CreateDlCqiFeedbackMessage(const SpectrumValue &sinr)
Create the DL CQI feedback from SINR values perceived at the physical layer with the signal received ...
Definition: lte-ue-phy.cc:840
LteUeCphySapUser * m_ueCphySapUser
UE CPhy SAP user.
Definition: lte-ue-phy.h:698
void SetNumQinEvalSf(uint16_t numSubframes)
Set number of Qin evaluation subframes.
Definition: lte-ue-phy.cc:471
void DoStartInSnycDetection()
Start in Snyc detection function.
Definition: lte-ue-phy.cc:1572
void SetLteUeCphySapUser(LteUeCphySapUser *s)
Set the CPHY SAP User.
Definition: lte-ue-phy.cc:394
double m_sinrDbFrame
the average SINR per radio frame
Definition: lte-ue-phy.h:851
virtual ~LteUePhy()
Definition: lte-ue-phy.cc:184
TracedCallback< uint16_t, uint16_t, State, State > m_stateTransitionTrace
The StateTransition trace source.
Definition: lte-ue-phy.h:721
void SetSubChannelsForReception(std::vector< int > mask)
Get a list of sub channels to use in RX.
Definition: lte-ue-phy.cc:521
bool m_rsReceivedPowerUpdated
RS receive power updated?
Definition: lte-ue-phy.h:726
void SwitchToState(State s)
Switch the UE PHY to the given state.
Definition: lte-ue-phy.cc:1784
TracedCallback< uint16_t, uint16_t, double, double, bool, uint8_t > m_reportUeMeasurements
The ReportUeMeasurements trace source.
Definition: lte-ue-phy.h:801
double m_paLinear
PA linear.
Definition: lte-ue-phy.h:710
TracedCallback< PhyTransmissionStatParameters > m_ulPhyTransmission
The UlPhyTransmission trace source.
Definition: lte-ue-phy.h:810
bool m_isConnected
set when UE RRC is in CONNECTED_NORMALLY state
Definition: lte-ue-phy.h:830
Ptr< LteAmc > m_amc
AMC.
Definition: lte-ue-phy.h:672
std::vector< int > m_subChannelsForReception
A list of sub channels to use in RX.
Definition: lte-ue-phy.h:667
void InitializeRlfParams()
Initialize radio link failure parameters.
Definition: lte-ue-phy.cc:1587
void PhyPduReceived(Ptr< Packet > p)
PhySpectrum received a new PHY-PDU.
Definition: lte-ue-phy.cc:503
LteUeCphySapProvider * GetLteUeCphySapProvider()
Get the CPHY SAP provider.
Definition: lte-ue-phy.cc:401
bool m_ulConfigured
UL configured?
Definition: lte-ue-phy.h:713
virtual void ReportRsReceivedPower(const SpectrumValue &power)
generate a report based on the linear RS power perceived during CTRL frame NOTE: used only by UE for ...
Definition: lte-ue-phy.cc:815
SpectrumValue m_ctrlSinrForRlf
the CTRL SINR used for RLF detection
Definition: lte-ue-phy.h:852
Time m_ueMeasurementsFilterPeriod
The UeMeasurementsFilterPeriod attribute.
Definition: lte-ue-phy.h:769
uint16_t m_numOfFrames
count the number of frames for which the downlink radio link quality is estimated
Definition: lte-ue-phy.h:850
bool m_downlinkInSync
when set, DL SINR evaluation for out-of-sync indications is conducted.
Definition: lte-ue-phy.h:848
uint16_t m_numOfQoutEvalSf
the downlink radio link quality is estimated over this period for detecting out-of-syncs
Definition: lte-ue-phy.h:845
void SetTxMode7Gain(double gain)
Set transmit mode 7 gain function.
Definition: lte-ue-phy.cc:1722
void DoSetRnti(uint16_t rnti)
Set RNTI function.
Definition: lte-ue-phy.cc:1507
virtual void DoSendMacPdu(Ptr< Packet > p)
Queue the MAC PDU to be sent (according to m_macChTtiDelay)
Definition: lte-ue-phy.cc:494
double GetTxPower() const
Get transmit power.
Definition: lte-ue-phy.cc:430
virtual void EnqueueDlHarqFeedback(DlInfoListElement_s mes)
Enqueue the downlink HARQ feedback generated by LteSpectrumPhy.
Definition: lte-ue-phy.cc:1759
std::vector< int > m_subChannelsForTransmission
A list of sub channels to use in TX.
Definition: lte-ue-phy.h:665
Time m_p10CqiPeriodicity
Wideband Periodic CQI. 2, 5, 10, 16, 20, 32, 40, 64, 80 or 160 ms.
Definition: lte-ue-phy.h:683
bool m_dataInterferencePowerUpdated
data interference power updated?
Definition: lte-ue-phy.h:732
void SetTxPower(double pow)
Set transmit power.
Definition: lte-ue-phy.cc:422
State
The states of the UE PHY entity.
Definition: lte-ue-phy.h:67
uint16_t m_numOfSubframes
count the number of subframes for which the downlink radio link quality is estimated
Definition: lte-ue-phy.h:849
void SetTxMode4Gain(double gain)
Set transmit mode 4 gain function.
Definition: lte-ue-phy.cc:1704
virtual void DoSendLteControlMessage(Ptr< LteControlMessage > msg)
Send LTE control message function.
Definition: lte-ue-phy.cc:991
Time m_a30CqiPeriodicity
SubBand Aperiodic CQI.
Definition: lte-ue-phy.h:691
Ptr< LteSpectrumPhy > GetUlSpectrumPhy() const
Get Uplink spectrum phy.
Definition: lte-ue-phy.cc:456
void ReportUeMeasurements()
Layer-1 filtering of RSRP and RSRQ measurements and reporting to the RRC entity.
Definition: lte-ue-phy.cc:940
double m_pssReceptionThreshold
The RsrqUeMeasThreshold attribute.
Definition: lte-ue-phy.h:749
uint32_t m_raPreambleId
RA preamble ID.
Definition: lte-ue-phy.h:775
double m_qOut
The 'Qout' attribute.
Definition: lte-ue-phy.h:843
void SendSrs()
Send the SRS signal in the last symbols of the frame.
Definition: lte-ue-phy.cc:1337
virtual void GenerateMixedCqiReport(const SpectrumValue &sinr)
Create the mixed CQI report.
Definition: lte-ue-phy.cc:732
uint8_t m_transmissionMode
the transmission mode
Definition: lte-ue-phy.h:702
void SetTxModeGain(uint8_t txMode, double gain)
Set transmit mode gain function.
Definition: lte-ue-phy.cc:1729
std::vector< int > GetSubChannelsForReception(void)
Get a list of sub channels to use in RX.
Definition: lte-ue-phy.cc:537
uint32_t m_raRnti
RA RNTI.
Definition: lte-ue-phy.h:776
Service Access Point (SAP) offered by the UE-PHY to the UE-MAC.
Service Access Point (SAP) offered by the PHY to the MAC.
virtual void ReceivePhyPdu(Ptr< Packet > p)=0
Receive Phy Pdu funtion.
virtual void SubframeIndication(uint32_t frameNo, uint32_t subframeNo)=0
Trigger the start from a new frame (input from Phy layer)
virtual void ReceiveLteControlMessage(Ptr< LteControlMessage > msg)=0
Receive SendLteControlMessage (PDCCH map, CQI feedbacks) using the ideal control channel.
void SetCellId(uint16_t cellId)
Set the cell ID function.
void SetRsrp(double value)
Set RSRP function.
void ConfigureReferenceSignalPower(int8_t referenceSignalPower)
Configure reference signal power (dBm) function.
void SetRnti(uint16_t rnti)
Set the RNTI function.
double GetPucchTxPower(std::vector< int > rb)
Get PUCCH transmit power function.
void SetTxPower(double value)
Set transmit power function.
void SetRsrpFilterCoefficient(uint8_t rsrpFilterCoefficient)
Set RSRP function.
double GetPuschTxPower(std::vector< int > rb)
Get PUSCH transmit power function.
void ReportTpc(uint8_t tpc)
Set RSRP function.
double GetSrsTxPower(std::vector< int > rb)
Get SRS transmit power function.
uint32_t GetId(void) const
Definition: node.cc:109
virtual void DoInitialize(void)
Initialize() implementation.
Definition: object.cc:353
Hold objects of type Ptr<T>.
Definition: pointer.h:37
static EventId Schedule(Time const &delay, FUNC f, Ts &&... args)
Schedule an event to expire after delay.
Definition: simulator.h:556
static void ScheduleWithContext(uint32_t context, Time const &delay, FUNC f, Ts &&... args)
Schedule an event with the given context.
Definition: simulator.h:571
static Time Now(void)
Return the current simulation virtual time.
Definition: simulator.cc:195
Set of values corresponding to a given SpectrumModel.
Values::const_iterator ConstValuesBegin() const
Values::const_iterator ConstValuesEnd() const
Simulation virtual time values and global simulation resolution.
Definition: nstime.h:103
@ MS
millisecond
Definition: nstime.h:115
int64_t GetMilliSeconds(void) const
Get an approximation of the time stored in this instance in the indicated unit.
Definition: nstime.h:383
TimeWithUnit As(const enum Unit unit=Time::AUTO) const
Attach a unit to a Time, to facilitate output in a specific unit.
Definition: time.cc:432
AttributeValue implementation for Time.
Definition: nstime.h:1308
static uint8_t TxMode2LayerNum(uint8_t txMode)
Transmit mode 2 layer number.
Definition: lte-common.cc:212
a unique identifier for an interface.
Definition: type-id.h:59
@ ATTR_GET
The attribute can be read.
Definition: type-id.h:64
TypeId SetParent(TypeId tid)
Set the parent TypeId.
Definition: type-id.cc:922
UeMemberLteUePhySapProvider class.
Definition: lte-ue-phy.cc:78
virtual void SendLteControlMessage(Ptr< LteControlMessage > msg)
Send SendLteControlMessage (PDCCH map, CQI feedbacks) using the ideal control channel.
Definition: lte-ue-phy.cc:107
virtual void SendRachPreamble(uint32_t prachId, uint32_t raRnti)
Send a preamble on the PRACH.
Definition: lte-ue-phy.cc:113
virtual void SendMacPdu(Ptr< Packet > p)
Send the MAC PDU to the channel.
Definition: lte-ue-phy.cc:101
virtual void NotifyConnectionSuccessful()
Notify PHY about the successful RRC connection establishment.
Definition: lte-ue-phy.cc:119
UeMemberLteUePhySapProvider(LteUePhy *phy)
Constructor.
Definition: lte-ue-phy.cc:97
Hold an unsigned integer type.
Definition: uinteger.h:44
#define NS_ASSERT(condition)
At runtime, in debugging builds, if this condition is not true, the program prints the source file,...
Definition: assert.h:67
#define NS_ASSERT_MSG(condition, message)
At runtime, in debugging builds, if this condition is not true, the program prints the message to out...
Definition: assert.h:88
Ptr< const AttributeChecker > MakeBooleanChecker(void)
Definition: boolean.cc:121
Ptr< const AttributeAccessor > MakeBooleanAccessor(T1 a1)
Definition: boolean.h:85
Ptr< const AttributeAccessor > MakeDoubleAccessor(T1 a1)
Definition: double.h:42
Ptr< const AttributeAccessor > MakePointerAccessor(T1 a1)
Definition: pointer.h:227
Ptr< const AttributeAccessor > MakeTimeAccessor(T1 a1)
Definition: nstime.h:1309
Ptr< const AttributeAccessor > MakeUintegerAccessor(T1 a1)
Definition: uinteger.h:45
#define NS_FATAL_ERROR(msg)
Report a fatal error with a message and terminate.
Definition: fatal-error.h:165
#define NS_ABORT_MSG_IF(cond, msg)
Abnormal program termination if a condition is true, with a message.
Definition: abort.h:108
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:205
#define NS_LOG_DEBUG(msg)
Use NS_LOG to output a message of level LOG_DEBUG.
Definition: log.h:273
#define NS_LOG_LOGIC(msg)
Use NS_LOG to output a message of level LOG_LOGIC.
Definition: log.h:289
#define NS_LOG_FUNCTION(parameters)
If log level LOG_FUNCTION is enabled, this macro will output all input parameters separated by ",...
#define NS_LOG_WARN(msg)
Use NS_LOG to output a message of level LOG_WARN.
Definition: log.h:265
#define NS_LOG_INFO(msg)
Use NS_LOG to output a message of level LOG_INFO.
Definition: log.h:281
#define NS_OBJECT_ENSURE_REGISTERED(type)
Register an Object subclass with the TypeId system.
Definition: object-base.h:45
Time NanoSeconds(uint64_t value)
Construct a Time in the indicated unit.
Definition: nstime.h:1268
Time Seconds(double value)
Construct a Time in the indicated unit.
Definition: nstime.h:1244
Time MilliSeconds(uint64_t value)
Construct a Time in the indicated unit.
Definition: nstime.h:1252
Ptr< const TraceSourceAccessor > MakeTraceSourceAccessor(T a)
Create a TraceSourceAccessor which will control access to the underlying trace source.
#define UL_PUSCH_TTIS_DELAY
Definition: lte-common.h:28
Every class exported by the ns3 library is enclosed in the ns3 namespace.
static const std::string g_uePhyStateName[LteUePhy::NUM_STATES]
Map each of UE PHY states to its string representation.
Definition: lte-ue-phy.cc:130
static const Time UL_DATA_DURATION
Duration of the data portion of a UL subframe.
Definition: lte-ue-phy.cc:61
Ptr< const AttributeChecker > MakeTimeChecker(const Time min, const Time max)
Helper to make a Time checker with bounded range.
Definition: time.cc:536
static const Time UL_SRS_DELAY_FROM_SUBFRAME_START
Delay from subframe start to transmission of SRS.
Definition: lte-ue-phy.cc:67
std::vector< HarqProcessInfoElement_t > HarqProcessInfoList_t
HarqProcessInfoList_t typedef.
Definition: lte-harq-phy.h:48
static const int Type0AllocationRbg[4]
Type 0 RGB allocation.
static const std::string & ToString(EpcUeNas::State s)
Definition: epc-ue-nas.cc:50
phy
Definition: third.py:93
#define list
See section 4.3.24 cqiListElement.
std::vector< uint8_t > m_wbCqi
wb CQI
struct SbMeasResult_s m_sbMeasResult
sb measure result
uint8_t m_wbPmi
wb PMI
uint16_t m_rnti
RNTI.
See section 4.3.1 dlDciListElement.
Definition: ff-mac-common.h:94
std::vector< uint8_t > m_ndi
New data indicator.
uint8_t m_harqProcess
HARQ process.
uint32_t m_rbBitmap
RB bitmap.
Definition: ff-mac-common.h:96
std::vector< uint8_t > m_mcs
MCS.
uint8_t m_resAlloc
The type of resource allocation.
Definition: ff-mac-common.h:98
std::vector< uint16_t > m_tbsSize
The TBs size.
Definition: ff-mac-common.h:99
std::vector< uint8_t > m_rv
Redundancy version.
uint8_t m_tpc
Tx power control command.
See section 4.3.23 dlInfoListElement.
See section 4.3.27 higherLayerSelected.
std::vector< uint8_t > m_sbCqi
sb CQI
Parameters of the ReportUeMeasurements primitive: RSRP [dBm] and RSRQ [dB] See section 5....
UeMeasurementsParameters structure.
uint8_t m_componentCarrierId
component carrier ID
std::vector< struct UeMeasurementsElement > m_ueMeasurementsList
UE measurement list.
PssElement structure.
Definition: lte-ue-phy.h:738
uint16_t cellId
cell ID
Definition: lte-ue-phy.h:739
double pssPsdSum
PSS PSD sum.
Definition: lte-ue-phy.h:740
uint16_t nRB
number of RB
Definition: lte-ue-phy.h:741
Summary results of measuring a specific cell. Used for layer-1 filtering.
Definition: lte-ue-phy.h:753
double rsrqSum
Sum of RSRQ sample values in linear unit.
Definition: lte-ue-phy.h:756
uint8_t rsrpNum
Number of RSRP samples.
Definition: lte-ue-phy.h:755
double rsrpSum
Sum of RSRP sample values in linear unit.
Definition: lte-ue-phy.h:754
uint8_t rsrqNum
Number of RSRQ samples.
Definition: lte-ue-phy.h:757
PhyTransmissionStatParameters structure.
Definition: lte-common.h:187
uint8_t m_ndi
new data indicator flag
Definition: lte-common.h:197
int64_t m_timestamp
in millisecond
Definition: lte-common.h:188
uint8_t m_layer
the layer (cw) of the transmission
Definition: lte-common.h:193
uint16_t m_size
Size of transport block.
Definition: lte-common.h:195
uint64_t m_imsi
IMSI of the scheduled UE.
Definition: lte-common.h:190
uint16_t m_rnti
C-RNTI scheduled.
Definition: lte-common.h:191
uint8_t m_txMode
the transmission Mode
Definition: lte-common.h:192
uint8_t m_rv
the redundancy version (HARQ)
Definition: lte-common.h:196
uint16_t m_cellId
Cell ID of the attached Enb.
Definition: lte-common.h:189
uint8_t m_ccId
component carrier id
Definition: lte-common.h:198
uint8_t m_mcs
MCS for transport block.
Definition: lte-common.h:194
See section 4.3.25 sbMeasResult.
std::vector< struct HigherLayerSelected_s > m_higherLayerSelected
higher layer selected
See section 4.3.2 ulDciListElement.