A Discrete-Event Network Simulator
API
pf-ff-mac-scheduler.cc
Go to the documentation of this file.
1/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
2/*
3 * Copyright (c) 2011 Centre Tecnologic de Telecomunicacions de Catalunya (CTTC)
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation;
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Author: Marco Miozzo <marco.miozzo@cttc.es>
19 */
20
21#include <ns3/log.h>
22#include <ns3/pointer.h>
23#include <ns3/math.h>
24
25#include <ns3/simulator.h>
26#include <ns3/lte-amc.h>
27#include <ns3/pf-ff-mac-scheduler.h>
28#include <ns3/lte-vendor-specific-parameters.h>
29#include <ns3/boolean.h>
30#include <cfloat>
31#include <set>
32
33
34namespace ns3 {
35
36NS_LOG_COMPONENT_DEFINE ("PfFfMacScheduler");
37
39static const int PfType0AllocationRbg[4] = {
40 10, // RGB size 1
41 26, // RGB size 2
42 63, // RGB size 3
43 110 // RGB size 4
44}; // see table 7.1.6.1-1 of 36.213
45
46
47NS_OBJECT_ENSURE_REGISTERED (PfFfMacScheduler);
48
49
50
52 : m_cschedSapUser (0),
53 m_schedSapUser (0),
54 m_timeWindow (99.0),
55 m_nextRntiUl (0)
56{
57 m_amc = CreateObject <LteAmc> ();
62}
63
65{
66 NS_LOG_FUNCTION (this);
67}
68
69void
71{
72 NS_LOG_FUNCTION (this);
76 m_dlInfoListBuffered.clear ();
81 delete m_schedSapProvider;
82 delete m_ffrSapUser;
83}
84
87{
88 static TypeId tid = TypeId ("ns3::PfFfMacScheduler")
90 .SetGroupName("Lte")
91 .AddConstructor<PfFfMacScheduler> ()
92 .AddAttribute ("CqiTimerThreshold",
93 "The number of TTIs a CQI is valid (default 1000 - 1 sec.)",
94 UintegerValue (1000),
96 MakeUintegerChecker<uint32_t> ())
97 .AddAttribute ("HarqEnabled",
98 "Activate/Deactivate the HARQ [by default is active].",
99 BooleanValue (true),
102 .AddAttribute ("UlGrantMcs",
103 "The MCS of the UL grant, must be [0..15] (default 0)",
104 UintegerValue (0),
106 MakeUintegerChecker<uint8_t> ())
107 ;
108 return tid;
109}
110
111
112
113void
115{
116 m_cschedSapUser = s;
117}
118
119void
121{
122 m_schedSapUser = s;
123}
124
127{
128 return m_cschedSapProvider;
129}
130
133{
134 return m_schedSapProvider;
135}
136
137void
139{
141}
142
145{
146 return m_ffrSapUser;
147}
148
149void
151{
152 NS_LOG_FUNCTION (this);
153 // Read the subset of parameters used
154 m_cschedCellConfig = params;
157 cnf.m_result = SUCCESS;
159 return;
160}
161
162void
164{
165 NS_LOG_FUNCTION (this << " RNTI " << params.m_rnti << " txMode " << (uint16_t)params.m_transmissionMode);
166 std::map <uint16_t,uint8_t>::iterator it = m_uesTxMode.find (params.m_rnti);
167 if (it == m_uesTxMode.end ())
168 {
169 m_uesTxMode.insert (std::pair <uint16_t, double> (params.m_rnti, params.m_transmissionMode));
170 // generate HARQ buffers
171 m_dlHarqCurrentProcessId.insert (std::pair <uint16_t,uint8_t > (params.m_rnti, 0));
172 DlHarqProcessesStatus_t dlHarqPrcStatus;
173 dlHarqPrcStatus.resize (8,0);
174 m_dlHarqProcessesStatus.insert (std::pair <uint16_t, DlHarqProcessesStatus_t> (params.m_rnti, dlHarqPrcStatus));
175 DlHarqProcessesTimer_t dlHarqProcessesTimer;
176 dlHarqProcessesTimer.resize (8,0);
177 m_dlHarqProcessesTimer.insert (std::pair <uint16_t, DlHarqProcessesTimer_t> (params.m_rnti, dlHarqProcessesTimer));
179 dlHarqdci.resize (8);
180 m_dlHarqProcessesDciBuffer.insert (std::pair <uint16_t, DlHarqProcessesDciBuffer_t> (params.m_rnti, dlHarqdci));
181 DlHarqRlcPduListBuffer_t dlHarqRlcPdu;
182 dlHarqRlcPdu.resize (2);
183 dlHarqRlcPdu.at (0).resize (8);
184 dlHarqRlcPdu.at (1).resize (8);
185 m_dlHarqProcessesRlcPduListBuffer.insert (std::pair <uint16_t, DlHarqRlcPduListBuffer_t> (params.m_rnti, dlHarqRlcPdu));
186 m_ulHarqCurrentProcessId.insert (std::pair <uint16_t,uint8_t > (params.m_rnti, 0));
187 UlHarqProcessesStatus_t ulHarqPrcStatus;
188 ulHarqPrcStatus.resize (8,0);
189 m_ulHarqProcessesStatus.insert (std::pair <uint16_t, UlHarqProcessesStatus_t> (params.m_rnti, ulHarqPrcStatus));
191 ulHarqdci.resize (8);
192 m_ulHarqProcessesDciBuffer.insert (std::pair <uint16_t, UlHarqProcessesDciBuffer_t> (params.m_rnti, ulHarqdci));
193 }
194 else
195 {
196 (*it).second = params.m_transmissionMode;
197 }
198 return;
199}
200
201void
203{
204 NS_LOG_FUNCTION (this << " New LC, rnti: " << params.m_rnti);
205
206 std::map <uint16_t, pfsFlowPerf_t>::iterator it;
207 for (uint16_t i = 0; i < params.m_logicalChannelConfigList.size (); i++)
208 {
209 it = m_flowStatsDl.find (params.m_rnti);
210
211 if (it == m_flowStatsDl.end ())
212 {
213 pfsFlowPerf_t flowStatsDl;
214 flowStatsDl.flowStart = Simulator::Now ();
215 flowStatsDl.totalBytesTransmitted = 0;
216 flowStatsDl.lastTtiBytesTrasmitted = 0;
217 flowStatsDl.lastAveragedThroughput = 1;
218 m_flowStatsDl.insert (std::pair<uint16_t, pfsFlowPerf_t> (params.m_rnti, flowStatsDl));
219 pfsFlowPerf_t flowStatsUl;
220 flowStatsUl.flowStart = Simulator::Now ();
221 flowStatsUl.totalBytesTransmitted = 0;
222 flowStatsUl.lastTtiBytesTrasmitted = 0;
223 flowStatsUl.lastAveragedThroughput = 1;
224 m_flowStatsUl.insert (std::pair<uint16_t, pfsFlowPerf_t> (params.m_rnti, flowStatsUl));
225 }
226 }
227
228 return;
229}
230
231void
233{
234 NS_LOG_FUNCTION (this);
235 for (uint16_t i = 0; i < params.m_logicalChannelIdentity.size (); i++)
236 {
237 std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it = m_rlcBufferReq.begin ();
238 std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator temp;
239 while (it!=m_rlcBufferReq.end ())
240 {
241 if (((*it).first.m_rnti == params.m_rnti) && ((*it).first.m_lcId == params.m_logicalChannelIdentity.at (i)))
242 {
243 temp = it;
244 it++;
245 m_rlcBufferReq.erase (temp);
246 }
247 else
248 {
249 it++;
250 }
251 }
252 }
253 return;
254}
255
256void
258{
259 NS_LOG_FUNCTION (this);
260
261 m_uesTxMode.erase (params.m_rnti);
262 m_dlHarqCurrentProcessId.erase (params.m_rnti);
263 m_dlHarqProcessesStatus.erase (params.m_rnti);
264 m_dlHarqProcessesTimer.erase (params.m_rnti);
265 m_dlHarqProcessesDciBuffer.erase (params.m_rnti);
267 m_ulHarqCurrentProcessId.erase (params.m_rnti);
268 m_ulHarqProcessesStatus.erase (params.m_rnti);
269 m_ulHarqProcessesDciBuffer.erase (params.m_rnti);
270 m_flowStatsDl.erase (params.m_rnti);
271 m_flowStatsUl.erase (params.m_rnti);
272 m_ceBsrRxed.erase (params.m_rnti);
273 std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it = m_rlcBufferReq.begin ();
274 std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator temp;
275 while (it!=m_rlcBufferReq.end ())
276 {
277 if ((*it).first.m_rnti == params.m_rnti)
278 {
279 temp = it;
280 it++;
281 m_rlcBufferReq.erase (temp);
282 }
283 else
284 {
285 it++;
286 }
287 }
288 if (m_nextRntiUl == params.m_rnti)
289 {
290 m_nextRntiUl = 0;
291 }
292
293 return;
294}
295
296
297void
299{
300 NS_LOG_FUNCTION (this << params.m_rnti << (uint32_t) params.m_logicalChannelIdentity);
301 // API generated by RLC for updating RLC parameters on a LC (tx and retx queues)
302
303 std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
304
305 LteFlowId_t flow (params.m_rnti, params.m_logicalChannelIdentity);
306
307 it = m_rlcBufferReq.find (flow);
308
309 if (it == m_rlcBufferReq.end ())
310 {
311 m_rlcBufferReq.insert (std::pair <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters> (flow, params));
312 }
313 else
314 {
315 (*it).second = params;
316 }
317
318 return;
319}
320
321void
323{
324 NS_LOG_FUNCTION (this);
325 NS_FATAL_ERROR ("method not implemented");
326 return;
327}
328
329void
331{
332 NS_LOG_FUNCTION (this);
333 NS_FATAL_ERROR ("method not implemented");
334 return;
335}
336
337int
339{
340 for (int i = 0; i < 4; i++)
341 {
342 if (dlbandwidth < PfType0AllocationRbg[i])
343 {
344 return (i + 1);
345 }
346 }
347
348 return (-1);
349}
350
351
352unsigned int
354{
355 std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
356 unsigned int lcActive = 0;
357 for (it = m_rlcBufferReq.begin (); it != m_rlcBufferReq.end (); it++)
358 {
359 if (((*it).first.m_rnti == rnti) && (((*it).second.m_rlcTransmissionQueueSize > 0)
360 || ((*it).second.m_rlcRetransmissionQueueSize > 0)
361 || ((*it).second.m_rlcStatusPduSize > 0) ))
362 {
363 lcActive++;
364 }
365 if ((*it).first.m_rnti > rnti)
366 {
367 break;
368 }
369 }
370 return (lcActive);
371
372}
373
374
375uint8_t
377{
378 NS_LOG_FUNCTION (this << rnti);
379
380 std::map <uint16_t, uint8_t>::iterator it = m_dlHarqCurrentProcessId.find (rnti);
381 if (it == m_dlHarqCurrentProcessId.end ())
382 {
383 NS_FATAL_ERROR ("No Process Id found for this RNTI " << rnti);
384 }
385 std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find (rnti);
386 if (itStat == m_dlHarqProcessesStatus.end ())
387 {
388 NS_FATAL_ERROR ("No Process Id Statusfound for this RNTI " << rnti);
389 }
390 uint8_t i = (*it).second;
391 do
392 {
393 i = (i + 1) % HARQ_PROC_NUM;
394 }
395 while ( ((*itStat).second.at (i) != 0)&&(i != (*it).second));
396 if ((*itStat).second.at (i) == 0)
397 {
398 return (true);
399 }
400 else
401 {
402 return (false); // return a not valid harq proc id
403 }
404}
405
406
407
408uint8_t
410{
411 NS_LOG_FUNCTION (this << rnti);
412
413 if (m_harqOn == false)
414 {
415 return (0);
416 }
417
418
419 std::map <uint16_t, uint8_t>::iterator it = m_dlHarqCurrentProcessId.find (rnti);
420 if (it == m_dlHarqCurrentProcessId.end ())
421 {
422 NS_FATAL_ERROR ("No Process Id found for this RNTI " << rnti);
423 }
424 std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find (rnti);
425 if (itStat == m_dlHarqProcessesStatus.end ())
426 {
427 NS_FATAL_ERROR ("No Process Id Statusfound for this RNTI " << rnti);
428 }
429 uint8_t i = (*it).second;
430 do
431 {
432 i = (i + 1) % HARQ_PROC_NUM;
433 }
434 while ( ((*itStat).second.at (i) != 0)&&(i != (*it).second));
435 if ((*itStat).second.at (i) == 0)
436 {
437 (*it).second = i;
438 (*itStat).second.at (i) = 1;
439 }
440 else
441 {
442 NS_FATAL_ERROR ("No HARQ process available for RNTI " << rnti << " check before update with HarqProcessAvailability");
443 }
444
445 return ((*it).second);
446}
447
448
449void
451{
452 NS_LOG_FUNCTION (this);
453
454 std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itTimers;
455 for (itTimers = m_dlHarqProcessesTimer.begin (); itTimers != m_dlHarqProcessesTimer.end (); itTimers++)
456 {
457 for (uint16_t i = 0; i < HARQ_PROC_NUM; i++)
458 {
459 if ((*itTimers).second.at (i) == HARQ_DL_TIMEOUT)
460 {
461 // reset HARQ process
462
463 NS_LOG_DEBUG (this << " Reset HARQ proc " << i << " for RNTI " << (*itTimers).first);
464 std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find ((*itTimers).first);
465 if (itStat == m_dlHarqProcessesStatus.end ())
466 {
467 NS_FATAL_ERROR ("No Process Id Status found for this RNTI " << (*itTimers).first);
468 }
469 (*itStat).second.at (i) = 0;
470 (*itTimers).second.at (i) = 0;
471 }
472 else
473 {
474 (*itTimers).second.at (i)++;
475 }
476 }
477 }
478
479}
480
481
482void
484{
485 NS_LOG_FUNCTION (this << " Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf));
486 // API generated by RLC for triggering the scheduling of a DL subframe
487
488
489 // evaluate the relative channel quality indicator for each UE per each RBG
490 // (since we are using allocation type 0 the small unit of allocation is RBG)
491 // Resource allocation type 0 (see sec 7.1.6.1 of 36.213)
492
494
496 int rbgNum = m_cschedCellConfig.m_dlBandwidth / rbgSize;
497 std::map <uint16_t, std::vector <uint16_t> > allocationMap; // RBs map per RNTI
498 std::vector <bool> rbgMap; // global RBGs map
499 uint16_t rbgAllocatedNum = 0;
500 std::set <uint16_t> rntiAllocated;
501 rbgMap.resize (m_cschedCellConfig.m_dlBandwidth / rbgSize, false);
502
504 for (std::vector<bool>::iterator it = rbgMap.begin (); it != rbgMap.end (); it++)
505 {
506 if ((*it) == true )
507 {
508 rbgAllocatedNum++;
509 }
510 }
511
513
514 // update UL HARQ proc id
515 std::map <uint16_t, uint8_t>::iterator itProcId;
516 for (itProcId = m_ulHarqCurrentProcessId.begin (); itProcId != m_ulHarqCurrentProcessId.end (); itProcId++)
517 {
518 (*itProcId).second = ((*itProcId).second + 1) % HARQ_PROC_NUM;
519 }
520
521
522 // RACH Allocation
523 uint16_t rbAllocatedNum = 0;
524 std::vector <bool> ulRbMap;
525 ulRbMap.resize (m_cschedCellConfig.m_ulBandwidth, false);
527 uint8_t maxContinuousUlBandwidth = 0;
528 uint8_t tmpMinBandwidth = 0;
529 uint16_t ffrRbStartOffset = 0;
530 uint16_t tmpFfrRbStartOffset = 0;
531 uint16_t index = 0;
532
533 for (std::vector<bool>::iterator it = ulRbMap.begin (); it != ulRbMap.end (); it++)
534 {
535 if ((*it) == true )
536 {
537 rbAllocatedNum++;
538 if (tmpMinBandwidth > maxContinuousUlBandwidth)
539 {
540 maxContinuousUlBandwidth = tmpMinBandwidth;
541 ffrRbStartOffset = tmpFfrRbStartOffset;
542 }
543 tmpMinBandwidth = 0;
544 }
545 else
546 {
547 if (tmpMinBandwidth == 0)
548 {
549 tmpFfrRbStartOffset = index;
550 }
551 tmpMinBandwidth++;
552 }
553 index++;
554 }
555
556 if (tmpMinBandwidth > maxContinuousUlBandwidth)
557 {
558 maxContinuousUlBandwidth = tmpMinBandwidth;
559 ffrRbStartOffset = tmpFfrRbStartOffset;
560 }
561
563 uint16_t rbStart = 0;
564 rbStart = ffrRbStartOffset;
565 std::vector <struct RachListElement_s>::iterator itRach;
566 for (itRach = m_rachList.begin (); itRach != m_rachList.end (); itRach++)
567 {
568 NS_ASSERT_MSG (m_amc->GetUlTbSizeFromMcs (m_ulGrantMcs, m_cschedCellConfig.m_ulBandwidth) > (*itRach).m_estimatedSize, " Default UL Grant MCS does not allow to send RACH messages");
570 newRar.m_rnti = (*itRach).m_rnti;
571 // DL-RACH Allocation
572 // Ideal: no needs of configuring m_dci
573 // UL-RACH Allocation
574 newRar.m_grant.m_rnti = newRar.m_rnti;
575 newRar.m_grant.m_mcs = m_ulGrantMcs;
576 uint16_t rbLen = 1;
577 uint16_t tbSizeBits = 0;
578 // find lowest TB size that fits UL grant estimated size
579 while ((tbSizeBits < (*itRach).m_estimatedSize) && (rbStart + rbLen < (ffrRbStartOffset + maxContinuousUlBandwidth)))
580 {
581 rbLen++;
582 tbSizeBits = m_amc->GetUlTbSizeFromMcs (m_ulGrantMcs, rbLen);
583 }
584 if (tbSizeBits < (*itRach).m_estimatedSize)
585 {
586 // no more allocation space: finish allocation
587 break;
588 }
589 newRar.m_grant.m_rbStart = rbStart;
590 newRar.m_grant.m_rbLen = rbLen;
591 newRar.m_grant.m_tbSize = tbSizeBits / 8;
592 newRar.m_grant.m_hopping = false;
593 newRar.m_grant.m_tpc = 0;
594 newRar.m_grant.m_cqiRequest = false;
595 newRar.m_grant.m_ulDelay = false;
596 NS_LOG_INFO (this << " UL grant allocated to RNTI " << (*itRach).m_rnti << " rbStart " << rbStart << " rbLen " << rbLen << " MCS " << m_ulGrantMcs << " tbSize " << newRar.m_grant.m_tbSize);
597 for (uint16_t i = rbStart; i < rbStart + rbLen; i++)
598 {
599 m_rachAllocationMap.at (i) = (*itRach).m_rnti;
600 }
601
602 if (m_harqOn == true)
603 {
604 // generate UL-DCI for HARQ retransmissions
605 UlDciListElement_s uldci;
606 uldci.m_rnti = newRar.m_rnti;
607 uldci.m_rbLen = rbLen;
608 uldci.m_rbStart = rbStart;
609 uldci.m_mcs = m_ulGrantMcs;
610 uldci.m_tbSize = tbSizeBits / 8;
611 uldci.m_ndi = 1;
612 uldci.m_cceIndex = 0;
613 uldci.m_aggrLevel = 1;
614 uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
615 uldci.m_hopping = false;
616 uldci.m_n2Dmrs = 0;
617 uldci.m_tpc = 0; // no power control
618 uldci.m_cqiRequest = false; // only period CQI at this stage
619 uldci.m_ulIndex = 0; // TDD parameter
620 uldci.m_dai = 1; // TDD parameter
621 uldci.m_freqHopping = 0;
622 uldci.m_pdcchPowerOffset = 0; // not used
623
624 uint8_t harqId = 0;
625 std::map <uint16_t, uint8_t>::iterator itProcId;
626 itProcId = m_ulHarqCurrentProcessId.find (uldci.m_rnti);
627 if (itProcId == m_ulHarqCurrentProcessId.end ())
628 {
629 NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << uldci.m_rnti);
630 }
631 harqId = (*itProcId).second;
632 std::map <uint16_t, UlHarqProcessesDciBuffer_t>::iterator itDci = m_ulHarqProcessesDciBuffer.find (uldci.m_rnti);
633 if (itDci == m_ulHarqProcessesDciBuffer.end ())
634 {
635 NS_FATAL_ERROR ("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI " << uldci.m_rnti);
636 }
637 (*itDci).second.at (harqId) = uldci;
638 }
639
640 rbStart = rbStart + rbLen;
641 ret.m_buildRarList.push_back (newRar);
642 }
643 m_rachList.clear ();
644
645
646 // Process DL HARQ feedback
648 // retrieve past HARQ retx buffered
649 if (m_dlInfoListBuffered.size () > 0)
650 {
651 if (params.m_dlInfoList.size () > 0)
652 {
653 NS_LOG_INFO (this << " Received DL-HARQ feedback");
654 m_dlInfoListBuffered.insert (m_dlInfoListBuffered.end (), params.m_dlInfoList.begin (), params.m_dlInfoList.end ());
655 }
656 }
657 else
658 {
659 if (params.m_dlInfoList.size () > 0)
660 {
662 }
663 }
664 if (m_harqOn == false)
665 {
666 // Ignore HARQ feedback
667 m_dlInfoListBuffered.clear ();
668 }
669 std::vector <struct DlInfoListElement_s> dlInfoListUntxed;
670 for (uint16_t i = 0; i < m_dlInfoListBuffered.size (); i++)
671 {
672 std::set <uint16_t>::iterator itRnti = rntiAllocated.find (m_dlInfoListBuffered.at (i).m_rnti);
673 if (itRnti != rntiAllocated.end ())
674 {
675 // RNTI already allocated for retx
676 continue;
677 }
678 uint8_t nLayers = m_dlInfoListBuffered.at (i).m_harqStatus.size ();
679 std::vector <bool> retx;
680 NS_LOG_INFO (this << " Processing DLHARQ feedback");
681 if (nLayers == 1)
682 {
683 retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (0) == DlInfoListElement_s::NACK);
684 retx.push_back (false);
685 }
686 else
687 {
688 retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (0) == DlInfoListElement_s::NACK);
689 retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (1) == DlInfoListElement_s::NACK);
690 }
691 if (retx.at (0) || retx.at (1))
692 {
693 // retrieve HARQ process information
694 uint16_t rnti = m_dlInfoListBuffered.at (i).m_rnti;
695 uint8_t harqId = m_dlInfoListBuffered.at (i).m_harqProcessId;
696 NS_LOG_INFO (this << " HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId);
697 std::map <uint16_t, DlHarqProcessesDciBuffer_t>::iterator itHarq = m_dlHarqProcessesDciBuffer.find (rnti);
698 if (itHarq == m_dlHarqProcessesDciBuffer.end ())
699 {
700 NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << rnti);
701 }
702
703 DlDciListElement_s dci = (*itHarq).second.at (harqId);
704 int rv = 0;
705 if (dci.m_rv.size () == 1)
706 {
707 rv = dci.m_rv.at (0);
708 }
709 else
710 {
711 rv = (dci.m_rv.at (0) > dci.m_rv.at (1) ? dci.m_rv.at (0) : dci.m_rv.at (1));
712 }
713
714 if (rv == 3)
715 {
716 // maximum number of retx reached -> drop process
717 NS_LOG_INFO ("Maximum number of retransmissions reached -> drop process");
718 std::map <uint16_t, DlHarqProcessesStatus_t>::iterator it = m_dlHarqProcessesStatus.find (rnti);
719 if (it == m_dlHarqProcessesStatus.end ())
720 {
721 NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << m_dlInfoListBuffered.at (i).m_rnti);
722 }
723 (*it).second.at (harqId) = 0;
724 std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (rnti);
725 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
726 {
727 NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << m_dlInfoListBuffered.at (i).m_rnti);
728 }
729 for (uint16_t k = 0; k < (*itRlcPdu).second.size (); k++)
730 {
731 (*itRlcPdu).second.at (k).at (harqId).clear ();
732 }
733 continue;
734 }
735 // check the feasibility of retransmitting on the same RBGs
736 // translate the DCI to Spectrum framework
737 std::vector <int> dciRbg;
738 uint32_t mask = 0x1;
739 NS_LOG_INFO ("Original RBGs " << dci.m_rbBitmap << " rnti " << dci.m_rnti);
740 for (int j = 0; j < 32; j++)
741 {
742 if (((dci.m_rbBitmap & mask) >> j) == 1)
743 {
744 dciRbg.push_back (j);
745 NS_LOG_INFO ("\t" << j);
746 }
747 mask = (mask << 1);
748 }
749 bool free = true;
750 for (uint8_t j = 0; j < dciRbg.size (); j++)
751 {
752 if (rbgMap.at (dciRbg.at (j)) == true)
753 {
754 free = false;
755 break;
756 }
757 }
758 if (free)
759 {
760 // use the same RBGs for the retx
761 // reserve RBGs
762 for (uint8_t j = 0; j < dciRbg.size (); j++)
763 {
764 rbgMap.at (dciRbg.at (j)) = true;
765 NS_LOG_INFO ("RBG " << dciRbg.at (j) << " assigned");
766 rbgAllocatedNum++;
767 }
768
769 NS_LOG_INFO (this << " Send retx in the same RBGs");
770 }
771 else
772 {
773 // find RBGs for sending HARQ retx
774 uint8_t j = 0;
775 uint8_t rbgId = (dciRbg.at (dciRbg.size () - 1) + 1) % rbgNum;
776 uint8_t startRbg = dciRbg.at (dciRbg.size () - 1);
777 std::vector <bool> rbgMapCopy = rbgMap;
778 while ((j < dciRbg.size ())&&(startRbg != rbgId))
779 {
780 if (rbgMapCopy.at (rbgId) == false)
781 {
782 rbgMapCopy.at (rbgId) = true;
783 dciRbg.at (j) = rbgId;
784 j++;
785 }
786 rbgId = (rbgId + 1) % rbgNum;
787 }
788 if (j == dciRbg.size ())
789 {
790 // find new RBGs -> update DCI map
791 uint32_t rbgMask = 0;
792 for (uint16_t k = 0; k < dciRbg.size (); k++)
793 {
794 rbgMask = rbgMask + (0x1 << dciRbg.at (k));
795 rbgAllocatedNum++;
796 }
797 dci.m_rbBitmap = rbgMask;
798 rbgMap = rbgMapCopy;
799 NS_LOG_INFO (this << " Move retx in RBGs " << dciRbg.size ());
800 }
801 else
802 {
803 // HARQ retx cannot be performed on this TTI -> store it
804 dlInfoListUntxed.push_back (m_dlInfoListBuffered.at (i));
805 NS_LOG_INFO (this << " No resource for this retx -> buffer it");
806 }
807 }
808 // retrieve RLC PDU list for retx TBsize and update DCI
810 std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (rnti);
811 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
812 {
813 NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << rnti);
814 }
815 for (uint8_t j = 0; j < nLayers; j++)
816 {
817 if (retx.at (j))
818 {
819 if (j >= dci.m_ndi.size ())
820 {
821 // for avoiding errors in MIMO transient phases
822 dci.m_ndi.push_back (0);
823 dci.m_rv.push_back (0);
824 dci.m_mcs.push_back (0);
825 dci.m_tbsSize.push_back (0);
826 NS_LOG_INFO (this << " layer " << (uint16_t)j << " no txed (MIMO transition)");
827 }
828 else
829 {
830 dci.m_ndi.at (j) = 0;
831 dci.m_rv.at (j)++;
832 (*itHarq).second.at (harqId).m_rv.at (j)++;
833 NS_LOG_INFO (this << " layer " << (uint16_t)j << " RV " << (uint16_t)dci.m_rv.at (j));
834 }
835 }
836 else
837 {
838 // empty TB of layer j
839 dci.m_ndi.at (j) = 0;
840 dci.m_rv.at (j) = 0;
841 dci.m_mcs.at (j) = 0;
842 dci.m_tbsSize.at (j) = 0;
843 NS_LOG_INFO (this << " layer " << (uint16_t)j << " no retx");
844 }
845 }
846 for (uint16_t k = 0; k < (*itRlcPdu).second.at (0).at (dci.m_harqProcess).size (); k++)
847 {
848 std::vector <struct RlcPduListElement_s> rlcPduListPerLc;
849 for (uint8_t j = 0; j < nLayers; j++)
850 {
851 if (retx.at (j))
852 {
853 if (j < dci.m_ndi.size ())
854 {
855 NS_LOG_INFO (" layer " << (uint16_t)j << " tb size " << dci.m_tbsSize.at (j));
856 rlcPduListPerLc.push_back ((*itRlcPdu).second.at (j).at (dci.m_harqProcess).at (k));
857 }
858 }
859 else
860 { // if no retx needed on layer j, push an RlcPduListElement_s object with m_size=0 to keep the size of rlcPduListPerLc vector = 2 in case of MIMO
861 NS_LOG_INFO (" layer " << (uint16_t)j << " tb size "<<dci.m_tbsSize.at (j));
862 RlcPduListElement_s emptyElement;
863 emptyElement.m_logicalChannelIdentity = (*itRlcPdu).second.at (j).at (dci.m_harqProcess).at (k).m_logicalChannelIdentity;
864 emptyElement.m_size = 0;
865 rlcPduListPerLc.push_back (emptyElement);
866 }
867 }
868
869 if (rlcPduListPerLc.size () > 0)
870 {
871 newEl.m_rlcPduList.push_back (rlcPduListPerLc);
872 }
873 }
874 newEl.m_rnti = rnti;
875 newEl.m_dci = dci;
876 (*itHarq).second.at (harqId).m_rv = dci.m_rv;
877 // refresh timer
878 std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itHarqTimer = m_dlHarqProcessesTimer.find (rnti);
879 if (itHarqTimer== m_dlHarqProcessesTimer.end ())
880 {
881 NS_FATAL_ERROR ("Unable to find HARQ timer for RNTI " << (uint16_t)rnti);
882 }
883 (*itHarqTimer).second.at (harqId) = 0;
884 ret.m_buildDataList.push_back (newEl);
885 rntiAllocated.insert (rnti);
886 }
887 else
888 {
889 // update HARQ process status
890 NS_LOG_INFO (this << " HARQ received ACK for UE " << m_dlInfoListBuffered.at (i).m_rnti);
891 std::map <uint16_t, DlHarqProcessesStatus_t>::iterator it = m_dlHarqProcessesStatus.find (m_dlInfoListBuffered.at (i).m_rnti);
892 if (it == m_dlHarqProcessesStatus.end ())
893 {
894 NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << m_dlInfoListBuffered.at (i).m_rnti);
895 }
896 (*it).second.at (m_dlInfoListBuffered.at (i).m_harqProcessId) = 0;
897 std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (m_dlInfoListBuffered.at (i).m_rnti);
898 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
899 {
900 NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << m_dlInfoListBuffered.at (i).m_rnti);
901 }
902 for (uint16_t k = 0; k < (*itRlcPdu).second.size (); k++)
903 {
904 (*itRlcPdu).second.at (k).at (m_dlInfoListBuffered.at (i).m_harqProcessId).clear ();
905 }
906 }
907 }
908 m_dlInfoListBuffered.clear ();
909 m_dlInfoListBuffered = dlInfoListUntxed;
910
911 if (rbgAllocatedNum == rbgNum)
912 {
913 // all the RBGs are already allocated -> exit
914 if ((ret.m_buildDataList.size () > 0) || (ret.m_buildRarList.size () > 0))
915 {
917 }
918 return;
919 }
920
921
922
923 for (int i = 0; i < rbgNum; i++)
924 {
925 NS_LOG_INFO (this << " ALLOCATION for RBG " << i << " of " << rbgNum);
926 if (rbgMap.at (i) == false)
927 {
928 std::map <uint16_t, pfsFlowPerf_t>::iterator it;
929 std::map <uint16_t, pfsFlowPerf_t>::iterator itMax = m_flowStatsDl.end ();
930 double rcqiMax = 0.0;
931 for (it = m_flowStatsDl.begin (); it != m_flowStatsDl.end (); it++)
932 {
933 if ((m_ffrSapProvider->IsDlRbgAvailableForUe (i, (*it).first)) == false)
934 continue;
935
936 std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it).first);
937 if ((itRnti != rntiAllocated.end ())||(!HarqProcessAvailability ((*it).first)))
938 {
939 // UE already allocated for HARQ or without HARQ process available -> drop it
940 if (itRnti != rntiAllocated.end ())
941 {
942 NS_LOG_DEBUG (this << " RNTI discared for HARQ tx" << (uint16_t)(*it).first);
943 }
944 if (!HarqProcessAvailability ((*it).first))
945 {
946 NS_LOG_DEBUG (this << " RNTI discared for HARQ id" << (uint16_t)(*it).first);
947 }
948 continue;
949 }
950 std::map <uint16_t,SbMeasResult_s>::iterator itCqi;
951 itCqi = m_a30CqiRxed.find ((*it).first);
952 std::map <uint16_t,uint8_t>::iterator itTxMode;
953 itTxMode = m_uesTxMode.find ((*it).first);
954 if (itTxMode == m_uesTxMode.end ())
955 {
956 NS_FATAL_ERROR ("No Transmission Mode info on user " << (*it).first);
957 }
958 int nLayer = TransmissionModesLayers::TxMode2LayerNum ((*itTxMode).second);
959 std::vector <uint8_t> sbCqi;
960 if (itCqi == m_a30CqiRxed.end ())
961 {
962 for (uint8_t k = 0; k < nLayer; k++)
963 {
964 sbCqi.push_back (1); // start with lowest value
965 }
966 }
967 else
968 {
969 sbCqi = (*itCqi).second.m_higherLayerSelected.at (i).m_sbCqi;
970 }
971 uint8_t cqi1 = sbCqi.at (0);
972 uint8_t cqi2 = 0;
973 if (sbCqi.size () > 1)
974 {
975 cqi2 = sbCqi.at (1);
976 }
977
978 if ((cqi1 > 0)||(cqi2 > 0)) // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
979 {
980 if (LcActivePerFlow ((*it).first) > 0)
981 {
982 // this UE has data to transmit
983 double achievableRate = 0.0;
984 uint8_t mcs = 0;
985 for (uint8_t k = 0; k < nLayer; k++)
986 {
987 if (sbCqi.size () > k)
988 {
989 mcs = m_amc->GetMcsFromCqi (sbCqi.at (k));
990 }
991 else
992 {
993 // no info on this subband -> worst MCS
994 mcs = 0;
995 }
996 achievableRate += ((m_amc->GetDlTbSizeFromMcs (mcs, rbgSize) / 8) / 0.001); // = TB size / TTI
997 }
998
999 double rcqi = achievableRate / (*it).second.lastAveragedThroughput;
1000 NS_LOG_INFO (this << " RNTI " << (*it).first << " MCS " << (uint32_t)mcs << " achievableRate " << achievableRate << " avgThr " << (*it).second.lastAveragedThroughput << " RCQI " << rcqi);
1001
1002 if (rcqi > rcqiMax)
1003 {
1004 rcqiMax = rcqi;
1005 itMax = it;
1006 }
1007 }
1008 } // end if cqi
1009 } // end for m_rlcBufferReq
1010
1011 if (itMax == m_flowStatsDl.end ())
1012 {
1013 // no UE available for this RB
1014 NS_LOG_INFO (this << " any UE found");
1015 }
1016 else
1017 {
1018 rbgMap.at (i) = true;
1019 std::map <uint16_t, std::vector <uint16_t> >::iterator itMap;
1020 itMap = allocationMap.find ((*itMax).first);
1021 if (itMap == allocationMap.end ())
1022 {
1023 // insert new element
1024 std::vector <uint16_t> tempMap;
1025 tempMap.push_back (i);
1026 allocationMap.insert (std::pair <uint16_t, std::vector <uint16_t> > ((*itMax).first, tempMap));
1027 }
1028 else
1029 {
1030 (*itMap).second.push_back (i);
1031 }
1032 NS_LOG_INFO (this << " UE assigned " << (*itMax).first);
1033 }
1034 } // end for RBG free
1035 } // end for RBGs
1036
1037 // reset TTI stats of users
1038 std::map <uint16_t, pfsFlowPerf_t>::iterator itStats;
1039 for (itStats = m_flowStatsDl.begin (); itStats != m_flowStatsDl.end (); itStats++)
1040 {
1041 (*itStats).second.lastTtiBytesTrasmitted = 0;
1042 }
1043
1044 // generate the transmission opportunities by grouping the RBGs of the same RNTI and
1045 // creating the correspondent DCIs
1046 std::map <uint16_t, std::vector <uint16_t> >::iterator itMap = allocationMap.begin ();
1047 while (itMap != allocationMap.end ())
1048 {
1049 // create new BuildDataListElement_s for this LC
1051 newEl.m_rnti = (*itMap).first;
1052 // create the DlDciListElement_s
1053 DlDciListElement_s newDci;
1054 newDci.m_rnti = (*itMap).first;
1055 newDci.m_harqProcess = UpdateHarqProcessId ((*itMap).first);
1056
1057 uint16_t lcActives = LcActivePerFlow ((*itMap).first);
1058 NS_LOG_INFO (this << "Allocate user " << newEl.m_rnti << " rbg " << lcActives);
1059 if (lcActives == 0)
1060 {
1061 // Set to max value, to avoid divide by 0 below
1062 lcActives = (uint16_t)65535; // UINT16_MAX;
1063 }
1064 uint16_t RgbPerRnti = (*itMap).second.size ();
1065 std::map <uint16_t,SbMeasResult_s>::iterator itCqi;
1066 itCqi = m_a30CqiRxed.find ((*itMap).first);
1067 std::map <uint16_t,uint8_t>::iterator itTxMode;
1068 itTxMode = m_uesTxMode.find ((*itMap).first);
1069 if (itTxMode == m_uesTxMode.end ())
1070 {
1071 NS_FATAL_ERROR ("No Transmission Mode info on user " << (*itMap).first);
1072 }
1073 int nLayer = TransmissionModesLayers::TxMode2LayerNum ((*itTxMode).second);
1074 std::vector <uint8_t> worstCqi (2, 15);
1075 if (itCqi != m_a30CqiRxed.end ())
1076 {
1077 for (uint16_t k = 0; k < (*itMap).second.size (); k++)
1078 {
1079 if ((*itCqi).second.m_higherLayerSelected.size () > (*itMap).second.at (k))
1080 {
1081 NS_LOG_INFO (this << " RBG " << (*itMap).second.at (k) << " CQI " << (uint16_t)((*itCqi).second.m_higherLayerSelected.at ((*itMap).second.at (k)).m_sbCqi.at (0)) );
1082 for (uint8_t j = 0; j < nLayer; j++)
1083 {
1084 if ((*itCqi).second.m_higherLayerSelected.at ((*itMap).second.at (k)).m_sbCqi.size () > j)
1085 {
1086 if (((*itCqi).second.m_higherLayerSelected.at ((*itMap).second.at (k)).m_sbCqi.at (j)) < worstCqi.at (j))
1087 {
1088 worstCqi.at (j) = ((*itCqi).second.m_higherLayerSelected.at ((*itMap).second.at (k)).m_sbCqi.at (j));
1089 }
1090 }
1091 else
1092 {
1093 // no CQI for this layer of this suband -> worst one
1094 worstCqi.at (j) = 1;
1095 }
1096 }
1097 }
1098 else
1099 {
1100 for (uint8_t j = 0; j < nLayer; j++)
1101 {
1102 worstCqi.at (j) = 1; // try with lowest MCS in RBG with no info on channel
1103 }
1104 }
1105 }
1106 }
1107 else
1108 {
1109 for (uint8_t j = 0; j < nLayer; j++)
1110 {
1111 worstCqi.at (j) = 1; // try with lowest MCS in RBG with no info on channel
1112 }
1113 }
1114 for (uint8_t j = 0; j < nLayer; j++)
1115 {
1116 NS_LOG_INFO (this << " Layer " << (uint16_t)j << " CQI selected " << (uint16_t)worstCqi.at (j));
1117 }
1118 uint32_t bytesTxed = 0;
1119 for (uint8_t j = 0; j < nLayer; j++)
1120 {
1121 newDci.m_mcs.push_back (m_amc->GetMcsFromCqi (worstCqi.at (j)));
1122 int tbSize = (m_amc->GetDlTbSizeFromMcs (newDci.m_mcs.at (j), RgbPerRnti * rbgSize) / 8); // (size of TB in bytes according to table 7.1.7.2.1-1 of 36.213)
1123 newDci.m_tbsSize.push_back (tbSize);
1124 NS_LOG_INFO (this << " Layer " << (uint16_t)j << " MCS selected" << m_amc->GetMcsFromCqi (worstCqi.at (j)));
1125 bytesTxed += tbSize;
1126 }
1127
1128 newDci.m_resAlloc = 0; // only allocation type 0 at this stage
1129 newDci.m_rbBitmap = 0; // TBD (32 bit bitmap see 7.1.6 of 36.213)
1130 uint32_t rbgMask = 0;
1131 for (uint16_t k = 0; k < (*itMap).second.size (); k++)
1132 {
1133 rbgMask = rbgMask + (0x1 << (*itMap).second.at (k));
1134 NS_LOG_INFO (this << " Allocated RBG " << (*itMap).second.at (k));
1135 }
1136 newDci.m_rbBitmap = rbgMask; // (32 bit bitmap see 7.1.6 of 36.213)
1137
1138 // create the rlc PDUs -> equally divide resources among actives LCs
1139 std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator itBufReq;
1140 for (itBufReq = m_rlcBufferReq.begin (); itBufReq != m_rlcBufferReq.end (); itBufReq++)
1141 {
1142 if (((*itBufReq).first.m_rnti == (*itMap).first)
1143 && (((*itBufReq).second.m_rlcTransmissionQueueSize > 0)
1144 || ((*itBufReq).second.m_rlcRetransmissionQueueSize > 0)
1145 || ((*itBufReq).second.m_rlcStatusPduSize > 0) ))
1146 {
1147 std::vector <struct RlcPduListElement_s> newRlcPduLe;
1148 for (uint8_t j = 0; j < nLayer; j++)
1149 {
1150 RlcPduListElement_s newRlcEl;
1151 newRlcEl.m_logicalChannelIdentity = (*itBufReq).first.m_lcId;
1152 newRlcEl.m_size = newDci.m_tbsSize.at (j) / lcActives;
1153 NS_LOG_INFO (this << " LCID " << (uint32_t) newRlcEl.m_logicalChannelIdentity << " size " << newRlcEl.m_size << " layer " << (uint16_t)j);
1154 newRlcPduLe.push_back (newRlcEl);
1155 UpdateDlRlcBufferInfo (newDci.m_rnti, newRlcEl.m_logicalChannelIdentity, newRlcEl.m_size);
1156 if (m_harqOn == true)
1157 {
1158 // store RLC PDU list for HARQ
1159 std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find ((*itMap).first);
1160 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
1161 {
1162 NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << (*itMap).first);
1163 }
1164 (*itRlcPdu).second.at (j).at (newDci.m_harqProcess).push_back (newRlcEl);
1165 }
1166 }
1167 newEl.m_rlcPduList.push_back (newRlcPduLe);
1168 }
1169 if ((*itBufReq).first.m_rnti > (*itMap).first)
1170 {
1171 break;
1172 }
1173 }
1174 for (uint8_t j = 0; j < nLayer; j++)
1175 {
1176 newDci.m_ndi.push_back (1);
1177 newDci.m_rv.push_back (0);
1178 }
1179
1180 newDci.m_tpc = m_ffrSapProvider->GetTpc ((*itMap).first);
1181
1182 newEl.m_dci = newDci;
1183
1184 if (m_harqOn == true)
1185 {
1186 // store DCI for HARQ
1187 std::map <uint16_t, DlHarqProcessesDciBuffer_t>::iterator itDci = m_dlHarqProcessesDciBuffer.find (newEl.m_rnti);
1188 if (itDci == m_dlHarqProcessesDciBuffer.end ())
1189 {
1190 NS_FATAL_ERROR ("Unable to find RNTI entry in DCI HARQ buffer for RNTI " << newEl.m_rnti);
1191 }
1192 (*itDci).second.at (newDci.m_harqProcess) = newDci;
1193 // refresh timer
1194 std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itHarqTimer = m_dlHarqProcessesTimer.find (newEl.m_rnti);
1195 if (itHarqTimer== m_dlHarqProcessesTimer.end ())
1196 {
1197 NS_FATAL_ERROR ("Unable to find HARQ timer for RNTI " << (uint16_t)newEl.m_rnti);
1198 }
1199 (*itHarqTimer).second.at (newDci.m_harqProcess) = 0;
1200 }
1201
1202 // ...more parameters -> ignored in this version
1203
1204 ret.m_buildDataList.push_back (newEl);
1205 // update UE stats
1206 std::map <uint16_t, pfsFlowPerf_t>::iterator it;
1207 it = m_flowStatsDl.find ((*itMap).first);
1208 if (it != m_flowStatsDl.end ())
1209 {
1210 (*it).second.lastTtiBytesTrasmitted = bytesTxed;
1211 NS_LOG_INFO (this << " UE total bytes txed " << (*it).second.lastTtiBytesTrasmitted);
1212
1213
1214 }
1215 else
1216 {
1217 NS_FATAL_ERROR (this << " No Stats for this allocated UE");
1218 }
1219
1220 itMap++;
1221 } // end while allocation
1222 ret.m_nrOfPdcchOfdmSymbols = 1;
1223
1224
1225 // update UEs stats
1226 NS_LOG_INFO (this << " Update UEs statistics");
1227 for (itStats = m_flowStatsDl.begin (); itStats != m_flowStatsDl.end (); itStats++)
1228 {
1229 (*itStats).second.totalBytesTransmitted += (*itStats).second.lastTtiBytesTrasmitted;
1230 // update average throughput (see eq. 12.3 of Sec 12.3.1.2 of LTE – The UMTS Long Term Evolution, Ed Wiley)
1231 (*itStats).second.lastAveragedThroughput = ((1.0 - (1.0 / m_timeWindow)) * (*itStats).second.lastAveragedThroughput) + ((1.0 / m_timeWindow) * (double)((*itStats).second.lastTtiBytesTrasmitted / 0.001));
1232 NS_LOG_INFO (this << " UE total bytes " << (*itStats).second.totalBytesTransmitted);
1233 NS_LOG_INFO (this << " UE average throughput " << (*itStats).second.lastAveragedThroughput);
1234 (*itStats).second.lastTtiBytesTrasmitted = 0;
1235 }
1236
1238
1239
1240 return;
1241}
1242
1243void
1245{
1246 NS_LOG_FUNCTION (this);
1247
1248 m_rachList = params.m_rachList;
1249
1250 return;
1251}
1252
1253void
1255{
1256 NS_LOG_FUNCTION (this);
1258
1259 for (unsigned int i = 0; i < params.m_cqiList.size (); i++)
1260 {
1261 if ( params.m_cqiList.at (i).m_cqiType == CqiListElement_s::P10 )
1262 {
1263 NS_LOG_LOGIC ("wideband CQI " << (uint32_t) params.m_cqiList.at (i).m_wbCqi.at (0) << " reported");
1264 std::map <uint16_t,uint8_t>::iterator it;
1265 uint16_t rnti = params.m_cqiList.at (i).m_rnti;
1266 it = m_p10CqiRxed.find (rnti);
1267 if (it == m_p10CqiRxed.end ())
1268 {
1269 // create the new entry
1270 m_p10CqiRxed.insert ( std::pair<uint16_t, uint8_t > (rnti, params.m_cqiList.at (i).m_wbCqi.at (0)) ); // only codeword 0 at this stage (SISO)
1271 // generate correspondent timer
1272 m_p10CqiTimers.insert ( std::pair<uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1273 }
1274 else
1275 {
1276 // update the CQI value and refresh correspondent timer
1277 (*it).second = params.m_cqiList.at (i).m_wbCqi.at (0);
1278 // update correspondent timer
1279 std::map <uint16_t,uint32_t>::iterator itTimers;
1280 itTimers = m_p10CqiTimers.find (rnti);
1281 (*itTimers).second = m_cqiTimersThreshold;
1282 }
1283 }
1284 else if ( params.m_cqiList.at (i).m_cqiType == CqiListElement_s::A30 )
1285 {
1286 // subband CQI reporting high layer configured
1287 std::map <uint16_t,SbMeasResult_s>::iterator it;
1288 uint16_t rnti = params.m_cqiList.at (i).m_rnti;
1289 it = m_a30CqiRxed.find (rnti);
1290 if (it == m_a30CqiRxed.end ())
1291 {
1292 // create the new entry
1293 m_a30CqiRxed.insert ( std::pair<uint16_t, SbMeasResult_s > (rnti, params.m_cqiList.at (i).m_sbMeasResult) );
1294 m_a30CqiTimers.insert ( std::pair<uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1295 }
1296 else
1297 {
1298 // update the CQI value and refresh correspondent timer
1299 (*it).second = params.m_cqiList.at (i).m_sbMeasResult;
1300 std::map <uint16_t,uint32_t>::iterator itTimers;
1301 itTimers = m_a30CqiTimers.find (rnti);
1302 (*itTimers).second = m_cqiTimersThreshold;
1303 }
1304 }
1305 else
1306 {
1307 NS_LOG_ERROR (this << " CQI type unknown");
1308 }
1309 }
1310
1311 return;
1312}
1313
1314
1315double
1316PfFfMacScheduler::EstimateUlSinr (uint16_t rnti, uint16_t rb)
1317{
1318 std::map <uint16_t, std::vector <double> >::iterator itCqi = m_ueCqi.find (rnti);
1319 if (itCqi == m_ueCqi.end ())
1320 {
1321 // no cqi info about this UE
1322 return (NO_SINR);
1323
1324 }
1325 else
1326 {
1327 // take the average SINR value among the available
1328 double sinrSum = 0;
1329 unsigned int sinrNum = 0;
1330 for (uint32_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1331 {
1332 double sinr = (*itCqi).second.at (i);
1333 if (sinr != NO_SINR)
1334 {
1335 sinrSum += sinr;
1336 sinrNum++;
1337 }
1338 }
1339 double estimatedSinr = (sinrNum > 0) ? (sinrSum / sinrNum) : DBL_MAX;
1340 // store the value
1341 (*itCqi).second.at (rb) = estimatedSinr;
1342 return (estimatedSinr);
1343 }
1344}
1345
1346void
1348{
1349 NS_LOG_FUNCTION (this << " UL - Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf) << " size " << params.m_ulInfoList.size ());
1350
1353
1354 // Generate RBs map
1356 std::vector <bool> rbMap;
1357 uint16_t rbAllocatedNum = 0;
1358 std::set <uint16_t> rntiAllocated;
1359 std::vector <uint16_t> rbgAllocationMap;
1360 // update with RACH allocation map
1361 rbgAllocationMap = m_rachAllocationMap;
1362 //rbgAllocationMap.resize (m_cschedCellConfig.m_ulBandwidth, 0);
1363 m_rachAllocationMap.clear ();
1365
1366 rbMap.resize (m_cschedCellConfig.m_ulBandwidth, false);
1368
1369 for (std::vector<bool>::iterator it = rbMap.begin (); it != rbMap.end (); it++)
1370 {
1371 if ((*it) == true )
1372 {
1373 rbAllocatedNum++;
1374 }
1375 }
1376
1377 uint8_t minContinuousUlBandwidth = m_ffrSapProvider->GetMinContinuousUlBandwidth ();
1378 uint8_t ffrUlBandwidth = m_cschedCellConfig.m_ulBandwidth - rbAllocatedNum;
1379
1380 // remove RACH allocation
1381 for (uint16_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1382 {
1383 if (rbgAllocationMap.at (i) != 0)
1384 {
1385 rbMap.at (i) = true;
1386 NS_LOG_DEBUG (this << " Allocated for RACH " << i);
1387 }
1388 }
1389
1390
1391 if (m_harqOn == true)
1392 {
1393 // Process UL HARQ feedback
1394
1395 for (uint16_t i = 0; i < params.m_ulInfoList.size (); i++)
1396 {
1397 if (params.m_ulInfoList.at (i).m_receptionStatus == UlInfoListElement_s::NotOk)
1398 {
1399 // retx correspondent block: retrieve the UL-DCI
1400 uint16_t rnti = params.m_ulInfoList.at (i).m_rnti;
1401 std::map <uint16_t, uint8_t>::iterator itProcId = m_ulHarqCurrentProcessId.find (rnti);
1402 if (itProcId == m_ulHarqCurrentProcessId.end ())
1403 {
1404 NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1405 }
1406 uint8_t harqId = (uint8_t)((*itProcId).second - HARQ_PERIOD) % HARQ_PROC_NUM;
1407 NS_LOG_INFO (this << " UL-HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId << " i " << i << " size " << params.m_ulInfoList.size ());
1408 std::map <uint16_t, UlHarqProcessesDciBuffer_t>::iterator itHarq = m_ulHarqProcessesDciBuffer.find (rnti);
1409 if (itHarq == m_ulHarqProcessesDciBuffer.end ())
1410 {
1411 NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1412 continue;
1413 }
1414 UlDciListElement_s dci = (*itHarq).second.at (harqId);
1415 std::map <uint16_t, UlHarqProcessesStatus_t>::iterator itStat = m_ulHarqProcessesStatus.find (rnti);
1416 if (itStat == m_ulHarqProcessesStatus.end ())
1417 {
1418 NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1419 }
1420 if ((*itStat).second.at (harqId) >= 3)
1421 {
1422 NS_LOG_INFO ("Max number of retransmissions reached (UL)-> drop process");
1423 continue;
1424 }
1425 bool free = true;
1426 for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1427 {
1428 if (rbMap.at (j) == true)
1429 {
1430 free = false;
1431 NS_LOG_INFO (this << " BUSY " << j);
1432 }
1433 }
1434 if (free)
1435 {
1436 // retx on the same RBs
1437 for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1438 {
1439 rbMap.at (j) = true;
1440 rbgAllocationMap.at (j) = dci.m_rnti;
1441 NS_LOG_INFO ("\tRB " << j);
1442 rbAllocatedNum++;
1443 }
1444 NS_LOG_INFO (this << " Send retx in the same RBs " << (uint16_t)dci.m_rbStart << " to " << dci.m_rbStart + dci.m_rbLen << " RV " << (*itStat).second.at (harqId) + 1);
1445 }
1446 else
1447 {
1448 NS_LOG_INFO ("Cannot allocate retx due to RACH allocations for UE " << rnti);
1449 continue;
1450 }
1451 dci.m_ndi = 0;
1452 // Update HARQ buffers with new HarqId
1453 (*itStat).second.at ((*itProcId).second) = (*itStat).second.at (harqId) + 1;
1454 (*itStat).second.at (harqId) = 0;
1455 (*itHarq).second.at ((*itProcId).second) = dci;
1456 ret.m_dciList.push_back (dci);
1457 rntiAllocated.insert (dci.m_rnti);
1458 }
1459 else
1460 {
1461 NS_LOG_INFO (this << " HARQ-ACK feedback from RNTI " << params.m_ulInfoList.at (i).m_rnti);
1462 }
1463 }
1464 }
1465
1466 std::map <uint16_t,uint32_t>::iterator it;
1467 int nflows = 0;
1468
1469 for (it = m_ceBsrRxed.begin (); it != m_ceBsrRxed.end (); it++)
1470 {
1471 std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it).first);
1472 // select UEs with queues not empty and not yet allocated for HARQ
1473 if (((*it).second > 0)&&(itRnti == rntiAllocated.end ()))
1474 {
1475 nflows++;
1476 }
1477 }
1478
1479 if (nflows == 0)
1480 {
1481 if (ret.m_dciList.size () > 0)
1482 {
1483 m_allocationMaps.insert (std::pair <uint16_t, std::vector <uint16_t> > (params.m_sfnSf, rbgAllocationMap));
1485 }
1486
1487 return; // no flows to be scheduled
1488 }
1489
1490
1491 // Divide the remaining resources equally among the active users starting from the subsequent one served last scheduling trigger
1492 uint16_t tempRbPerFlow = (ffrUlBandwidth) / (nflows + rntiAllocated.size ());
1493 uint16_t rbPerFlow = (minContinuousUlBandwidth < tempRbPerFlow) ? minContinuousUlBandwidth : tempRbPerFlow;
1494
1495 if (rbPerFlow < 3)
1496 {
1497 rbPerFlow = 3; // at least 3 rbg per flow (till available resource) to ensure TxOpportunity >= 7 bytes
1498 }
1499
1500 int rbAllocated = 0;
1501
1502 std::map <uint16_t, pfsFlowPerf_t>::iterator itStats;
1503 if (m_nextRntiUl != 0)
1504 {
1505 for (it = m_ceBsrRxed.begin (); it != m_ceBsrRxed.end (); it++)
1506 {
1507 if ((*it).first == m_nextRntiUl)
1508 {
1509 break;
1510 }
1511 }
1512 if (it == m_ceBsrRxed.end ())
1513 {
1514 NS_LOG_ERROR (this << " no user found");
1515 }
1516 }
1517 else
1518 {
1519 it = m_ceBsrRxed.begin ();
1520 m_nextRntiUl = (*it).first;
1521 }
1522 do
1523 {
1524 std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it).first);
1525 if ((itRnti != rntiAllocated.end ())||((*it).second == 0))
1526 {
1527 // UE already allocated for UL-HARQ -> skip it
1528 NS_LOG_DEBUG (this << " UE already allocated in HARQ -> discared, RNTI " << (*it).first);
1529 it++;
1530 if (it == m_ceBsrRxed.end ())
1531 {
1532 // restart from the first
1533 it = m_ceBsrRxed.begin ();
1534 }
1535 continue;
1536 }
1537 if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1538 {
1539 // limit to physical resources last resource assignment
1540 rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1541 // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1542 if (rbPerFlow < 3)
1543 {
1544 // terminate allocation
1545 rbPerFlow = 0;
1546 }
1547 }
1548
1549 rbAllocated = 0;
1550 UlDciListElement_s uldci;
1551 uldci.m_rnti = (*it).first;
1552 uldci.m_rbLen = rbPerFlow;
1553 bool allocated = false;
1554
1555 while ((!allocated)&&((rbAllocated + rbPerFlow - m_cschedCellConfig.m_ulBandwidth) < 1) && (rbPerFlow != 0))
1556 {
1557 // check availability
1558 bool free = true;
1559 for (uint16_t j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1560 {
1561 if (rbMap.at (j) == true)
1562 {
1563 free = false;
1564 break;
1565 }
1566 if ((m_ffrSapProvider->IsUlRbgAvailableForUe (j, (*it).first)) == false)
1567 {
1568 free = false;
1569 break;
1570 }
1571 }
1572 if (free)
1573 {
1574 NS_LOG_INFO (this << "RNTI: "<< (*it).first<< " RB Allocated " << rbAllocated << " rbPerFlow " << rbPerFlow << " flows " << nflows);
1575 uldci.m_rbStart = rbAllocated;
1576
1577 for (uint16_t j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1578 {
1579 rbMap.at (j) = true;
1580 // store info on allocation for managing ul-cqi interpretation
1581 rbgAllocationMap.at (j) = (*it).first;
1582 }
1583 rbAllocated += rbPerFlow;
1584 allocated = true;
1585 break;
1586 }
1587 rbAllocated++;
1588 if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1589 {
1590 // limit to physical resources last resource assignment
1591 rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1592 // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1593 if (rbPerFlow < 3)
1594 {
1595 // terminate allocation
1596 rbPerFlow = 0;
1597 }
1598 }
1599 }
1600 if (!allocated)
1601 {
1602 // unable to allocate new resource: finish scheduling
1603 m_nextRntiUl = (*it).first;
1604// if (ret.m_dciList.size () > 0)
1605// {
1606// m_schedSapUser->SchedUlConfigInd (ret);
1607// }
1608// m_allocationMaps.insert (std::pair <uint16_t, std::vector <uint16_t> > (params.m_sfnSf, rbgAllocationMap));
1609// return;
1610 break;
1611 }
1612
1613
1614
1615 std::map <uint16_t, std::vector <double> >::iterator itCqi = m_ueCqi.find ((*it).first);
1616 int cqi = 0;
1617 if (itCqi == m_ueCqi.end ())
1618 {
1619 // no cqi info about this UE
1620 uldci.m_mcs = 0; // MCS 0 -> UL-AMC TBD
1621 }
1622 else
1623 {
1624 // take the lowest CQI value (worst RB)
1625 NS_ABORT_MSG_IF ((*itCqi).second.size() == 0, "CQI of RNTI = " << (*it).first << " has expired");
1626 double minSinr = (*itCqi).second.at (uldci.m_rbStart);
1627 if (minSinr == NO_SINR)
1628 {
1629 minSinr = EstimateUlSinr ((*it).first, uldci.m_rbStart);
1630 }
1631 for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1632 {
1633 double sinr = (*itCqi).second.at (i);
1634 if (sinr == NO_SINR)
1635 {
1636 sinr = EstimateUlSinr ((*it).first, i);
1637 }
1638 if (sinr < minSinr)
1639 {
1640 minSinr = sinr;
1641 }
1642 }
1643
1644 // translate SINR -> cqi: WILD ACK: same as DL
1645 double s = log2 ( 1 + (
1646 std::pow (10, minSinr / 10 ) /
1647 ( (-std::log (5.0 * 0.00005 )) / 1.5) ));
1648 cqi = m_amc->GetCqiFromSpectralEfficiency (s);
1649 if (cqi == 0)
1650 {
1651 it++;
1652 if (it == m_ceBsrRxed.end ())
1653 {
1654 // restart from the first
1655 it = m_ceBsrRxed.begin ();
1656 }
1657 NS_LOG_DEBUG (this << " UE discarded for CQI = 0, RNTI " << uldci.m_rnti);
1658 // remove UE from allocation map
1659 for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1660 {
1661 rbgAllocationMap.at (i) = 0;
1662 }
1663 continue; // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
1664 }
1665 uldci.m_mcs = m_amc->GetMcsFromCqi (cqi);
1666 }
1667
1668 uldci.m_tbSize = (m_amc->GetUlTbSizeFromMcs (uldci.m_mcs, rbPerFlow) / 8);
1669 UpdateUlRlcBufferInfo (uldci.m_rnti, uldci.m_tbSize);
1670 uldci.m_ndi = 1;
1671 uldci.m_cceIndex = 0;
1672 uldci.m_aggrLevel = 1;
1673 uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
1674 uldci.m_hopping = false;
1675 uldci.m_n2Dmrs = 0;
1676 uldci.m_tpc = 0; // no power control
1677 uldci.m_cqiRequest = false; // only period CQI at this stage
1678 uldci.m_ulIndex = 0; // TDD parameter
1679 uldci.m_dai = 1; // TDD parameter
1680 uldci.m_freqHopping = 0;
1681 uldci.m_pdcchPowerOffset = 0; // not used
1682 ret.m_dciList.push_back (uldci);
1683 // store DCI for HARQ_PERIOD
1684 uint8_t harqId = 0;
1685 if (m_harqOn == true)
1686 {
1687 std::map <uint16_t, uint8_t>::iterator itProcId;
1688 itProcId = m_ulHarqCurrentProcessId.find (uldci.m_rnti);
1689 if (itProcId == m_ulHarqCurrentProcessId.end ())
1690 {
1691 NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << uldci.m_rnti);
1692 }
1693 harqId = (*itProcId).second;
1694 std::map <uint16_t, UlHarqProcessesDciBuffer_t>::iterator itDci = m_ulHarqProcessesDciBuffer.find (uldci.m_rnti);
1695 if (itDci == m_ulHarqProcessesDciBuffer.end ())
1696 {
1697 NS_FATAL_ERROR ("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI " << uldci.m_rnti);
1698 }
1699 (*itDci).second.at (harqId) = uldci;
1700 // Update HARQ process status (RV 0)
1701 std::map <uint16_t, UlHarqProcessesStatus_t>::iterator itStat = m_ulHarqProcessesStatus.find (uldci.m_rnti);
1702 if (itStat == m_ulHarqProcessesStatus.end ())
1703 {
1704 NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << uldci.m_rnti);
1705 }
1706 (*itStat).second.at (harqId) = 0;
1707 }
1708
1709 NS_LOG_INFO (this << " UE Allocation RNTI " << (*it).first << " startPRB " << (uint32_t)uldci.m_rbStart << " nPRB " << (uint32_t)uldci.m_rbLen << " CQI " << cqi << " MCS " << (uint32_t)uldci.m_mcs << " TBsize " << uldci.m_tbSize << " RbAlloc " << rbAllocated << " harqId " << (uint16_t)harqId);
1710
1711 // update TTI UE stats
1712 itStats = m_flowStatsUl.find ((*it).first);
1713 if (itStats != m_flowStatsUl.end ())
1714 {
1715 (*itStats).second.lastTtiBytesTrasmitted = uldci.m_tbSize;
1716 }
1717 else
1718 {
1719 NS_LOG_DEBUG (this << " No Stats for this allocated UE");
1720 }
1721
1722
1723 it++;
1724 if (it == m_ceBsrRxed.end ())
1725 {
1726 // restart from the first
1727 it = m_ceBsrRxed.begin ();
1728 }
1729 if ((rbAllocated == m_cschedCellConfig.m_ulBandwidth) || (rbPerFlow == 0))
1730 {
1731 // Stop allocation: no more PRBs
1732 m_nextRntiUl = (*it).first;
1733 break;
1734 }
1735 }
1736 while (((*it).first != m_nextRntiUl)&&(rbPerFlow!=0));
1737
1738
1739 // Update global UE stats
1740 // update UEs stats
1741 for (itStats = m_flowStatsUl.begin (); itStats != m_flowStatsUl.end (); itStats++)
1742 {
1743 (*itStats).second.totalBytesTransmitted += (*itStats).second.lastTtiBytesTrasmitted;
1744 // update average throughput (see eq. 12.3 of Sec 12.3.1.2 of LTE – The UMTS Long Term Evolution, Ed Wiley)
1745 (*itStats).second.lastAveragedThroughput = ((1.0 - (1.0 / m_timeWindow)) * (*itStats).second.lastAveragedThroughput) + ((1.0 / m_timeWindow) * (double)((*itStats).second.lastTtiBytesTrasmitted / 0.001));
1746 NS_LOG_INFO (this << " UE total bytes " << (*itStats).second.totalBytesTransmitted);
1747 NS_LOG_INFO (this << " UE average throughput " << (*itStats).second.lastAveragedThroughput);
1748 (*itStats).second.lastTtiBytesTrasmitted = 0;
1749 }
1750 m_allocationMaps.insert (std::pair <uint16_t, std::vector <uint16_t> > (params.m_sfnSf, rbgAllocationMap));
1752
1753 return;
1754}
1755
1756void
1758{
1759 NS_LOG_FUNCTION (this);
1760 return;
1761}
1762
1763void
1765{
1766 NS_LOG_FUNCTION (this);
1767 return;
1768}
1769
1770void
1772{
1773 NS_LOG_FUNCTION (this);
1774
1775 std::map <uint16_t,uint32_t>::iterator it;
1776
1777 for (unsigned int i = 0; i < params.m_macCeList.size (); i++)
1778 {
1779 if ( params.m_macCeList.at (i).m_macCeType == MacCeListElement_s::BSR )
1780 {
1781 // buffer status report
1782 // note that this scheduler does not differentiate the
1783 // allocation according to which LCGs have more/less bytes
1784 // to send.
1785 // Hence the BSR of different LCGs are just summed up to get
1786 // a total queue size that is used for allocation purposes.
1787
1788 uint32_t buffer = 0;
1789 for (uint8_t lcg = 0; lcg < 4; ++lcg)
1790 {
1791 uint8_t bsrId = params.m_macCeList.at (i).m_macCeValue.m_bufferStatus.at (lcg);
1792 buffer += BufferSizeLevelBsr::BsrId2BufferSize (bsrId);
1793 }
1794
1795 uint16_t rnti = params.m_macCeList.at (i).m_rnti;
1796 NS_LOG_LOGIC (this << "RNTI=" << rnti << " buffer=" << buffer);
1797 it = m_ceBsrRxed.find (rnti);
1798 if (it == m_ceBsrRxed.end ())
1799 {
1800 // create the new entry
1801 m_ceBsrRxed.insert ( std::pair<uint16_t, uint32_t > (rnti, buffer));
1802 }
1803 else
1804 {
1805 // update the buffer size value
1806 (*it).second = buffer;
1807 }
1808 }
1809 }
1810
1811 return;
1812}
1813
1814void
1816{
1817 NS_LOG_FUNCTION (this);
1819
1820// retrieve the allocation for this subframe
1821 switch (m_ulCqiFilter)
1822 {
1824 {
1825 // filter all the CQIs that are not SRS based
1826 if (params.m_ulCqi.m_type != UlCqi_s::SRS)
1827 {
1828 return;
1829 }
1830 }
1831 break;
1833 {
1834 // filter all the CQIs that are not SRS based
1835 if (params.m_ulCqi.m_type != UlCqi_s::PUSCH)
1836 {
1837 return;
1838 }
1839 }
1840 break;
1841
1842 default:
1843 NS_FATAL_ERROR ("Unknown UL CQI type");
1844 }
1845
1846 switch (params.m_ulCqi.m_type)
1847 {
1848 case UlCqi_s::PUSCH:
1849 {
1850 std::map <uint16_t, std::vector <uint16_t> >::iterator itMap;
1851 std::map <uint16_t, std::vector <double> >::iterator itCqi;
1852 NS_LOG_DEBUG (this << " Collect PUSCH CQIs of Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf));
1853 itMap = m_allocationMaps.find (params.m_sfnSf);
1854 if (itMap == m_allocationMaps.end ())
1855 {
1856 return;
1857 }
1858 for (uint32_t i = 0; i < (*itMap).second.size (); i++)
1859 {
1860 // convert from fixed point notation Sxxxxxxxxxxx.xxx to double
1861 double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (i));
1862 itCqi = m_ueCqi.find ((*itMap).second.at (i));
1863 if (itCqi == m_ueCqi.end ())
1864 {
1865 // create a new entry
1866 std::vector <double> newCqi;
1867 for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1868 {
1869 if (i == j)
1870 {
1871 newCqi.push_back (sinr);
1872 }
1873 else
1874 {
1875 // initialize with NO_SINR value.
1876 newCqi.push_back (NO_SINR);
1877 }
1878
1879 }
1880 m_ueCqi.insert (std::pair <uint16_t, std::vector <double> > ((*itMap).second.at (i), newCqi));
1881 // generate correspondent timer
1882 m_ueCqiTimers.insert (std::pair <uint16_t, uint32_t > ((*itMap).second.at (i), m_cqiTimersThreshold));
1883 }
1884 else
1885 {
1886 // update the value
1887 (*itCqi).second.at (i) = sinr;
1888 NS_LOG_DEBUG (this << " RNTI " << (*itMap).second.at (i) << " RB " << i << " SINR " << sinr);
1889 // update correspondent timer
1890 std::map <uint16_t, uint32_t>::iterator itTimers;
1891 itTimers = m_ueCqiTimers.find ((*itMap).second.at (i));
1892 (*itTimers).second = m_cqiTimersThreshold;
1893
1894 }
1895
1896 }
1897 // remove obsolete info on allocation
1898 m_allocationMaps.erase (itMap);
1899 }
1900 break;
1901 case UlCqi_s::SRS:
1902 {
1903 NS_LOG_DEBUG (this << " Collect SRS CQIs of Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf));
1904 // get the RNTI from vendor specific parameters
1905 uint16_t rnti = 0;
1906 NS_ASSERT (params.m_vendorSpecificList.size () > 0);
1907 for (uint16_t i = 0; i < params.m_vendorSpecificList.size (); i++)
1908 {
1909 if (params.m_vendorSpecificList.at (i).m_type == SRS_CQI_RNTI_VSP)
1910 {
1911 Ptr<SrsCqiRntiVsp> vsp = DynamicCast<SrsCqiRntiVsp> (params.m_vendorSpecificList.at (i).m_value);
1912 rnti = vsp->GetRnti ();
1913 }
1914 }
1915 std::map <uint16_t, std::vector <double> >::iterator itCqi;
1916 itCqi = m_ueCqi.find (rnti);
1917 if (itCqi == m_ueCqi.end ())
1918 {
1919 // create a new entry
1920 std::vector <double> newCqi;
1921 for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1922 {
1923 double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (j));
1924 newCqi.push_back (sinr);
1925 NS_LOG_INFO (this << " RNTI " << rnti << " new SRS-CQI for RB " << j << " value " << sinr);
1926
1927 }
1928 m_ueCqi.insert (std::pair <uint16_t, std::vector <double> > (rnti, newCqi));
1929 // generate correspondent timer
1930 m_ueCqiTimers.insert (std::pair <uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1931 }
1932 else
1933 {
1934 // update the values
1935 for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1936 {
1937 double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (j));
1938 (*itCqi).second.at (j) = sinr;
1939 NS_LOG_INFO (this << " RNTI " << rnti << " update SRS-CQI for RB " << j << " value " << sinr);
1940 }
1941 // update correspondent timer
1942 std::map <uint16_t, uint32_t>::iterator itTimers;
1943 itTimers = m_ueCqiTimers.find (rnti);
1944 (*itTimers).second = m_cqiTimersThreshold;
1945
1946 }
1947
1948
1949 }
1950 break;
1951 case UlCqi_s::PUCCH_1:
1952 case UlCqi_s::PUCCH_2:
1953 case UlCqi_s::PRACH:
1954 {
1955 NS_FATAL_ERROR ("PfFfMacScheduler supports only PUSCH and SRS UL-CQIs");
1956 }
1957 break;
1958 default:
1959 NS_FATAL_ERROR ("Unknown type of UL-CQI");
1960 }
1961 return;
1962}
1963
1964void
1966{
1967 // refresh DL CQI P01 Map
1968 std::map <uint16_t,uint32_t>::iterator itP10 = m_p10CqiTimers.begin ();
1969 while (itP10 != m_p10CqiTimers.end ())
1970 {
1971 NS_LOG_INFO (this << " P10-CQI for user " << (*itP10).first << " is " << (uint32_t)(*itP10).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1972 if ((*itP10).second == 0)
1973 {
1974 // delete correspondent entries
1975 std::map <uint16_t,uint8_t>::iterator itMap = m_p10CqiRxed.find ((*itP10).first);
1976 NS_ASSERT_MSG (itMap != m_p10CqiRxed.end (), " Does not find CQI report for user " << (*itP10).first);
1977 NS_LOG_INFO (this << " P10-CQI expired for user " << (*itP10).first);
1978 m_p10CqiRxed.erase (itMap);
1979 std::map <uint16_t,uint32_t>::iterator temp = itP10;
1980 itP10++;
1981 m_p10CqiTimers.erase (temp);
1982 }
1983 else
1984 {
1985 (*itP10).second--;
1986 itP10++;
1987 }
1988 }
1989
1990 // refresh DL CQI A30 Map
1991 std::map <uint16_t,uint32_t>::iterator itA30 = m_a30CqiTimers.begin ();
1992 while (itA30 != m_a30CqiTimers.end ())
1993 {
1994 NS_LOG_INFO (this << " A30-CQI for user " << (*itA30).first << " is " << (uint32_t)(*itA30).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1995 if ((*itA30).second == 0)
1996 {
1997 // delete correspondent entries
1998 std::map <uint16_t,SbMeasResult_s>::iterator itMap = m_a30CqiRxed.find ((*itA30).first);
1999 NS_ASSERT_MSG (itMap != m_a30CqiRxed.end (), " Does not find CQI report for user " << (*itA30).first);
2000 NS_LOG_INFO (this << " A30-CQI expired for user " << (*itA30).first);
2001 m_a30CqiRxed.erase (itMap);
2002 std::map <uint16_t,uint32_t>::iterator temp = itA30;
2003 itA30++;
2004 m_a30CqiTimers.erase (temp);
2005 }
2006 else
2007 {
2008 (*itA30).second--;
2009 itA30++;
2010 }
2011 }
2012
2013 return;
2014}
2015
2016
2017void
2019{
2020 // refresh UL CQI Map
2021 std::map <uint16_t,uint32_t>::iterator itUl = m_ueCqiTimers.begin ();
2022 while (itUl != m_ueCqiTimers.end ())
2023 {
2024 NS_LOG_INFO (this << " UL-CQI for user " << (*itUl).first << " is " << (uint32_t)(*itUl).second << " thr " << (uint32_t)m_cqiTimersThreshold);
2025 if ((*itUl).second == 0)
2026 {
2027 // delete correspondent entries
2028 std::map <uint16_t, std::vector <double> >::iterator itMap = m_ueCqi.find ((*itUl).first);
2029 NS_ASSERT_MSG (itMap != m_ueCqi.end (), " Does not find CQI report for user " << (*itUl).first);
2030 NS_LOG_INFO (this << " UL-CQI exired for user " << (*itUl).first);
2031 (*itMap).second.clear ();
2032 m_ueCqi.erase (itMap);
2033 std::map <uint16_t,uint32_t>::iterator temp = itUl;
2034 itUl++;
2035 m_ueCqiTimers.erase (temp);
2036 }
2037 else
2038 {
2039 (*itUl).second--;
2040 itUl++;
2041 }
2042 }
2043
2044 return;
2045}
2046
2047void
2048PfFfMacScheduler::UpdateDlRlcBufferInfo (uint16_t rnti, uint8_t lcid, uint16_t size)
2049{
2050 std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
2051 LteFlowId_t flow (rnti, lcid);
2052 it = m_rlcBufferReq.find (flow);
2053 if (it != m_rlcBufferReq.end ())
2054 {
2055 NS_LOG_INFO (this << " UE " << rnti << " LC " << (uint16_t)lcid << " txqueue " << (*it).second.m_rlcTransmissionQueueSize << " retxqueue " << (*it).second.m_rlcRetransmissionQueueSize << " status " << (*it).second.m_rlcStatusPduSize << " decrease " << size);
2056 // Update queues: RLC tx order Status, ReTx, Tx
2057 // Update status queue
2058 if (((*it).second.m_rlcStatusPduSize > 0) && (size >= (*it).second.m_rlcStatusPduSize))
2059 {
2060 (*it).second.m_rlcStatusPduSize = 0;
2061 }
2062 else if (((*it).second.m_rlcRetransmissionQueueSize > 0) && (size >= (*it).second.m_rlcRetransmissionQueueSize))
2063 {
2064 (*it).second.m_rlcRetransmissionQueueSize = 0;
2065 }
2066 else if ((*it).second.m_rlcTransmissionQueueSize > 0)
2067 {
2068 uint32_t rlcOverhead;
2069 if (lcid == 1)
2070 {
2071 // for SRB1 (using RLC AM) it's better to
2072 // overestimate RLC overhead rather than
2073 // underestimate it and risk unneeded
2074 // segmentation which increases delay
2075 rlcOverhead = 4;
2076 }
2077 else
2078 {
2079 // minimum RLC overhead due to header
2080 rlcOverhead = 2;
2081 }
2082 // update transmission queue
2083 if ((*it).second.m_rlcTransmissionQueueSize <= size - rlcOverhead)
2084 {
2085 (*it).second.m_rlcTransmissionQueueSize = 0;
2086 }
2087 else
2088 {
2089 (*it).second.m_rlcTransmissionQueueSize -= size - rlcOverhead;
2090 }
2091 }
2092 }
2093 else
2094 {
2095 NS_LOG_ERROR (this << " Does not find DL RLC Buffer Report of UE " << rnti);
2096 }
2097}
2098
2099void
2100PfFfMacScheduler::UpdateUlRlcBufferInfo (uint16_t rnti, uint16_t size)
2101{
2102
2103 size = size - 2; // remove the minimum RLC overhead
2104 std::map <uint16_t,uint32_t>::iterator it = m_ceBsrRxed.find (rnti);
2105 if (it != m_ceBsrRxed.end ())
2106 {
2107 NS_LOG_INFO (this << " UE " << rnti << " size " << size << " BSR " << (*it).second);
2108 if ((*it).second >= size)
2109 {
2110 (*it).second -= size;
2111 }
2112 else
2113 {
2114 (*it).second = 0;
2115 }
2116 }
2117 else
2118 {
2119 NS_LOG_ERROR (this << " Does not find BSR report info of UE " << rnti);
2120 }
2121
2122}
2123
2124void
2126{
2127 NS_LOG_FUNCTION (this << " RNTI " << rnti << " txMode " << (uint16_t)txMode);
2129 params.m_rnti = rnti;
2130 params.m_transmissionMode = txMode;
2132}
2133
2134
2135}
AttributeValue implementation for Boolean.
Definition: boolean.h:37
static uint32_t BsrId2BufferSize(uint8_t val)
Convert BSR ID to buffer size.
Definition: lte-common.cc:184
Provides the CSCHED SAP.
FfMacCschedSapUser class.
virtual void CschedUeConfigUpdateInd(const struct CschedUeConfigUpdateIndParameters &params)=0
CSCHED_UE_UPDATE_IND.
virtual void CschedUeConfigCnf(const struct CschedUeConfigCnfParameters &params)=0
CSCHED_UE_CONFIG_CNF.
Provides the SCHED SAP.
FfMacSchedSapUser class.
virtual void SchedUlConfigInd(const struct SchedUlConfigIndParameters &params)=0
SCHED_UL_CONFIG_IND.
virtual void SchedDlConfigInd(const struct SchedDlConfigIndParameters &params)=0
SCHED_DL_CONFIG_IND.
This abstract base class identifies the interface by means of which the helper object can plug on the...
UlCqiFilter_t m_ulCqiFilter
UL CQI filter.
static double fpS11dot3toDouble(uint16_t val)
Convert from fixed point S11.3 notation to double.
Definition: lte-common.cc:155
Service Access Point (SAP) offered by the Frequency Reuse algorithm instance to the MAC Scheduler ins...
Definition: lte-ffr-sap.h:40
virtual uint8_t GetTpc(uint16_t rnti)=0
GetTpc.
virtual void ReportUlCqiInfo(const struct FfMacSchedSapProvider::SchedUlCqiInfoReqParameters &params)=0
ReportUlCqiInfo.
virtual std::vector< bool > GetAvailableUlRbg()=0
Get vector of available RB in UL for this Cell.
virtual bool IsUlRbgAvailableForUe(int i, uint16_t rnti)=0
Check if UE can be served on i-th RB in UL.
virtual std::vector< bool > GetAvailableDlRbg()=0
Get vector of available RBG in DL for this Cell.
virtual uint16_t GetMinContinuousUlBandwidth()=0
Get the minimum continuous Ul bandwidth.
virtual bool IsDlRbgAvailableForUe(int i, uint16_t rnti)=0
Check if UE can be served on i-th RB in DL.
virtual void ReportDlCqiInfo(const struct FfMacSchedSapProvider::SchedDlCqiInfoReqParameters &params)=0
ReportDlCqiInfo.
Service Access Point (SAP) offered by the eNodeB RRC instance to the Frequency Reuse algorithm instan...
Definition: lte-ffr-sap.h:139
Template for the implementation of the LteFfrSapUser as a member of an owner class of type C to which...
Definition: lte-ffr-sap.h:256
Implements the SCHED SAP and CSCHED SAP for a Proportional Fair scheduler.
void RefreshHarqProcesses()
Refresh HARQ processes according to the timers.
std::map< uint16_t, uint8_t > m_dlHarqCurrentProcessId
DL HARQ current process ID.
std::map< uint16_t, uint32_t > m_ceBsrRxed
Map of UE's buffer status reports received.
FfMacCschedSapProvider::CschedCellConfigReqParameters m_cschedCellConfig
CSched cell config.
void DoSchedDlCqiInfoReq(const struct FfMacSchedSapProvider::SchedDlCqiInfoReqParameters &params)
Sched DL CQI info request.
void DoCschedUeConfigReq(const struct FfMacCschedSapProvider::CschedUeConfigReqParameters &params)
CSched UE config request.
virtual FfMacSchedSapProvider * GetFfMacSchedSapProvider()
std::map< uint16_t, DlHarqProcessesStatus_t > m_dlHarqProcessesStatus
DL HARQ process status.
double EstimateUlSinr(uint16_t rnti, uint16_t rb)
Estimate UL SINR.
std::map< uint16_t, uint32_t > m_p10CqiTimers
Map of UE's timers on DL CQI P01 received.
void TransmissionModeConfigurationUpdate(uint16_t rnti, uint8_t txMode)
transmission mode configuration update
std::map< LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters > m_rlcBufferReq
Vectors of UE's LC info.
bool m_harqOn
m_harqOn when false inhibit the HARQ mechanisms (by default active)
std::map< uint16_t, UlHarqProcessesStatus_t > m_ulHarqProcessesStatus
UL HARQ process status.
void DoSchedUlTriggerReq(const struct FfMacSchedSapProvider::SchedUlTriggerReqParameters &params)
Sched UL trigger request.
virtual void SetFfMacCschedSapUser(FfMacCschedSapUser *s)
set the user part of the FfMacCschedSap that this Scheduler will interact with.
void DoSchedUlNoiseInterferenceReq(const struct FfMacSchedSapProvider::SchedUlNoiseInterferenceReqParameters &params)
Sched UL noise interference request.
void DoCschedCellConfigReq(const struct FfMacCschedSapProvider::CschedCellConfigReqParameters &params)
CSched cell config request.
std::vector< struct RachListElement_s > m_rachList
RACH list.
void DoSchedDlRlcBufferReq(const struct FfMacSchedSapProvider::SchedDlRlcBufferReqParameters &params)
Sched DL RLC buffer request.
std::map< uint16_t, DlHarqProcessesTimer_t > m_dlHarqProcessesTimer
DL HARQ process timer.
std::map< uint16_t, DlHarqProcessesDciBuffer_t > m_dlHarqProcessesDciBuffer
DL HARQ process DCI buffer.
void DoSchedUlMacCtrlInfoReq(const struct FfMacSchedSapProvider::SchedUlMacCtrlInfoReqParameters &params)
Sched UL MAC control info request.
FfMacSchedSapProvider * m_schedSapProvider
Sched SAP provider.
std::map< uint16_t, uint32_t > m_ueCqiTimers
Map of UEs' timers on UL-CQI per RBG.
void RefreshDlCqiMaps(void)
Refresh DL CQI maps.
virtual ~PfFfMacScheduler()
Destructor.
friend class MemberCschedSapProvider< PfFfMacScheduler >
allow MemberCschedSapProvider<PfFfMacScheduler> class friend access
void UpdateUlRlcBufferInfo(uint16_t rnti, uint16_t size)
Update UL RCL buffer info.
void DoCschedUeReleaseReq(const struct FfMacCschedSapProvider::CschedUeReleaseReqParameters &params)
CSched UE release request.
void RefreshUlCqiMaps(void)
Refresh UL CQI maps.
std::map< uint16_t, DlHarqRlcPduListBuffer_t > m_dlHarqProcessesRlcPduListBuffer
DL HARQ process RLC PDU list buffer.
void DoCschedLcReleaseReq(const struct FfMacCschedSapProvider::CschedLcReleaseReqParameters &params)
CSched LC release request.
FfMacCschedSapUser * m_cschedSapUser
CSched SAP user.
unsigned int LcActivePerFlow(uint16_t rnti)
LC active per flow.
virtual LteFfrSapUser * GetLteFfrSapUser()
void DoSchedDlTriggerReq(const struct FfMacSchedSapProvider::SchedDlTriggerReqParameters &params)
Sched DL trigger request.
LteFfrSapUser * m_ffrSapUser
FFR SAP user.
void DoSchedUlSrInfoReq(const struct FfMacSchedSapProvider::SchedUlSrInfoReqParameters &params)
Sched UL SR info request.
std::map< uint16_t, uint32_t > m_a30CqiTimers
Map of UE's timers on DL CQI A30 received.
void DoSchedDlMacBufferReq(const struct FfMacSchedSapProvider::SchedDlMacBufferReqParameters &params)
Sched DL MAC buffer request.
virtual void SetFfMacSchedSapUser(FfMacSchedSapUser *s)
set the user part of the FfMacSchedSap that this Scheduler will interact with.
virtual void DoDispose(void)
Destructor implementation.
uint8_t m_ulGrantMcs
MCS for UL grant (default 0)
friend class MemberSchedSapProvider< PfFfMacScheduler >
allow MemberSchedSapProvider<PfFfMacScheduler> class friend access
std::map< uint16_t, std::vector< uint16_t > > m_allocationMaps
Map of previous allocated UE per RBG (used to retrieve info from UL-CQI)
std::map< uint16_t, std::vector< double > > m_ueCqi
Map of UEs' UL-CQI per RBG.
std::map< uint16_t, pfsFlowPerf_t > m_flowStatsDl
Map of UE statistics (per RNTI basis) in downlink.
void DoSchedDlPagingBufferReq(const struct FfMacSchedSapProvider::SchedDlPagingBufferReqParameters &params)
Sched DL paging buffer request.
static TypeId GetTypeId(void)
Get the type ID.
double m_timeWindow
time window
std::map< uint16_t, pfsFlowPerf_t > m_flowStatsUl
Map of UE statistics (per RNTI basis)
LteFfrSapProvider * m_ffrSapProvider
FFR SAP provider.
virtual FfMacCschedSapProvider * GetFfMacCschedSapProvider()
uint8_t HarqProcessAvailability(uint16_t rnti)
Return the availability of free process for the RNTI specified.
uint8_t UpdateHarqProcessId(uint16_t rnti)
Update and return a new process Id for the RNTI specified.
void UpdateDlRlcBufferInfo(uint16_t rnti, uint8_t lcid, uint16_t size)
Update DL RCL buffer info.
void DoCschedLcConfigReq(const struct FfMacCschedSapProvider::CschedLcConfigReqParameters &params)
CSched LC config request.
std::map< uint16_t, SbMeasResult_s > m_a30CqiRxed
Map of UE's DL CQI A30 received.
std::map< uint16_t, uint8_t > m_uesTxMode
txMode of the UEs
uint16_t m_nextRntiUl
RNTI of the next user to be served next scheduling in UL.
FfMacCschedSapProvider * m_cschedSapProvider
CSched SAP provider.
void DoSchedDlRachInfoReq(const struct FfMacSchedSapProvider::SchedDlRachInfoReqParameters &params)
Sched DL RACH info request.
std::map< uint16_t, uint8_t > m_p10CqiRxed
Map of UE's DL CQI P01 received.
int GetRbgSize(int dlbandwidth)
Get RBG size.
std::map< uint16_t, UlHarqProcessesDciBuffer_t > m_ulHarqProcessesDciBuffer
UL HARQ process DCI buffer.
std::map< uint16_t, uint8_t > m_ulHarqCurrentProcessId
UL HARQ current process ID.
void DoSchedUlCqiInfoReq(const struct FfMacSchedSapProvider::SchedUlCqiInfoReqParameters &params)
Sched UL CQI info request.
std::vector< uint16_t > m_rachAllocationMap
RACH allocation map.
virtual void SetLteFfrSapProvider(LteFfrSapProvider *s)
Set the Provider part of the LteFfrSap that this Scheduler will interact with.
std::vector< DlInfoListElement_s > m_dlInfoListBuffered
HARQ retx buffered.
FfMacSchedSapUser * m_schedSapUser
Sched SAP user.
Smart pointer class similar to boost::intrusive_ptr.
Definition: ptr.h:74
static Time Now(void)
Return the current simulation virtual time.
Definition: simulator.cc:195
static uint8_t TxMode2LayerNum(uint8_t txMode)
Transmit mode 2 layer number.
Definition: lte-common.cc:212
a unique identifier for an interface.
Definition: type-id.h:59
TypeId SetParent(TypeId tid)
Set the parent TypeId.
Definition: type-id.cc:922
Hold an unsigned integer type.
Definition: uinteger.h:44
#define NO_SINR
#define HARQ_PROC_NUM
#define HARQ_DL_TIMEOUT
#define NS_ASSERT(condition)
At runtime, in debugging builds, if this condition is not true, the program prints the source file,...
Definition: assert.h:67
#define NS_ASSERT_MSG(condition, message)
At runtime, in debugging builds, if this condition is not true, the program prints the message to out...
Definition: assert.h:88
Ptr< const AttributeChecker > MakeBooleanChecker(void)
Definition: boolean.cc:121
Ptr< const AttributeAccessor > MakeBooleanAccessor(T1 a1)
Definition: boolean.h:85
Ptr< const AttributeAccessor > MakeUintegerAccessor(T1 a1)
Definition: uinteger.h:45
#define NS_FATAL_ERROR(msg)
Report a fatal error with a message and terminate.
Definition: fatal-error.h:165
#define NS_ABORT_MSG_IF(cond, msg)
Abnormal program termination if a condition is true, with a message.
Definition: abort.h:108
#define NS_LOG_ERROR(msg)
Use NS_LOG to output a message of level LOG_ERROR.
Definition: log.h:257
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:205
#define NS_LOG_DEBUG(msg)
Use NS_LOG to output a message of level LOG_DEBUG.
Definition: log.h:273
#define NS_LOG_LOGIC(msg)
Use NS_LOG to output a message of level LOG_LOGIC.
Definition: log.h:289
#define NS_LOG_FUNCTION(parameters)
If log level LOG_FUNCTION is enabled, this macro will output all input parameters separated by ",...
#define NS_LOG_INFO(msg)
Use NS_LOG to output a message of level LOG_INFO.
Definition: log.h:281
#define NS_OBJECT_ENSURE_REGISTERED(type)
Register an Object subclass with the TypeId system.
Definition: object-base.h:45
#define HARQ_PERIOD
Definition: lte-common.h:30
#define SRS_CQI_RNTI_VSP
Every class exported by the ns3 library is enclosed in the ns3 namespace.
std::vector< UlDciListElement_s > UlHarqProcessesDciBuffer_t
UL HARQ process DCI buffer vector.
static const int PfType0AllocationRbg[4]
PF type 0 allocation RBG.
std::vector< uint8_t > DlHarqProcessesTimer_t
DL HARQ process timer vector typedef.
std::vector< uint8_t > DlHarqProcessesStatus_t
DL HARQ process status vector typedef.
std::vector< RlcPduList_t > DlHarqRlcPduListBuffer_t
vector of the 8 HARQ processes per UE
@ SUCCESS
Definition: ff-mac-common.h:62
std::vector< DlDciListElement_s > DlHarqProcessesDciBuffer_t
DL HARQ process DCI buffer vector typedef.
std::vector< uint8_t > UlHarqProcessesStatus_t
UL HARQ process status vector.
See section 4.3.8 builDataListElement.
struct DlDciListElement_s m_dci
DCI.
std::vector< std::vector< struct RlcPduListElement_s > > m_rlcPduList
RLC PDU list.
See section 4.3.10 buildRARListElement.
See section 4.3.1 dlDciListElement.
Definition: ff-mac-common.h:94
std::vector< uint8_t > m_ndi
New data indicator.
uint8_t m_harqProcess
HARQ process.
uint32_t m_rbBitmap
RB bitmap.
Definition: ff-mac-common.h:96
std::vector< uint8_t > m_mcs
MCS.
uint8_t m_resAlloc
The type of resource allocation.
Definition: ff-mac-common.h:98
std::vector< uint16_t > m_tbsSize
The TBs size.
Definition: ff-mac-common.h:99
std::vector< uint8_t > m_rv
Redundancy version.
uint8_t m_tpc
Tx power control command.
Parameters of the CSCHED_LC_CONFIG_REQ primitive.
std::vector< struct LogicalChannelConfigListElement_s > m_logicalChannelConfigList
logicalChannelConfigList
Parameters of the CSCHED_LC_RELEASE_REQ primitive.
std::vector< uint8_t > m_logicalChannelIdentity
logical channel identity
Parameters of the CSCHED_UE_CONFIG_REQ primitive.
Parameters of the CSCHED_UE_RELEASE_REQ primitive.
Parameters of the CSCHED_UE_CONFIG_CNF primitive.
Parameters of the CSCHED_UE_CONFIG_UPDATE_IND primitive.
Parameters of the SCHED_DL_CQI_INFO_REQ primitive.
std::vector< struct CqiListElement_s > m_cqiList
CQI list.
Parameters of the SCHED_DL_MAC_BUFFER_REQ primitive.
Parameters of the SCHED_DL_PAGING_BUFFER_REQ primitive.
Parameters of the SCHED_DL_RACH_INFO_REQ primitive.
std::vector< struct RachListElement_s > m_rachList
RACH list.
Parameters of the SCHED_DL_TRIGGER_REQ primitive.
std::vector< struct DlInfoListElement_s > m_dlInfoList
DL info list.
Parameters of the SCHED_UL_CQI_INFO_REQ primitive.
std::vector< struct VendorSpecificListElement_s > m_vendorSpecificList
vendor specific list
Parameters of the SCHED_UL_MAC_CTRL_INFO_REQ primitive.
std::vector< struct MacCeListElement_s > m_macCeList
MAC CE list.
Parameters of the SCHED_UL_NOISE_INTERFERENCE_REQ primitive.
Parameters of the SCHED_UL_SR_INFO_REQ primitive.
Parameters of the SCHED_UL_TRIGGER_REQ primitive.
std::vector< struct UlInfoListElement_s > m_ulInfoList
UL info list.
uint8_t m_nrOfPdcchOfdmSymbols
number of PDCCH OFDM symbols
std::vector< struct BuildDataListElement_s > m_buildDataList
build data list
std::vector< struct BuildRarListElement_s > m_buildRarList
build rar list
Parameters of the SCHED_UL_CONFIG_IND primitive.
std::vector< struct UlDciListElement_s > m_dciList
DCI list.
LteFlowId structure.
Definition: lte-common.h:37
See section 4.3.9 rlcPDU_ListElement.
uint8_t m_logicalChannelIdentity
logical channel identity
std::vector< uint16_t > m_sinr
SINR.
See section 4.3.2 ulDciListElement.
int8_t m_pdcchPowerOffset
CCH power offset.
int8_t m_tpc
Tx power control command.
uint8_t m_dai
DL assignment index.
uint8_t m_cceIndex
Control Channel Element index.
uint8_t m_ulIndex
UL index.
uint8_t m_ueTxAntennaSelection
UE antenna selection.
bool m_cqiRequest
CQI request.
uint8_t m_n2Dmrs
n2 DMRS
uint8_t m_freqHopping
freq hopping
uint8_t m_aggrLevel
The aggregation level.
bool m_ulDelay
UL delay?
int8_t m_tpc
Tx power control command.
bool m_cqiRequest
CQI request?
bool m_hopping
hopping?
uint16_t m_tbSize
size
uint8_t m_rbLen
length
uint8_t m_mcs
MCS.
uint8_t m_rbStart
start
uint16_t m_rnti
RNTI.
pfsFlowPerf_t structure
unsigned long totalBytesTransmitted
total bytes transmitted
Time flowStart
flow start time
double lastAveragedThroughput
last averaged throughput
unsigned int lastTtiBytesTrasmitted
last total bytes transmitted