A Discrete-Event Network Simulator
API
rr-ff-mac-scheduler.cc
Go to the documentation of this file.
1/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
2/*
3 * Copyright (c) 2011 Centre Tecnologic de Telecomunicacions de Catalunya (CTTC)
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation;
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Author: Marco Miozzo <marco.miozzo@cttc.es>
19 */
20
21#include <ns3/log.h>
22#include <ns3/pointer.h>
23#include <ns3/math.h>
24#include <cfloat>
25#include <set>
26#include <climits>
27
28#include <ns3/lte-amc.h>
29#include <ns3/rr-ff-mac-scheduler.h>
30#include <ns3/simulator.h>
31#include <ns3/lte-common.h>
32#include <ns3/lte-vendor-specific-parameters.h>
33#include <ns3/boolean.h>
34
35namespace ns3 {
36
37NS_LOG_COMPONENT_DEFINE ("RrFfMacScheduler");
38
40static const int Type0AllocationRbg[4] = {
41 10, // RGB size 1
42 26, // RGB size 2
43 63, // RGB size 3
44 110 // RGB size 4
45}; // see table 7.1.6.1-1 of 36.213
46
47
48
49
50NS_OBJECT_ENSURE_REGISTERED (RrFfMacScheduler);
51
52
54 : m_cschedSapUser (0),
55 m_schedSapUser (0),
56 m_nextRntiDl (0),
57 m_nextRntiUl (0)
58{
59 m_amc = CreateObject <LteAmc> ();
62}
63
65{
66 NS_LOG_FUNCTION (this);
67}
68
69void
71{
72 NS_LOG_FUNCTION (this);
76 m_dlInfoListBuffered.clear ();
81 delete m_schedSapProvider;
82}
83
86{
87 static TypeId tid = TypeId ("ns3::RrFfMacScheduler")
89 .SetGroupName("Lte")
90 .AddConstructor<RrFfMacScheduler> ()
91 .AddAttribute ("CqiTimerThreshold",
92 "The number of TTIs a CQI is valid (default 1000 - 1 sec.)",
93 UintegerValue (1000),
95 MakeUintegerChecker<uint32_t> ())
96 .AddAttribute ("HarqEnabled",
97 "Activate/Deactivate the HARQ [by default is active].",
98 BooleanValue (true),
101 .AddAttribute ("UlGrantMcs",
102 "The MCS of the UL grant, must be [0..15] (default 0)",
103 UintegerValue (0),
105 MakeUintegerChecker<uint8_t> ())
106 ;
107 return tid;
108}
109
110
111
112void
114{
115 m_cschedSapUser = s;
116}
117
118void
120{
121 m_schedSapUser = s;
122}
123
126{
127 return m_cschedSapProvider;
128}
129
132{
133 return m_schedSapProvider;
134}
135
136void
138{
140}
141
144{
145 return m_ffrSapUser;
146}
147
148void
150{
151 NS_LOG_FUNCTION (this);
152 // Read the subset of parameters used
153 m_cschedCellConfig = params;
156 cnf.m_result = SUCCESS;
158 return;
159}
160
161void
163{
164 NS_LOG_FUNCTION (this << " RNTI " << params.m_rnti << " txMode " << (uint16_t)params.m_transmissionMode);
165 std::map <uint16_t,uint8_t>::iterator it = m_uesTxMode.find (params.m_rnti);
166 if (it == m_uesTxMode.end ())
167 {
168 m_uesTxMode.insert (std::pair <uint16_t, double> (params.m_rnti, params.m_transmissionMode));
169 // generate HARQ buffers
170 m_dlHarqCurrentProcessId.insert (std::pair <uint16_t,uint8_t > (params.m_rnti, 0));
171 DlHarqProcessesStatus_t dlHarqPrcStatus;
172 dlHarqPrcStatus.resize (8,0);
173 m_dlHarqProcessesStatus.insert (std::pair <uint16_t, DlHarqProcessesStatus_t> (params.m_rnti, dlHarqPrcStatus));
174 DlHarqProcessesTimer_t dlHarqProcessesTimer;
175 dlHarqProcessesTimer.resize (8,0);
176 m_dlHarqProcessesTimer.insert (std::pair <uint16_t, DlHarqProcessesTimer_t> (params.m_rnti, dlHarqProcessesTimer));
178 dlHarqdci.resize (8);
179 m_dlHarqProcessesDciBuffer.insert (std::pair <uint16_t, DlHarqProcessesDciBuffer_t> (params.m_rnti, dlHarqdci));
180 DlHarqRlcPduListBuffer_t dlHarqRlcPdu;
181 dlHarqRlcPdu.resize (2);
182 dlHarqRlcPdu.at (0).resize (8);
183 dlHarqRlcPdu.at (1).resize (8);
184 m_dlHarqProcessesRlcPduListBuffer.insert (std::pair <uint16_t, DlHarqRlcPduListBuffer_t> (params.m_rnti, dlHarqRlcPdu));
185 m_ulHarqCurrentProcessId.insert (std::pair <uint16_t,uint8_t > (params.m_rnti, 0));
186 UlHarqProcessesStatus_t ulHarqPrcStatus;
187 ulHarqPrcStatus.resize (8,0);
188 m_ulHarqProcessesStatus.insert (std::pair <uint16_t, UlHarqProcessesStatus_t> (params.m_rnti, ulHarqPrcStatus));
190 ulHarqdci.resize (8);
191 m_ulHarqProcessesDciBuffer.insert (std::pair <uint16_t, UlHarqProcessesDciBuffer_t> (params.m_rnti, ulHarqdci));
192 }
193 else
194 {
195 (*it).second = params.m_transmissionMode;
196 }
197 return;
198}
199
200void
202{
203 NS_LOG_FUNCTION (this);
204 // Not used at this stage (LCs updated by DoSchedDlRlcBufferReq)
205 return;
206}
207
208void
210{
211 NS_LOG_FUNCTION (this);
212 for (uint16_t i = 0; i < params.m_logicalChannelIdentity.size (); i++)
213 {
214 std::list<FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it = m_rlcBufferReq.begin ();
215 while (it!=m_rlcBufferReq.end ())
216 {
217 if (((*it).m_rnti == params.m_rnti)&&((*it).m_logicalChannelIdentity == params.m_logicalChannelIdentity.at (i)))
218 {
219 it = m_rlcBufferReq.erase (it);
220 }
221 else
222 {
223 it++;
224 }
225 }
226 }
227 return;
228}
229
230void
232{
233 NS_LOG_FUNCTION (this << " Release RNTI " << params.m_rnti);
234
235 m_uesTxMode.erase (params.m_rnti);
236 m_dlHarqCurrentProcessId.erase (params.m_rnti);
237 m_dlHarqProcessesStatus.erase (params.m_rnti);
238 m_dlHarqProcessesTimer.erase (params.m_rnti);
239 m_dlHarqProcessesDciBuffer.erase (params.m_rnti);
241 m_ulHarqCurrentProcessId.erase (params.m_rnti);
242 m_ulHarqProcessesStatus.erase (params.m_rnti);
243 m_ulHarqProcessesDciBuffer.erase (params.m_rnti);
244 m_ceBsrRxed.erase (params.m_rnti);
245 std::list<FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it = m_rlcBufferReq.begin ();
246 while (it != m_rlcBufferReq.end ())
247 {
248 if ((*it).m_rnti == params.m_rnti)
249 {
250 NS_LOG_INFO (this << " Erase RNTI " << (*it).m_rnti << " LC " << (uint16_t)(*it).m_logicalChannelIdentity);
251 it = m_rlcBufferReq.erase (it);
252 }
253 else
254 {
255 it++;
256 }
257 }
258 if (m_nextRntiUl == params.m_rnti)
259 {
260 m_nextRntiUl = 0;
261 }
262
263 if (m_nextRntiDl == params.m_rnti)
264 {
265 m_nextRntiDl = 0;
266 }
267
268 return;
269}
270
271
272void
274{
275 NS_LOG_FUNCTION (this << params.m_rnti << (uint32_t) params.m_logicalChannelIdentity);
276 // API generated by RLC for updating RLC parameters on a LC (tx and retx queues)
277 std::list<FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it = m_rlcBufferReq.begin ();
278 bool newLc = true;
279 while (it != m_rlcBufferReq.end ())
280 {
281 // remove old entries of this UE-LC
282 if (((*it).m_rnti == params.m_rnti)&&((*it).m_logicalChannelIdentity == params.m_logicalChannelIdentity))
283 {
284 it = m_rlcBufferReq.erase (it);
285 newLc = false;
286 }
287 else
288 {
289 ++it;
290 }
291 }
292 // add the new parameters
293 m_rlcBufferReq.insert (it, params);
294 NS_LOG_INFO (this << " RNTI " << params.m_rnti << " LC " << (uint16_t)params.m_logicalChannelIdentity << " RLC tx size " << params.m_rlcTransmissionQueueSize << " RLC retx size " << params.m_rlcRetransmissionQueueSize << " RLC stat size " << params.m_rlcStatusPduSize);
295 // initialize statistics of the flow in case of new flows
296 if (newLc == true)
297 {
298 m_p10CqiRxed.insert ( std::pair<uint16_t, uint8_t > (params.m_rnti, 1)); // only codeword 0 at this stage (SISO)
299 // initialized to 1 (i.e., the lowest value for transmitting a signal)
300 m_p10CqiTimers.insert ( std::pair<uint16_t, uint32_t > (params.m_rnti, m_cqiTimersThreshold));
301 }
302
303 return;
304}
305
306void
308{
309 NS_LOG_FUNCTION (this);
310 NS_FATAL_ERROR ("method not implemented");
311 return;
312}
313
314void
316{
317 NS_LOG_FUNCTION (this);
318 NS_FATAL_ERROR ("method not implemented");
319 return;
320}
321
322int
324{
325 for (int i = 0; i < 4; i++)
326 {
327 if (dlbandwidth < Type0AllocationRbg[i])
328 {
329 return (i + 1);
330 }
331 }
332
333 return (-1);
334}
335
336bool
338{
339 return (i.m_rnti < j.m_rnti);
340}
341
342
343uint8_t
345{
346 NS_LOG_FUNCTION (this << rnti);
347
348 std::map <uint16_t, uint8_t>::iterator it = m_dlHarqCurrentProcessId.find (rnti);
349 if (it == m_dlHarqCurrentProcessId.end ())
350 {
351 NS_FATAL_ERROR ("No Process Id found for this RNTI " << rnti);
352 }
353 std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find (rnti);
354 if (itStat == m_dlHarqProcessesStatus.end ())
355 {
356 NS_FATAL_ERROR ("No Process Id Statusfound for this RNTI " << rnti);
357 }
358 uint8_t i = (*it).second;
359 do
360 {
361 i = (i + 1) % HARQ_PROC_NUM;
362 }
363 while ( ((*itStat).second.at (i) != 0)&&(i != (*it).second));
364 if ((*itStat).second.at (i) == 0)
365 {
366 return (true);
367 }
368 else
369 {
370 return (false); // return a not valid harq proc id
371 }
372}
373
374
375
376uint8_t
378{
379 NS_LOG_FUNCTION (this << rnti);
380
381
382 if (m_harqOn == false)
383 {
384 return (0);
385 }
386
387 std::map <uint16_t, uint8_t>::iterator it = m_dlHarqCurrentProcessId.find (rnti);
388 if (it == m_dlHarqCurrentProcessId.end ())
389 {
390 NS_FATAL_ERROR ("No Process Id found for this RNTI " << rnti);
391 }
392 std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find (rnti);
393 if (itStat == m_dlHarqProcessesStatus.end ())
394 {
395 NS_FATAL_ERROR ("No Process Id Statusfound for this RNTI " << rnti);
396 }
397 uint8_t i = (*it).second;
398 do
399 {
400 i = (i + 1) % HARQ_PROC_NUM;
401 }
402 while ( ((*itStat).second.at (i) != 0)&&(i != (*it).second));
403 if ((*itStat).second.at (i) == 0)
404 {
405 (*it).second = i;
406 (*itStat).second.at (i) = 1;
407 }
408 else
409 {
410 return (9); // return a not valid harq proc id
411 }
412
413 return ((*it).second);
414}
415
416
417void
419{
420 NS_LOG_FUNCTION (this);
421
422 std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itTimers;
423 for (itTimers = m_dlHarqProcessesTimer.begin (); itTimers != m_dlHarqProcessesTimer.end (); itTimers ++)
424 {
425 for (uint16_t i = 0; i < HARQ_PROC_NUM; i++)
426 {
427 if ((*itTimers).second.at (i) == HARQ_DL_TIMEOUT)
428 {
429 // reset HARQ process
430
431 NS_LOG_INFO (this << " Reset HARQ proc " << i << " for RNTI " << (*itTimers).first);
432 std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find ((*itTimers).first);
433 if (itStat == m_dlHarqProcessesStatus.end ())
434 {
435 NS_FATAL_ERROR ("No Process Id Status found for this RNTI " << (*itTimers).first);
436 }
437 (*itStat).second.at (i) = 0;
438 (*itTimers).second.at (i) = 0;
439 }
440 else
441 {
442 (*itTimers).second.at (i)++;
443 }
444 }
445 }
446
447}
448
449
450
451void
453{
454 NS_LOG_FUNCTION (this << " DL Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf));
455 // API generated by RLC for triggering the scheduling of a DL subframe
456
459 int rbgNum = m_cschedCellConfig.m_dlBandwidth / rbgSize;
461
462 // Generate RBGs map
463 std::vector <bool> rbgMap;
464 uint16_t rbgAllocatedNum = 0;
465 std::set <uint16_t> rntiAllocated;
466 rbgMap.resize (m_cschedCellConfig.m_dlBandwidth / rbgSize, false);
467
468 // update UL HARQ proc id
469 std::map <uint16_t, uint8_t>::iterator itProcId;
470 for (itProcId = m_ulHarqCurrentProcessId.begin (); itProcId != m_ulHarqCurrentProcessId.end (); itProcId++)
471 {
472 (*itProcId).second = ((*itProcId).second + 1) % HARQ_PROC_NUM;
473 }
474
475 // RACH Allocation
477 uint16_t rbStart = 0;
478 std::vector <struct RachListElement_s>::iterator itRach;
479 for (itRach = m_rachList.begin (); itRach != m_rachList.end (); itRach++)
480 {
481 NS_ASSERT_MSG (m_amc->GetUlTbSizeFromMcs (m_ulGrantMcs, m_cschedCellConfig.m_ulBandwidth) > (*itRach).m_estimatedSize, " Default UL Grant MCS does not allow to send RACH messages");
483 newRar.m_rnti = (*itRach).m_rnti;
484 // DL-RACH Allocation
485 // Ideal: no needs of configuring m_dci
486 // UL-RACH Allocation
487 newRar.m_grant.m_rnti = newRar.m_rnti;
488 newRar.m_grant.m_mcs = m_ulGrantMcs;
489 uint16_t rbLen = 1;
490 uint16_t tbSizeBits = 0;
491 // find lowest TB size that fits UL grant estimated size
492 while ((tbSizeBits < (*itRach).m_estimatedSize) && (rbStart + rbLen < m_cschedCellConfig.m_ulBandwidth))
493 {
494 rbLen++;
495 tbSizeBits = m_amc->GetUlTbSizeFromMcs (m_ulGrantMcs, rbLen);
496 }
497 if (tbSizeBits < (*itRach).m_estimatedSize)
498 {
499 // no more allocation space: finish allocation
500 break;
501 }
502 newRar.m_grant.m_rbStart = rbStart;
503 newRar.m_grant.m_rbLen = rbLen;
504 newRar.m_grant.m_tbSize = tbSizeBits / 8;
505 newRar.m_grant.m_hopping = false;
506 newRar.m_grant.m_tpc = 0;
507 newRar.m_grant.m_cqiRequest = false;
508 newRar.m_grant.m_ulDelay = false;
509 NS_LOG_INFO (this << " UL grant allocated to RNTI " << (*itRach).m_rnti << " rbStart " << rbStart << " rbLen " << rbLen << " MCS " << (uint16_t) m_ulGrantMcs << " tbSize " << newRar.m_grant.m_tbSize);
510 for (uint16_t i = rbStart; i < rbStart + rbLen; i++)
511 {
512 m_rachAllocationMap.at (i) = (*itRach).m_rnti;
513 }
514
515 if (m_harqOn == true)
516 {
517 // generate UL-DCI for HARQ retransmissions
518 UlDciListElement_s uldci;
519 uldci.m_rnti = newRar.m_rnti;
520 uldci.m_rbLen = rbLen;
521 uldci.m_rbStart = rbStart;
522 uldci.m_mcs = m_ulGrantMcs;
523 uldci.m_tbSize = tbSizeBits / 8;
524 uldci.m_ndi = 1;
525 uldci.m_cceIndex = 0;
526 uldci.m_aggrLevel = 1;
527 uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
528 uldci.m_hopping = false;
529 uldci.m_n2Dmrs = 0;
530 uldci.m_tpc = 0; // no power control
531 uldci.m_cqiRequest = false; // only period CQI at this stage
532 uldci.m_ulIndex = 0; // TDD parameter
533 uldci.m_dai = 1; // TDD parameter
534 uldci.m_freqHopping = 0;
535 uldci.m_pdcchPowerOffset = 0; // not used
536
537 uint8_t harqId = 0;
538 std::map <uint16_t, uint8_t>::iterator itProcId;
539 itProcId = m_ulHarqCurrentProcessId.find (uldci.m_rnti);
540 if (itProcId == m_ulHarqCurrentProcessId.end ())
541 {
542 NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << uldci.m_rnti);
543 }
544 harqId = (*itProcId).second;
545 std::map <uint16_t, UlHarqProcessesDciBuffer_t>::iterator itDci = m_ulHarqProcessesDciBuffer.find (uldci.m_rnti);
546 if (itDci == m_ulHarqProcessesDciBuffer.end ())
547 {
548 NS_FATAL_ERROR ("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI " << uldci.m_rnti);
549 }
550 (*itDci).second.at (harqId) = uldci;
551 }
552
553 rbStart = rbStart + rbLen;
554 ret.m_buildRarList.push_back (newRar);
555 }
556 m_rachList.clear ();
557
558 // Process DL HARQ feedback
560 // retrieve past HARQ retx buffered
561 if (m_dlInfoListBuffered.size () > 0)
562 {
563 if (params.m_dlInfoList.size () > 0)
564 {
565 NS_LOG_INFO (this << " Received DL-HARQ feedback");
566 m_dlInfoListBuffered.insert (m_dlInfoListBuffered.end (), params.m_dlInfoList.begin (), params.m_dlInfoList.end ());
567 }
568 }
569 else
570 {
571 if (params.m_dlInfoList.size () > 0)
572 {
574 }
575 }
576 if (m_harqOn == false)
577 {
578 // Ignore HARQ feedback
579 m_dlInfoListBuffered.clear ();
580 }
581 std::vector <struct DlInfoListElement_s> dlInfoListUntxed;
582 for (uint16_t i = 0; i < m_dlInfoListBuffered.size (); i++)
583 {
584 std::set <uint16_t>::iterator itRnti = rntiAllocated.find (m_dlInfoListBuffered.at (i).m_rnti);
585 if (itRnti != rntiAllocated.end ())
586 {
587 // RNTI already allocated for retx
588 continue;
589 }
590 uint8_t nLayers = m_dlInfoListBuffered.at (i).m_harqStatus.size ();
591 std::vector <bool> retx;
592 NS_LOG_INFO (this << " Processing DLHARQ feedback");
593 if (nLayers == 1)
594 {
595 retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (0) == DlInfoListElement_s::NACK);
596 retx.push_back (false);
597 }
598 else
599 {
600 retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (0) == DlInfoListElement_s::NACK);
601 retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (1) == DlInfoListElement_s::NACK);
602 }
603 if (retx.at (0) || retx.at (1))
604 {
605 // retrieve HARQ process information
606 uint16_t rnti = m_dlInfoListBuffered.at (i).m_rnti;
607 uint8_t harqId = m_dlInfoListBuffered.at (i).m_harqProcessId;
608 NS_LOG_INFO (this << " HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId);
609 std::map <uint16_t, DlHarqProcessesDciBuffer_t>::iterator itHarq = m_dlHarqProcessesDciBuffer.find (rnti);
610 if (itHarq == m_dlHarqProcessesDciBuffer.end ())
611 {
612 NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << rnti);
613 }
614
615 DlDciListElement_s dci = (*itHarq).second.at (harqId);
616 int rv = 0;
617 if (dci.m_rv.size () == 1)
618 {
619 rv = dci.m_rv.at (0);
620 }
621 else
622 {
623 rv = (dci.m_rv.at (0) > dci.m_rv.at (1) ? dci.m_rv.at (0) : dci.m_rv.at (1));
624 }
625
626 if (rv == 3)
627 {
628 // maximum number of retx reached -> drop process
629 NS_LOG_INFO ("Max number of retransmissions reached -> drop process");
630 std::map <uint16_t, DlHarqProcessesStatus_t>::iterator it = m_dlHarqProcessesStatus.find (rnti);
631 if (it == m_dlHarqProcessesStatus.end ())
632 {
633 NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << m_dlInfoListBuffered.at (i).m_rnti);
634 }
635 (*it).second.at (harqId) = 0;
636 std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (rnti);
637 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
638 {
639 NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << m_dlInfoListBuffered.at (i).m_rnti);
640 }
641 for (uint16_t k = 0; k < (*itRlcPdu).second.size (); k++)
642 {
643 (*itRlcPdu).second.at (k).at (harqId).clear ();
644 }
645 continue;
646 }
647 // check the feasibility of retransmitting on the same RBGs
648 // translate the DCI to Spectrum framework
649 std::vector <int> dciRbg;
650 uint32_t mask = 0x1;
651 NS_LOG_INFO ("Original RBGs " << dci.m_rbBitmap << " rnti " << dci.m_rnti);
652 for (int j = 0; j < 32; j++)
653 {
654 if (((dci.m_rbBitmap & mask) >> j) == 1)
655 {
656 dciRbg.push_back (j);
657 NS_LOG_INFO ("\t" << j);
658 }
659 mask = (mask << 1);
660 }
661 bool free = true;
662 for (uint8_t j = 0; j < dciRbg.size (); j++)
663 {
664 if (rbgMap.at (dciRbg.at (j)) == true)
665 {
666 free = false;
667 break;
668 }
669 }
670 if (free)
671 {
672 // use the same RBGs for the retx
673 // reserve RBGs
674 for (uint8_t j = 0; j < dciRbg.size (); j++)
675 {
676 rbgMap.at (dciRbg.at (j)) = true;
677 NS_LOG_INFO ("RBG " << dciRbg.at (j) << " assigned");
678 rbgAllocatedNum++;
679 }
680
681 NS_LOG_INFO (this << " Send retx in the same RBGs");
682 }
683 else
684 {
685 // find RBGs for sending HARQ retx
686 uint8_t j = 0;
687 uint8_t rbgId = (dciRbg.at (dciRbg.size () - 1) + 1) % rbgNum;
688 uint8_t startRbg = dciRbg.at (dciRbg.size () - 1);
689 std::vector <bool> rbgMapCopy = rbgMap;
690 while ((j < dciRbg.size ())&&(startRbg != rbgId))
691 {
692 if (rbgMapCopy.at (rbgId) == false)
693 {
694 rbgMapCopy.at (rbgId) = true;
695 dciRbg.at (j) = rbgId;
696 j++;
697 }
698 rbgId = (rbgId + 1) % rbgNum;
699 }
700 if (j == dciRbg.size ())
701 {
702 // find new RBGs -> update DCI map
703 uint32_t rbgMask = 0;
704 for (uint16_t k = 0; k < dciRbg.size (); k++)
705 {
706 rbgMask = rbgMask + (0x1 << dciRbg.at (k));
707 NS_LOG_INFO (this << " New allocated RBG " << dciRbg.at (k));
708 rbgAllocatedNum++;
709 }
710 dci.m_rbBitmap = rbgMask;
711 rbgMap = rbgMapCopy;
712 }
713 else
714 {
715 // HARQ retx cannot be performed on this TTI -> store it
716 dlInfoListUntxed.push_back (m_dlInfoListBuffered.at (i));
717 NS_LOG_INFO (this << " No resource for this retx -> buffer it");
718 }
719 }
720 // retrieve RLC PDU list for retx TBsize and update DCI
722 std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (rnti);
723 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
724 {
725 NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << rnti);
726 }
727 for (uint8_t j = 0; j < nLayers; j++)
728 {
729 if (retx.at (j))
730 {
731 if (j >= dci.m_ndi.size ())
732 {
733 // for avoiding errors in MIMO transient phases
734 dci.m_ndi.push_back (0);
735 dci.m_rv.push_back (0);
736 dci.m_mcs.push_back (0);
737 dci.m_tbsSize.push_back (0);
738 NS_LOG_INFO (this << " layer " << (uint16_t)j << " no txed (MIMO transition)");
739
740 }
741 else
742 {
743 dci.m_ndi.at (j) = 0;
744 dci.m_rv.at (j)++;
745 (*itHarq).second.at (harqId).m_rv.at (j)++;
746 NS_LOG_INFO (this << " layer " << (uint16_t)j << " RV " << (uint16_t)dci.m_rv.at (j));
747 }
748 }
749 else
750 {
751 // empty TB of layer j
752 dci.m_ndi.at (j) = 0;
753 dci.m_rv.at (j) = 0;
754 dci.m_mcs.at (j) = 0;
755 dci.m_tbsSize.at (j) = 0;
756 NS_LOG_INFO (this << " layer " << (uint16_t)j << " no retx");
757 }
758 }
759
760 for (uint16_t k = 0; k < (*itRlcPdu).second.at (0).at (dci.m_harqProcess).size (); k++)
761 {
762 std::vector <struct RlcPduListElement_s> rlcPduListPerLc;
763 for (uint8_t j = 0; j < nLayers; j++)
764 {
765 if (retx.at (j))
766 {
767 if (j < dci.m_ndi.size ())
768 {
769 NS_LOG_INFO (" layer " << (uint16_t)j << " tb size " << dci.m_tbsSize.at (j));
770 rlcPduListPerLc.push_back ((*itRlcPdu).second.at (j).at (dci.m_harqProcess).at (k));
771 }
772 }
773 else
774 { // if no retx needed on layer j, push an RlcPduListElement_s object with m_size=0 to keep the size of rlcPduListPerLc vector = 2 in case of MIMO
775 NS_LOG_INFO (" layer " << (uint16_t)j << " tb size "<<dci.m_tbsSize.at (j));
776 RlcPduListElement_s emptyElement;
777 emptyElement.m_logicalChannelIdentity = (*itRlcPdu).second.at (j).at (dci.m_harqProcess).at (k).m_logicalChannelIdentity;
778 emptyElement.m_size = 0;
779 rlcPduListPerLc.push_back (emptyElement);
780 }
781 }
782
783 if (rlcPduListPerLc.size () > 0)
784 {
785 newEl.m_rlcPduList.push_back (rlcPduListPerLc);
786 }
787 }
788 newEl.m_rnti = rnti;
789 newEl.m_dci = dci;
790 (*itHarq).second.at (harqId).m_rv = dci.m_rv;
791 // refresh timer
792 std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itHarqTimer = m_dlHarqProcessesTimer.find (rnti);
793 if (itHarqTimer== m_dlHarqProcessesTimer.end ())
794 {
795 NS_FATAL_ERROR ("Unable to find HARQ timer for RNTI " << (uint16_t)rnti);
796 }
797 (*itHarqTimer).second.at (harqId) = 0;
798 ret.m_buildDataList.push_back (newEl);
799 rntiAllocated.insert (rnti);
800 }
801 else
802 {
803 // update HARQ process status
804 NS_LOG_INFO (this << " HARQ ACK UE " << m_dlInfoListBuffered.at (i).m_rnti);
805 std::map <uint16_t, DlHarqProcessesStatus_t>::iterator it = m_dlHarqProcessesStatus.find (m_dlInfoListBuffered.at (i).m_rnti);
806 if (it == m_dlHarqProcessesStatus.end ())
807 {
808 NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << m_dlInfoListBuffered.at (i).m_rnti);
809 }
810 (*it).second.at (m_dlInfoListBuffered.at (i).m_harqProcessId) = 0;
811 std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (m_dlInfoListBuffered.at (i).m_rnti);
812 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
813 {
814 NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << m_dlInfoListBuffered.at (i).m_rnti);
815 }
816 for (uint16_t k = 0; k < (*itRlcPdu).second.size (); k++)
817 {
818 (*itRlcPdu).second.at (k).at (m_dlInfoListBuffered.at (i).m_harqProcessId).clear ();
819 }
820 }
821 }
822 m_dlInfoListBuffered.clear ();
823 m_dlInfoListBuffered = dlInfoListUntxed;
824
825 if (rbgAllocatedNum == rbgNum)
826 {
827 // all the RBGs are already allocated -> exit
828 if ((ret.m_buildDataList.size () > 0) || (ret.m_buildRarList.size () > 0))
829 {
831 }
832 return;
833 }
834
835 // Get the actual active flows (queue!=0)
836 std::list<FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
838 int nflows = 0;
839 int nTbs = 0;
840 std::map <uint16_t,uint8_t> lcActivesPerRnti; // tracks how many active LCs per RNTI there are
841 std::map <uint16_t,uint8_t>::iterator itLcRnti;
842 for (it = m_rlcBufferReq.begin (); it != m_rlcBufferReq.end (); it++)
843 {
844 // remove old entries of this UE-LC
845 std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it).m_rnti);
846 if ( (((*it).m_rlcTransmissionQueueSize > 0)
847 || ((*it).m_rlcRetransmissionQueueSize > 0)
848 || ((*it).m_rlcStatusPduSize > 0))
849 && (itRnti == rntiAllocated.end ()) // UE must not be allocated for HARQ retx
850 && (HarqProcessAvailability ((*it).m_rnti)) ) // UE needs HARQ proc free
851
852 {
853 NS_LOG_LOGIC (this << " User " << (*it).m_rnti << " LC " << (uint16_t)(*it).m_logicalChannelIdentity << " is active, status " << (*it).m_rlcStatusPduSize << " retx " << (*it).m_rlcRetransmissionQueueSize << " tx " << (*it).m_rlcTransmissionQueueSize);
854 std::map <uint16_t,uint8_t>::iterator itCqi = m_p10CqiRxed.find ((*it).m_rnti);
855 uint8_t cqi = 0;
856 if (itCqi != m_p10CqiRxed.end ())
857 {
858 cqi = (*itCqi).second;
859 }
860 else
861 {
862 cqi = 1; // lowest value for trying a transmission
863 }
864 if (cqi != 0)
865 {
866 // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
867 nflows++;
868 itLcRnti = lcActivesPerRnti.find ((*it).m_rnti);
869 if (itLcRnti != lcActivesPerRnti.end ())
870 {
871 (*itLcRnti).second++;
872 }
873 else
874 {
875 lcActivesPerRnti.insert (std::pair<uint16_t, uint8_t > ((*it).m_rnti, 1));
876 nTbs++;
877 }
878
879 }
880 }
881 }
882
883 if (nflows == 0)
884 {
885 if ((ret.m_buildDataList.size () > 0) || (ret.m_buildRarList.size () > 0))
886 {
888 }
889 return;
890 }
891 // Divide the resource equally among the active users according to
892 // Resource allocation type 0 (see sec 7.1.6.1 of 36.213)
893
894 int rbgPerTb = (nTbs > 0) ? ((rbgNum - rbgAllocatedNum) / nTbs) : INT_MAX;
895 NS_LOG_INFO (this << " Flows to be transmitted " << nflows << " rbgPerTb " << rbgPerTb);
896 if (rbgPerTb == 0)
897 {
898 rbgPerTb = 1; // at least 1 rbg per TB (till available resource)
899 }
900 int rbgAllocated = 0;
901
902 // round robin assignment to all UEs registered starting from the subsequent of the one
903 // served last scheduling trigger event
904 if (m_nextRntiDl != 0)
905 {
906 NS_LOG_DEBUG ("Start from the successive of " << (uint16_t) m_nextRntiDl);
907 for (it = m_rlcBufferReq.begin (); it != m_rlcBufferReq.end (); it++)
908 {
909 if ((*it).m_rnti == m_nextRntiDl)
910 {
911 // select the next RNTI to starting
912 it++;
913 if (it == m_rlcBufferReq.end ())
914 {
915 it = m_rlcBufferReq.begin ();
916 }
917 m_nextRntiDl = (*it).m_rnti;
918 break;
919 }
920 }
921
922 if (it == m_rlcBufferReq.end ())
923 {
924 NS_LOG_ERROR (this << " no user found");
925 }
926 }
927 else
928 {
929 it = m_rlcBufferReq.begin ();
930 m_nextRntiDl = (*it).m_rnti;
931 }
932 std::map <uint16_t,uint8_t>::iterator itTxMode;
933 do
934 {
935 itLcRnti = lcActivesPerRnti.find ((*it).m_rnti);
936 std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it).m_rnti);
937 if ((itLcRnti == lcActivesPerRnti.end ())||(itRnti != rntiAllocated.end ()))
938 {
939 // skip this RNTI (no active queue or yet allocated for HARQ)
940 uint16_t rntiDiscared = (*it).m_rnti;
941 while (it != m_rlcBufferReq.end ())
942 {
943 if ((*it).m_rnti != rntiDiscared)
944 {
945 break;
946 }
947 it++;
948 }
949 if (it == m_rlcBufferReq.end ())
950 {
951 // restart from the first
952 it = m_rlcBufferReq.begin ();
953 }
954 continue;
955 }
956 itTxMode = m_uesTxMode.find ((*it).m_rnti);
957 if (itTxMode == m_uesTxMode.end ())
958 {
959 NS_FATAL_ERROR ("No Transmission Mode info on user " << (*it).m_rnti);
960 }
961 int nLayer = TransmissionModesLayers::TxMode2LayerNum ((*itTxMode).second);
962 int lcNum = (*itLcRnti).second;
963 // create new BuildDataListElement_s for this RNTI
965 newEl.m_rnti = (*it).m_rnti;
966 // create the DlDciListElement_s
967 DlDciListElement_s newDci;
968 newDci.m_rnti = (*it).m_rnti;
969 newDci.m_harqProcess = UpdateHarqProcessId ((*it).m_rnti);
970 newDci.m_resAlloc = 0;
971 newDci.m_rbBitmap = 0;
972 std::map <uint16_t,uint8_t>::iterator itCqi = m_p10CqiRxed.find (newEl.m_rnti);
973 for (uint8_t i = 0; i < nLayer; i++)
974 {
975 if (itCqi == m_p10CqiRxed.end ())
976 {
977 newDci.m_mcs.push_back (0); // no info on this user -> lowest MCS
978 }
979 else
980 {
981 newDci.m_mcs.push_back ( m_amc->GetMcsFromCqi ((*itCqi).second) );
982 }
983 }
984 int tbSize = (m_amc->GetDlTbSizeFromMcs (newDci.m_mcs.at (0), rbgPerTb * rbgSize) / 8);
985 uint16_t rlcPduSize = tbSize / lcNum;
986 while ((*it).m_rnti == newEl.m_rnti)
987 {
988 if ( ((*it).m_rlcTransmissionQueueSize > 0)
989 || ((*it).m_rlcRetransmissionQueueSize > 0)
990 || ((*it).m_rlcStatusPduSize > 0) )
991 {
992 std::vector <struct RlcPduListElement_s> newRlcPduLe;
993 for (uint8_t j = 0; j < nLayer; j++)
994 {
995 RlcPduListElement_s newRlcEl;
996 newRlcEl.m_logicalChannelIdentity = (*it).m_logicalChannelIdentity;
997 NS_LOG_INFO (this << "LCID " << (uint32_t) newRlcEl.m_logicalChannelIdentity << " size " << rlcPduSize << " ID " << (*it).m_rnti << " layer " << (uint16_t)j);
998 newRlcEl.m_size = rlcPduSize;
999 UpdateDlRlcBufferInfo ((*it).m_rnti, newRlcEl.m_logicalChannelIdentity, rlcPduSize);
1000 newRlcPduLe.push_back (newRlcEl);
1001
1002 if (m_harqOn == true)
1003 {
1004 // store RLC PDU list for HARQ
1005 std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find ((*it).m_rnti);
1006 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
1007 {
1008 NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << (*it).m_rnti);
1009 }
1010 (*itRlcPdu).second.at (j).at (newDci.m_harqProcess).push_back (newRlcEl);
1011 }
1012
1013 }
1014 newEl.m_rlcPduList.push_back (newRlcPduLe);
1015 lcNum--;
1016 }
1017 it++;
1018 if (it == m_rlcBufferReq.end ())
1019 {
1020 // restart from the first
1021 it = m_rlcBufferReq.begin ();
1022 break;
1023 }
1024 }
1025 uint32_t rbgMask = 0;
1026 uint16_t i = 0;
1027 NS_LOG_INFO (this << " DL - Allocate user " << newEl.m_rnti << " LCs " << (uint16_t)(*itLcRnti).second << " bytes " << tbSize << " mcs " << (uint16_t) newDci.m_mcs.at (0) << " harqId " << (uint16_t)newDci.m_harqProcess << " layers " << nLayer);
1028 NS_LOG_INFO ("RBG:");
1029 while (i < rbgPerTb)
1030 {
1031 if (rbgMap.at (rbgAllocated) == false)
1032 {
1033 rbgMask = rbgMask + (0x1 << rbgAllocated);
1034 NS_LOG_INFO ("\t " << rbgAllocated);
1035 i++;
1036 rbgMap.at (rbgAllocated) = true;
1037 rbgAllocatedNum++;
1038 }
1039 rbgAllocated++;
1040 }
1041 newDci.m_rbBitmap = rbgMask; // (32 bit bitmap see 7.1.6 of 36.213)
1042
1043 for (int i = 0; i < nLayer; i++)
1044 {
1045 newDci.m_tbsSize.push_back (tbSize);
1046 newDci.m_ndi.push_back (1);
1047 newDci.m_rv.push_back (0);
1048 }
1049
1050 newDci.m_tpc = 1; //1 is mapped to 0 in Accumulated Mode and to -1 in Absolute Mode
1051
1052 newEl.m_dci = newDci;
1053 if (m_harqOn == true)
1054 {
1055 // store DCI for HARQ
1056 std::map <uint16_t, DlHarqProcessesDciBuffer_t>::iterator itDci = m_dlHarqProcessesDciBuffer.find (newEl.m_rnti);
1057 if (itDci == m_dlHarqProcessesDciBuffer.end ())
1058 {
1059 NS_FATAL_ERROR ("Unable to find RNTI entry in DCI HARQ buffer for RNTI " << newEl.m_rnti);
1060 }
1061 (*itDci).second.at (newDci.m_harqProcess) = newDci;
1062 // refresh timer
1063 std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itHarqTimer = m_dlHarqProcessesTimer.find (newEl.m_rnti);
1064 if (itHarqTimer== m_dlHarqProcessesTimer.end ())
1065 {
1066 NS_FATAL_ERROR ("Unable to find HARQ timer for RNTI " << (uint16_t)newEl.m_rnti);
1067 }
1068 (*itHarqTimer).second.at (newDci.m_harqProcess) = 0;
1069 }
1070 // ...more parameters -> ignored in this version
1071
1072 ret.m_buildDataList.push_back (newEl);
1073 if (rbgAllocatedNum == rbgNum)
1074 {
1075 m_nextRntiDl = newEl.m_rnti; // store last RNTI served
1076 break; // no more RGB to be allocated
1077 }
1078 }
1079 while ((*it).m_rnti != m_nextRntiDl);
1080
1081 ret.m_nrOfPdcchOfdmSymbols = 1;
1082
1084 return;
1085}
1086
1087void
1089{
1090 NS_LOG_FUNCTION (this);
1091
1092 m_rachList = params.m_rachList;
1093
1094 return;
1095}
1096
1097void
1099{
1100 NS_LOG_FUNCTION (this);
1101
1102 std::map <uint16_t,uint8_t>::iterator it;
1103 for (unsigned int i = 0; i < params.m_cqiList.size (); i++)
1104 {
1105 if ( params.m_cqiList.at (i).m_cqiType == CqiListElement_s::P10 )
1106 {
1107 NS_LOG_LOGIC ("wideband CQI " << (uint32_t) params.m_cqiList.at (i).m_wbCqi.at (0) << " reported");
1108 std::map <uint16_t,uint8_t>::iterator it;
1109 uint16_t rnti = params.m_cqiList.at (i).m_rnti;
1110 it = m_p10CqiRxed.find (rnti);
1111 if (it == m_p10CqiRxed.end ())
1112 {
1113 // create the new entry
1114 m_p10CqiRxed.insert ( std::pair<uint16_t, uint8_t > (rnti, params.m_cqiList.at (i).m_wbCqi.at (0)) ); // only codeword 0 at this stage (SISO)
1115 // generate correspondent timer
1116 m_p10CqiTimers.insert ( std::pair<uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1117 }
1118 else
1119 {
1120 // update the CQI value
1121 (*it).second = params.m_cqiList.at (i).m_wbCqi.at (0);
1122 // update correspondent timer
1123 std::map <uint16_t,uint32_t>::iterator itTimers;
1124 itTimers = m_p10CqiTimers.find (rnti);
1125 (*itTimers).second = m_cqiTimersThreshold;
1126 }
1127 }
1128 else if ( params.m_cqiList.at (i).m_cqiType == CqiListElement_s::A30 )
1129 {
1130 // subband CQI reporting high layer configured
1131 // Not used by RR Scheduler
1132 }
1133 else
1134 {
1135 NS_LOG_ERROR (this << " CQI type unknown");
1136 }
1137 }
1138
1139 return;
1140}
1141
1142void
1144{
1145 NS_LOG_FUNCTION (this << " UL - Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf) << " size " << params.m_ulInfoList.size ());
1146
1148
1149 // Generate RBs map
1151 std::vector <bool> rbMap;
1152 uint16_t rbAllocatedNum = 0;
1153 std::set <uint16_t> rntiAllocated;
1154 std::vector <uint16_t> rbgAllocationMap;
1155 // update with RACH allocation map
1156 rbgAllocationMap = m_rachAllocationMap;
1157 //rbgAllocationMap.resize (m_cschedCellConfig.m_ulBandwidth, 0);
1158 m_rachAllocationMap.clear ();
1160
1161 rbMap.resize (m_cschedCellConfig.m_ulBandwidth, false);
1162 // remove RACH allocation
1163 for (uint16_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1164 {
1165 if (rbgAllocationMap.at (i) != 0)
1166 {
1167 rbMap.at (i) = true;
1168 NS_LOG_DEBUG (this << " Allocated for RACH " << i);
1169 }
1170 }
1171
1172 if (m_harqOn == true)
1173 {
1174 // Process UL HARQ feedback
1175 for (uint16_t i = 0; i < params.m_ulInfoList.size (); i++)
1176 {
1177 if (params.m_ulInfoList.at (i).m_receptionStatus == UlInfoListElement_s::NotOk)
1178 {
1179 // retx correspondent block: retrieve the UL-DCI
1180 uint16_t rnti = params.m_ulInfoList.at (i).m_rnti;
1181 std::map <uint16_t, uint8_t>::iterator itProcId = m_ulHarqCurrentProcessId.find (rnti);
1182 if (itProcId == m_ulHarqCurrentProcessId.end ())
1183 {
1184 NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1185 }
1186 uint8_t harqId = (uint8_t)((*itProcId).second - HARQ_PERIOD) % HARQ_PROC_NUM;
1187 NS_LOG_INFO (this << " UL-HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId);
1188 std::map <uint16_t, UlHarqProcessesDciBuffer_t>::iterator itHarq = m_ulHarqProcessesDciBuffer.find (rnti);
1189 if (itHarq == m_ulHarqProcessesDciBuffer.end ())
1190 {
1191 NS_LOG_ERROR ("No info find in UL-HARQ buffer for UE (might change eNB) " << rnti);
1192 }
1193 UlDciListElement_s dci = (*itHarq).second.at (harqId);
1194 std::map <uint16_t, UlHarqProcessesStatus_t>::iterator itStat = m_ulHarqProcessesStatus.find (rnti);
1195 if (itStat == m_ulHarqProcessesStatus.end ())
1196 {
1197 NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1198 }
1199 if ((*itStat).second.at (harqId) >= 3)
1200 {
1201 NS_LOG_INFO ("Max number of retransmissions reached (UL)-> drop process");
1202 continue;
1203 }
1204 bool free = true;
1205 for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1206 {
1207 if (rbMap.at (j) == true)
1208 {
1209 free = false;
1210 NS_LOG_INFO (this << " BUSY " << j);
1211 }
1212 }
1213 if (free)
1214 {
1215 // retx on the same RBs
1216 for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1217 {
1218 rbMap.at (j) = true;
1219 rbgAllocationMap.at (j) = dci.m_rnti;
1220 NS_LOG_INFO ("\tRB " << j);
1221 rbAllocatedNum++;
1222 }
1223 NS_LOG_INFO (this << " Send retx in the same RBGs " << (uint16_t)dci.m_rbStart << " to " << dci.m_rbStart + dci.m_rbLen << " RV " << (*itStat).second.at (harqId) + 1);
1224 }
1225 else
1226 {
1227 NS_LOG_INFO ("Cannot allocate retx due to RACH allocations for UE " << rnti);
1228 continue;
1229 }
1230 dci.m_ndi = 0;
1231 // Update HARQ buffers with new HarqId
1232 (*itStat).second.at ((*itProcId).second) = (*itStat).second.at (harqId) + 1;
1233 (*itStat).second.at (harqId) = 0;
1234 (*itHarq).second.at ((*itProcId).second) = dci;
1235 ret.m_dciList.push_back (dci);
1236 rntiAllocated.insert (dci.m_rnti);
1237 }
1238 }
1239 }
1240
1241 std::map <uint16_t,uint32_t>::iterator it;
1242 int nflows = 0;
1243
1244 for (it = m_ceBsrRxed.begin (); it != m_ceBsrRxed.end (); it++)
1245 {
1246 std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it).first);
1247 // select UEs with queues not empty and not yet allocated for HARQ
1248 NS_LOG_INFO (this << " UE " << (*it).first << " queue " << (*it).second);
1249 if (((*it).second > 0)&&(itRnti == rntiAllocated.end ()))
1250 {
1251 nflows++;
1252 }
1253 }
1254
1255 if (nflows == 0)
1256 {
1257 if (ret.m_dciList.size () > 0)
1258 {
1259 m_allocationMaps.insert (std::pair <uint16_t, std::vector <uint16_t> > (params.m_sfnSf, rbgAllocationMap));
1261 }
1262 return; // no flows to be scheduled
1263 }
1264
1265
1266 // Divide the remaining resources equally among the active users starting from the subsequent one served last scheduling trigger
1267 uint16_t rbPerFlow = (m_cschedCellConfig.m_ulBandwidth) / (nflows + rntiAllocated.size ());
1268 if (rbPerFlow < 3)
1269 {
1270 rbPerFlow = 3; // at least 3 rbg per flow (till available resource) to ensure TxOpportunity >= 7 bytes
1271 }
1272 uint16_t rbAllocated = 0;
1273
1274 if (m_nextRntiUl != 0)
1275 {
1276 for (it = m_ceBsrRxed.begin (); it != m_ceBsrRxed.end (); it++)
1277 {
1278 if ((*it).first == m_nextRntiUl)
1279 {
1280 break;
1281 }
1282 }
1283 if (it == m_ceBsrRxed.end ())
1284 {
1285 NS_LOG_ERROR (this << " no user found");
1286 }
1287 }
1288 else
1289 {
1290 it = m_ceBsrRxed.begin ();
1291 m_nextRntiUl = (*it).first;
1292 }
1293 NS_LOG_INFO (this << " NFlows " << nflows << " RB per Flow " << rbPerFlow);
1294 do
1295 {
1296 std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it).first);
1297 if ((itRnti != rntiAllocated.end ())||((*it).second == 0))
1298 {
1299 // UE already allocated for UL-HARQ -> skip it
1300 it++;
1301 if (it == m_ceBsrRxed.end ())
1302 {
1303 // restart from the first
1304 it = m_ceBsrRxed.begin ();
1305 }
1306 continue;
1307 }
1308 if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1309 {
1310 // limit to physical resources last resource assignment
1311 rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1312 // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1313 if (rbPerFlow < 3)
1314 {
1315 // terminate allocation
1316 rbPerFlow = 0;
1317 }
1318 }
1319 NS_LOG_INFO (this << " try to allocate " << (*it).first);
1320 UlDciListElement_s uldci;
1321 uldci.m_rnti = (*it).first;
1322 uldci.m_rbLen = rbPerFlow;
1323 bool allocated = false;
1324 NS_LOG_INFO (this << " RB Allocated " << rbAllocated << " rbPerFlow " << rbPerFlow << " flows " << nflows);
1325 while ((!allocated)&&((rbAllocated + rbPerFlow - m_cschedCellConfig.m_ulBandwidth) < 1) && (rbPerFlow != 0))
1326 {
1327 // check availability
1328 bool free = true;
1329 for (uint16_t j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1330 {
1331 if (rbMap.at (j) == true)
1332 {
1333 free = false;
1334 break;
1335 }
1336 }
1337 if (free)
1338 {
1339 uldci.m_rbStart = rbAllocated;
1340
1341 for (uint16_t j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1342 {
1343 rbMap.at (j) = true;
1344 // store info on allocation for managing ul-cqi interpretation
1345 rbgAllocationMap.at (j) = (*it).first;
1346 NS_LOG_INFO ("\t " << j);
1347 }
1348 rbAllocated += rbPerFlow;
1349 allocated = true;
1350 break;
1351 }
1352 rbAllocated++;
1353 if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1354 {
1355 // limit to physical resources last resource assignment
1356 rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1357 // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1358 if (rbPerFlow < 3)
1359 {
1360 // terminate allocation
1361 rbPerFlow = 0;
1362 }
1363 }
1364 }
1365 if (!allocated)
1366 {
1367 // unable to allocate new resource: finish scheduling
1368 m_nextRntiUl = (*it).first;
1369 if (ret.m_dciList.size () > 0)
1370 {
1372 }
1373 m_allocationMaps.insert (std::pair <uint16_t, std::vector <uint16_t> > (params.m_sfnSf, rbgAllocationMap));
1374 return;
1375 }
1376 std::map <uint16_t, std::vector <double> >::iterator itCqi = m_ueCqi.find ((*it).first);
1377 int cqi = 0;
1378 if (itCqi == m_ueCqi.end ())
1379 {
1380 // no cqi info about this UE
1381 uldci.m_mcs = 0; // MCS 0 -> UL-AMC TBD
1382 NS_LOG_INFO (this << " UE does not have ULCQI " << (*it).first );
1383 }
1384 else
1385 {
1386 // take the lowest CQI value (worst RB)
1387 NS_ABORT_MSG_IF ((*itCqi).second.size() == 0, "CQI of RNTI = " << (*it).first << " has expired");
1388 double minSinr = (*itCqi).second.at (uldci.m_rbStart);
1389 for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1390 {
1391 if ((*itCqi).second.at (i) < minSinr)
1392 {
1393 minSinr = (*itCqi).second.at (i);
1394 }
1395 }
1396 // translate SINR -> cqi: WILD ACK: same as DL
1397 double s = log2 ( 1 + (
1398 std::pow (10, minSinr / 10 ) /
1399 ( (-std::log (5.0 * 0.00005 )) / 1.5) ));
1400
1401
1402 cqi = m_amc->GetCqiFromSpectralEfficiency (s);
1403 if (cqi == 0)
1404 {
1405 it++;
1406 if (it == m_ceBsrRxed.end ())
1407 {
1408 // restart from the first
1409 it = m_ceBsrRxed.begin ();
1410 }
1411 NS_LOG_DEBUG (this << " UE discarded for CQI = 0, RNTI " << uldci.m_rnti);
1412 // remove UE from allocation map
1413 for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1414 {
1415 rbgAllocationMap.at (i) = 0;
1416 }
1417 continue; // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
1418 }
1419 uldci.m_mcs = m_amc->GetMcsFromCqi (cqi);
1420 }
1421 uldci.m_tbSize = (m_amc->GetUlTbSizeFromMcs (uldci.m_mcs, rbPerFlow) / 8); // MCS 0 -> UL-AMC TBD
1422
1423 UpdateUlRlcBufferInfo (uldci.m_rnti, uldci.m_tbSize);
1424 uldci.m_ndi = 1;
1425 uldci.m_cceIndex = 0;
1426 uldci.m_aggrLevel = 1;
1427 uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
1428 uldci.m_hopping = false;
1429 uldci.m_n2Dmrs = 0;
1430 uldci.m_tpc = 0; // no power control
1431 uldci.m_cqiRequest = false; // only period CQI at this stage
1432 uldci.m_ulIndex = 0; // TDD parameter
1433 uldci.m_dai = 1; // TDD parameter
1434 uldci.m_freqHopping = 0;
1435 uldci.m_pdcchPowerOffset = 0; // not used
1436 ret.m_dciList.push_back (uldci);
1437 // store DCI for HARQ_PERIOD
1438 uint8_t harqId = 0;
1439 if (m_harqOn == true)
1440 {
1441 std::map <uint16_t, uint8_t>::iterator itProcId;
1442 itProcId = m_ulHarqCurrentProcessId.find (uldci.m_rnti);
1443 if (itProcId == m_ulHarqCurrentProcessId.end ())
1444 {
1445 NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << uldci.m_rnti);
1446 }
1447 harqId = (*itProcId).second;
1448 std::map <uint16_t, UlHarqProcessesDciBuffer_t>::iterator itDci = m_ulHarqProcessesDciBuffer.find (uldci.m_rnti);
1449 if (itDci == m_ulHarqProcessesDciBuffer.end ())
1450 {
1451 NS_FATAL_ERROR ("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI " << uldci.m_rnti);
1452 }
1453 (*itDci).second.at (harqId) = uldci;
1454 // Update HARQ process status (RV 0)
1455 std::map <uint16_t, UlHarqProcessesStatus_t>::iterator itStat = m_ulHarqProcessesStatus.find (uldci.m_rnti);
1456 if (itStat == m_ulHarqProcessesStatus.end ())
1457 {
1458 NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << uldci.m_rnti);
1459 }
1460 (*itStat).second.at (harqId) = 0;
1461 }
1462
1463 NS_LOG_INFO (this << " UL Allocation - UE " << (*it).first << " startPRB " << (uint32_t)uldci.m_rbStart << " nPRB " << (uint32_t)uldci.m_rbLen << " CQI " << cqi << " MCS " << (uint32_t)uldci.m_mcs << " TBsize " << uldci.m_tbSize << " harqId " << (uint16_t)harqId);
1464
1465 it++;
1466 if (it == m_ceBsrRxed.end ())
1467 {
1468 // restart from the first
1469 it = m_ceBsrRxed.begin ();
1470 }
1471 if ((rbAllocated == m_cschedCellConfig.m_ulBandwidth) || (rbPerFlow == 0))
1472 {
1473 // Stop allocation: no more PRBs
1474 m_nextRntiUl = (*it).first;
1475 break;
1476 }
1477 }
1478 while (((*it).first != m_nextRntiUl)&&(rbPerFlow!=0));
1479
1480 m_allocationMaps.insert (std::pair <uint16_t, std::vector <uint16_t> > (params.m_sfnSf, rbgAllocationMap));
1481
1483 return;
1484}
1485
1486void
1488{
1489 NS_LOG_FUNCTION (this);
1490 return;
1491}
1492
1493void
1495{
1496 NS_LOG_FUNCTION (this);
1497 return;
1498}
1499
1500void
1502{
1503 NS_LOG_FUNCTION (this);
1504
1505 std::map <uint16_t,uint32_t>::iterator it;
1506
1507 for (unsigned int i = 0; i < params.m_macCeList.size (); i++)
1508 {
1509 if ( params.m_macCeList.at (i).m_macCeType == MacCeListElement_s::BSR )
1510 {
1511 // buffer status report
1512 // note that this scheduler does not differentiate the
1513 // allocation according to which LCGs have more/less bytes
1514 // to send.
1515 // Hence the BSR of different LCGs are just summed up to get
1516 // a total queue size that is used for allocation purposes.
1517
1518 uint32_t buffer = 0;
1519 for (uint8_t lcg = 0; lcg < 4; ++lcg)
1520 {
1521 uint8_t bsrId = params.m_macCeList.at (i).m_macCeValue.m_bufferStatus.at (lcg);
1522 buffer += BufferSizeLevelBsr::BsrId2BufferSize (bsrId);
1523 }
1524
1525 uint16_t rnti = params.m_macCeList.at (i).m_rnti;
1526 it = m_ceBsrRxed.find (rnti);
1527 if (it == m_ceBsrRxed.end ())
1528 {
1529 // create the new entry
1530 m_ceBsrRxed.insert ( std::pair<uint16_t, uint32_t > (rnti, buffer));
1531 NS_LOG_INFO (this << " Insert RNTI " << rnti << " queue " << buffer);
1532 }
1533 else
1534 {
1535 // update the buffer size value
1536 (*it).second = buffer;
1537 NS_LOG_INFO (this << " Update RNTI " << rnti << " queue " << buffer);
1538 }
1539 }
1540 }
1541
1542 return;
1543}
1544
1545void
1547{
1548 NS_LOG_FUNCTION (this);
1549
1550 switch (m_ulCqiFilter)
1551 {
1553 {
1554 // filter all the CQIs that are not SRS based
1555 if (params.m_ulCqi.m_type != UlCqi_s::SRS)
1556 {
1557 return;
1558 }
1559 }
1560 break;
1562 {
1563 // filter all the CQIs that are not SRS based
1564 if (params.m_ulCqi.m_type != UlCqi_s::PUSCH)
1565 {
1566 return;
1567 }
1568 }
1569 break;
1570 default:
1571 NS_FATAL_ERROR ("Unknown UL CQI type");
1572 }
1573 switch (params.m_ulCqi.m_type)
1574 {
1575 case UlCqi_s::PUSCH:
1576 {
1577 std::map <uint16_t, std::vector <uint16_t> >::iterator itMap;
1578 std::map <uint16_t, std::vector <double> >::iterator itCqi;
1579 itMap = m_allocationMaps.find (params.m_sfnSf);
1580 if (itMap == m_allocationMaps.end ())
1581 {
1582 NS_LOG_INFO (this << " Does not find info on allocation, size : " << m_allocationMaps.size ());
1583 return;
1584 }
1585 for (uint32_t i = 0; i < (*itMap).second.size (); i++)
1586 {
1587 // convert from fixed point notation Sxxxxxxxxxxx.xxx to double
1588 double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (i));
1589 itCqi = m_ueCqi.find ((*itMap).second.at (i));
1590 if (itCqi == m_ueCqi.end ())
1591 {
1592 // create a new entry
1593 std::vector <double> newCqi;
1594 for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1595 {
1596 if (i == j)
1597 {
1598 newCqi.push_back (sinr);
1599 }
1600 else
1601 {
1602 // initialize with NO_SINR value.
1603 newCqi.push_back (30.0);
1604 }
1605
1606 }
1607 m_ueCqi.insert (std::pair <uint16_t, std::vector <double> > ((*itMap).second.at (i), newCqi));
1608 // generate correspondent timer
1609 m_ueCqiTimers.insert (std::pair <uint16_t, uint32_t > ((*itMap).second.at (i), m_cqiTimersThreshold));
1610 }
1611 else
1612 {
1613 // update the value
1614 (*itCqi).second.at (i) = sinr;
1615 // update correspondent timer
1616 std::map <uint16_t, uint32_t>::iterator itTimers;
1617 itTimers = m_ueCqiTimers.find ((*itMap).second.at (i));
1618 (*itTimers).second = m_cqiTimersThreshold;
1619
1620 }
1621
1622 }
1623 // remove obsolete info on allocation
1624 m_allocationMaps.erase (itMap);
1625 }
1626 break;
1627 case UlCqi_s::SRS:
1628 {
1629 // get the RNTI from vendor specific parameters
1630 uint16_t rnti = 0;
1631 NS_ASSERT (params.m_vendorSpecificList.size () > 0);
1632 for (uint16_t i = 0; i < params.m_vendorSpecificList.size (); i++)
1633 {
1634 if (params.m_vendorSpecificList.at (i).m_type == SRS_CQI_RNTI_VSP)
1635 {
1636 Ptr<SrsCqiRntiVsp> vsp = DynamicCast<SrsCqiRntiVsp> (params.m_vendorSpecificList.at (i).m_value);
1637 rnti = vsp->GetRnti ();
1638 }
1639 }
1640 std::map <uint16_t, std::vector <double> >::iterator itCqi;
1641 itCqi = m_ueCqi.find (rnti);
1642 if (itCqi == m_ueCqi.end ())
1643 {
1644 // create a new entry
1645 std::vector <double> newCqi;
1646 for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1647 {
1648 double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (j));
1649 newCqi.push_back (sinr);
1650 NS_LOG_INFO (this << " RNTI " << rnti << " new SRS-CQI for RB " << j << " value " << sinr);
1651
1652 }
1653 m_ueCqi.insert (std::pair <uint16_t, std::vector <double> > (rnti, newCqi));
1654 // generate correspondent timer
1655 m_ueCqiTimers.insert (std::pair <uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1656 }
1657 else
1658 {
1659 // update the values
1660 for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1661 {
1662 double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (j));
1663 (*itCqi).second.at (j) = sinr;
1664 NS_LOG_INFO (this << " RNTI " << rnti << " update SRS-CQI for RB " << j << " value " << sinr);
1665 }
1666 // update correspondent timer
1667 std::map <uint16_t, uint32_t>::iterator itTimers;
1668 itTimers = m_ueCqiTimers.find (rnti);
1669 (*itTimers).second = m_cqiTimersThreshold;
1670
1671 }
1672
1673
1674 }
1675 break;
1676 case UlCqi_s::PUCCH_1:
1677 case UlCqi_s::PUCCH_2:
1678 case UlCqi_s::PRACH:
1679 {
1680 NS_FATAL_ERROR ("PfFfMacScheduler supports only PUSCH and SRS UL-CQIs");
1681 }
1682 break;
1683 default:
1684 NS_FATAL_ERROR ("Unknown type of UL-CQI");
1685 }
1686 return;
1687}
1688
1689
1690void
1692{
1693 NS_LOG_FUNCTION (this << m_p10CqiTimers.size ());
1694 // refresh DL CQI P01 Map
1695 std::map <uint16_t,uint32_t>::iterator itP10 = m_p10CqiTimers.begin ();
1696 while (itP10 != m_p10CqiTimers.end ())
1697 {
1698 NS_LOG_INFO (this << " P10-CQI for user " << (*itP10).first << " is " << (uint32_t)(*itP10).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1699 if ((*itP10).second == 0)
1700 {
1701 // delete correspondent entries
1702 std::map <uint16_t,uint8_t>::iterator itMap = m_p10CqiRxed.find ((*itP10).first);
1703 NS_ASSERT_MSG (itMap != m_p10CqiRxed.end (), " Does not find CQI report for user " << (*itP10).first);
1704 NS_LOG_INFO (this << " P10-CQI exired for user " << (*itP10).first);
1705 m_p10CqiRxed.erase (itMap);
1706 std::map <uint16_t,uint32_t>::iterator temp = itP10;
1707 itP10++;
1708 m_p10CqiTimers.erase (temp);
1709 }
1710 else
1711 {
1712 (*itP10).second--;
1713 itP10++;
1714 }
1715 }
1716
1717 return;
1718}
1719
1720
1721void
1723{
1724 // refresh UL CQI Map
1725 std::map <uint16_t,uint32_t>::iterator itUl = m_ueCqiTimers.begin ();
1726 while (itUl != m_ueCqiTimers.end ())
1727 {
1728 NS_LOG_INFO (this << " UL-CQI for user " << (*itUl).first << " is " << (uint32_t)(*itUl).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1729 if ((*itUl).second == 0)
1730 {
1731 // delete correspondent entries
1732 std::map <uint16_t, std::vector <double> >::iterator itMap = m_ueCqi.find ((*itUl).first);
1733 NS_ASSERT_MSG (itMap != m_ueCqi.end (), " Does not find CQI report for user " << (*itUl).first);
1734 NS_LOG_INFO (this << " UL-CQI exired for user " << (*itUl).first);
1735 (*itMap).second.clear ();
1736 m_ueCqi.erase (itMap);
1737 std::map <uint16_t,uint32_t>::iterator temp = itUl;
1738 itUl++;
1739 m_ueCqiTimers.erase (temp);
1740 }
1741 else
1742 {
1743 (*itUl).second--;
1744 itUl++;
1745 }
1746 }
1747
1748 return;
1749}
1750
1751void
1752RrFfMacScheduler::UpdateDlRlcBufferInfo (uint16_t rnti, uint8_t lcid, uint16_t size)
1753{
1754 NS_LOG_FUNCTION (this);
1755 std::list<FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
1756 for (it = m_rlcBufferReq.begin (); it != m_rlcBufferReq.end (); it++)
1757 {
1758 if (((*it).m_rnti == rnti) && ((*it).m_logicalChannelIdentity == lcid))
1759 {
1760 NS_LOG_INFO (this << " UE " << rnti << " LC " << (uint16_t)lcid << " txqueue " << (*it).m_rlcTransmissionQueueSize << " retxqueue " << (*it).m_rlcRetransmissionQueueSize << " status " << (*it).m_rlcStatusPduSize << " decrease " << size);
1761 // Update queues: RLC tx order Status, ReTx, Tx
1762 // Update status queue
1763 if (((*it).m_rlcStatusPduSize > 0) && (size >= (*it).m_rlcStatusPduSize))
1764 {
1765 (*it).m_rlcStatusPduSize = 0;
1766 }
1767 else if (((*it).m_rlcRetransmissionQueueSize > 0) && (size >= (*it).m_rlcRetransmissionQueueSize))
1768 {
1769 (*it).m_rlcRetransmissionQueueSize = 0;
1770 }
1771 else if ((*it).m_rlcTransmissionQueueSize > 0)
1772 {
1773 uint32_t rlcOverhead;
1774 if (lcid == 1)
1775 {
1776 // for SRB1 (using RLC AM) it's better to
1777 // overestimate RLC overhead rather than
1778 // underestimate it and risk unneeded
1779 // segmentation which increases delay
1780 rlcOverhead = 4;
1781 }
1782 else
1783 {
1784 // minimum RLC overhead due to header
1785 rlcOverhead = 2;
1786 }
1787 // update transmission queue
1788 if ((*it).m_rlcTransmissionQueueSize <= size - rlcOverhead)
1789 {
1790 (*it).m_rlcTransmissionQueueSize = 0;
1791 }
1792 else
1793 {
1794 (*it).m_rlcTransmissionQueueSize -= size - rlcOverhead;
1795 }
1796 }
1797 return;
1798 }
1799 }
1800}
1801
1802void
1803RrFfMacScheduler::UpdateUlRlcBufferInfo (uint16_t rnti, uint16_t size)
1804{
1805
1806 size = size - 2; // remove the minimum RLC overhead
1807 std::map <uint16_t,uint32_t>::iterator it = m_ceBsrRxed.find (rnti);
1808 if (it != m_ceBsrRxed.end ())
1809 {
1810 NS_LOG_INFO (this << " Update RLC BSR UE " << rnti << " size " << size << " BSR " << (*it).second);
1811 if ((*it).second >= size)
1812 {
1813 (*it).second -= size;
1814 }
1815 else
1816 {
1817 (*it).second = 0;
1818 }
1819 }
1820 else
1821 {
1822 NS_LOG_ERROR (this << " Does not find BSR report info of UE " << rnti);
1823 }
1824
1825}
1826
1827
1828void
1830{
1831 NS_LOG_FUNCTION (this << " RNTI " << rnti << " txMode " << (uint16_t)txMode);
1833 params.m_rnti = rnti;
1834 params.m_transmissionMode = txMode;
1836}
1837
1838
1839
1840}
AttributeValue implementation for Boolean.
Definition: boolean.h:37
static uint32_t BsrId2BufferSize(uint8_t val)
Convert BSR ID to buffer size.
Definition: lte-common.cc:184
Provides the CSCHED SAP.
FfMacCschedSapUser class.
virtual void CschedUeConfigUpdateInd(const struct CschedUeConfigUpdateIndParameters &params)=0
CSCHED_UE_UPDATE_IND.
virtual void CschedUeConfigCnf(const struct CschedUeConfigCnfParameters &params)=0
CSCHED_UE_CONFIG_CNF.
Provides the SCHED SAP.
FfMacSchedSapUser class.
virtual void SchedUlConfigInd(const struct SchedUlConfigIndParameters &params)=0
SCHED_UL_CONFIG_IND.
virtual void SchedDlConfigInd(const struct SchedDlConfigIndParameters &params)=0
SCHED_DL_CONFIG_IND.
This abstract base class identifies the interface by means of which the helper object can plug on the...
UlCqiFilter_t m_ulCqiFilter
UL CQI filter.
static double fpS11dot3toDouble(uint16_t val)
Convert from fixed point S11.3 notation to double.
Definition: lte-common.cc:155
Service Access Point (SAP) offered by the Frequency Reuse algorithm instance to the MAC Scheduler ins...
Definition: lte-ffr-sap.h:40
Service Access Point (SAP) offered by the eNodeB RRC instance to the Frequency Reuse algorithm instan...
Definition: lte-ffr-sap.h:139
Smart pointer class similar to boost::intrusive_ptr.
Definition: ptr.h:74
Implements the SCHED SAP and CSCHED SAP for a Round Robin scheduler.
friend class MemberCschedSapProvider< RrFfMacScheduler >
allow MemberCschedSapProvider<RrFfMacScheduler> class friend access
virtual ~RrFfMacScheduler()
Destructor.
std::map< uint16_t, std::vector< double > > m_ueCqi
Map of UEs' UL-CQI per RBG.
static TypeId GetTypeId(void)
Get the type ID.
void DoSchedDlTriggerReq(const struct FfMacSchedSapProvider::SchedDlTriggerReqParameters &params)
Sched DL trigger request.
friend class MemberSchedSapProvider< RrFfMacScheduler >
allow MemberSchedSapProvider<RrFfMacScheduler> class friend access
std::map< uint16_t, DlHarqProcessesStatus_t > m_dlHarqProcessesStatus
DL HARQ process status.
void DoCschedLcReleaseReq(const struct FfMacCschedSapProvider::CschedLcReleaseReqParameters &params)
CSched LC release request.
std::map< uint16_t, uint8_t > m_p10CqiRxed
Map of UE's DL CQI P01 received.
virtual void SetFfMacSchedSapUser(FfMacSchedSapUser *s)
set the user part of the FfMacSchedSap that this Scheduler will interact with.
FfMacSchedSapUser * m_schedSapUser
Sched SAP user.
void DoSchedDlRlcBufferReq(const struct FfMacSchedSapProvider::SchedDlRlcBufferReqParameters &params)
Sched DL RLC buffer request.
FfMacSchedSapProvider * m_schedSapProvider
Sched SAP provider.
virtual void SetFfMacCschedSapUser(FfMacCschedSapUser *s)
set the user part of the FfMacCschedSap that this Scheduler will interact with.
uint8_t UpdateHarqProcessId(uint16_t rnti)
Update and return a new process Id for the RNTI specified.
virtual FfMacCschedSapProvider * GetFfMacCschedSapProvider()
LteFfrSapUser * m_ffrSapUser
FFR SAP user.
void RefreshDlCqiMaps(void)
Refresh DL CQI maps function.
std::map< uint16_t, DlHarqProcessesTimer_t > m_dlHarqProcessesTimer
DL HARQ process timer.
void UpdateDlRlcBufferInfo(uint16_t rnti, uint8_t lcid, uint16_t size)
Update DL RLC buffer info function.
std::vector< uint16_t > m_rachAllocationMap
RACH allocation map.
LteFfrSapProvider * m_ffrSapProvider
FFR SAP provider.
std::map< uint16_t, uint32_t > m_ceBsrRxed
Map of UE's buffer status reports received.
FfMacCschedSapProvider * m_cschedSapProvider
CSched SAP provider.
int GetRbgSize(int dlbandwidth)
Get RBG size function.
std::map< uint16_t, DlHarqProcessesDciBuffer_t > m_dlHarqProcessesDciBuffer
DL HARQ process DCI buffer.
FfMacCschedSapUser * m_cschedSapUser
CSched SAP user.
std::map< uint16_t, uint8_t > m_dlHarqCurrentProcessId
DL HARQ current process ID.
std::vector< struct RachListElement_s > m_rachList
RACH list.
std::list< FfMacSchedSapProvider::SchedDlRlcBufferReqParameters > m_rlcBufferReq
Vectors of UE's RLC info.
std::map< uint16_t, UlHarqProcessesStatus_t > m_ulHarqProcessesStatus
UL HARQ process status.
virtual LteFfrSapUser * GetLteFfrSapUser()
virtual void SetLteFfrSapProvider(LteFfrSapProvider *s)
Set the Provider part of the LteFfrSap that this Scheduler will interact with.
uint16_t m_nextRntiDl
RNTI of the next user to be served next scheduling in DL.
void DoSchedUlCqiInfoReq(const struct FfMacSchedSapProvider::SchedUlCqiInfoReqParameters &params)
Sched UL CQI info request.
FfMacCschedSapProvider::CschedCellConfigReqParameters m_cschedCellConfig
CSched cell config.
virtual FfMacSchedSapProvider * GetFfMacSchedSapProvider()
static bool SortRlcBufferReq(FfMacSchedSapProvider::SchedDlRlcBufferReqParameters i, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters j)
Sort RLC buffer request function.
void RefreshHarqProcesses()
Refresh HARQ processes according to the timers.
std::map< uint16_t, std::vector< uint16_t > > m_allocationMaps
Map of previous allocated UE per RBG (used to retrieve info from UL-CQI)
std::map< uint16_t, uint8_t > m_uesTxMode
txMode of the UEs
void DoSchedDlMacBufferReq(const struct FfMacSchedSapProvider::SchedDlMacBufferReqParameters &params)
Sched DL MAC buffer request.
void DoCschedUeReleaseReq(const struct FfMacCschedSapProvider::CschedUeReleaseReqParameters &params)
CSched UE release request.
std::map< uint16_t, DlHarqRlcPduListBuffer_t > m_dlHarqProcessesRlcPduListBuffer
DL HARQ process RLC PDU list buffer.
void DoCschedLcConfigReq(const struct FfMacCschedSapProvider::CschedLcConfigReqParameters &params)
CSched LC config request.
void DoSchedDlRachInfoReq(const struct FfMacSchedSapProvider::SchedDlRachInfoReqParameters &params)
Sched DL RACH info request.
void DoSchedUlTriggerReq(const struct FfMacSchedSapProvider::SchedUlTriggerReqParameters &params)
Sched UL trigger request.
bool m_harqOn
m_harqOn when false inhibit the HARQ mechanisms (by default active)
void DoSchedUlMacCtrlInfoReq(const struct FfMacSchedSapProvider::SchedUlMacCtrlInfoReqParameters &params)
Sched UL MAC control info request.
void DoSchedDlPagingBufferReq(const struct FfMacSchedSapProvider::SchedDlPagingBufferReqParameters &params)
Sched DL paging buffer request.
void RefreshUlCqiMaps(void)
Refresh UL CQI maps function.
void TransmissionModeConfigurationUpdate(uint16_t rnti, uint8_t txMode)
Transmission mode configuration update function.
void DoSchedDlCqiInfoReq(const struct FfMacSchedSapProvider::SchedDlCqiInfoReqParameters &params)
Sched DL CQI info request.
void DoCschedCellConfigReq(const struct FfMacCschedSapProvider::CschedCellConfigReqParameters &params)
CSched cell config request.
void DoSchedUlSrInfoReq(const struct FfMacSchedSapProvider::SchedUlSrInfoReqParameters &params)
Sched UL SRS info request.
uint8_t m_ulGrantMcs
MCS for UL grant (default 0)
std::map< uint16_t, uint32_t > m_ueCqiTimers
Map of UEs' timers on UL-CQI per RBG.
std::map< uint16_t, uint8_t > m_ulHarqCurrentProcessId
UL HARQ current process ID.
std::vector< DlInfoListElement_s > m_dlInfoListBuffered
HARQ retx buffered.
virtual void DoDispose(void)
Destructor implementation.
std::map< uint16_t, UlHarqProcessesDciBuffer_t > m_ulHarqProcessesDciBuffer
UL HARQ process DCI buffer.
void DoSchedUlNoiseInterferenceReq(const struct FfMacSchedSapProvider::SchedUlNoiseInterferenceReqParameters &params)
Sched UL noise interference request.
void DoCschedUeConfigReq(const struct FfMacCschedSapProvider::CschedUeConfigReqParameters &params)
CSched UE config request.
std::map< uint16_t, uint32_t > m_p10CqiTimers
Map of UE's timers on DL CQI P01 received.
uint8_t HarqProcessAvailability(uint16_t rnti)
Return the availability of free process for the RNTI specified.
void UpdateUlRlcBufferInfo(uint16_t rnti, uint16_t size)
Update UL RLC buffer info function.
uint16_t m_nextRntiUl
RNTI of the next user to be served next scheduling in UL.
static uint8_t TxMode2LayerNum(uint8_t txMode)
Transmit mode 2 layer number.
Definition: lte-common.cc:212
a unique identifier for an interface.
Definition: type-id.h:59
TypeId SetParent(TypeId tid)
Set the parent TypeId.
Definition: type-id.cc:922
Hold an unsigned integer type.
Definition: uinteger.h:44
#define HARQ_PROC_NUM
#define HARQ_DL_TIMEOUT
#define NS_ASSERT(condition)
At runtime, in debugging builds, if this condition is not true, the program prints the source file,...
Definition: assert.h:67
#define NS_ASSERT_MSG(condition, message)
At runtime, in debugging builds, if this condition is not true, the program prints the message to out...
Definition: assert.h:88
Ptr< const AttributeChecker > MakeBooleanChecker(void)
Definition: boolean.cc:121
Ptr< const AttributeAccessor > MakeBooleanAccessor(T1 a1)
Definition: boolean.h:85
Ptr< const AttributeAccessor > MakeUintegerAccessor(T1 a1)
Definition: uinteger.h:45
#define NS_FATAL_ERROR(msg)
Report a fatal error with a message and terminate.
Definition: fatal-error.h:165
#define NS_ABORT_MSG_IF(cond, msg)
Abnormal program termination if a condition is true, with a message.
Definition: abort.h:108
#define NS_LOG_ERROR(msg)
Use NS_LOG to output a message of level LOG_ERROR.
Definition: log.h:257
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:205
#define NS_LOG_DEBUG(msg)
Use NS_LOG to output a message of level LOG_DEBUG.
Definition: log.h:273
#define NS_LOG_LOGIC(msg)
Use NS_LOG to output a message of level LOG_LOGIC.
Definition: log.h:289
#define NS_LOG_FUNCTION(parameters)
If log level LOG_FUNCTION is enabled, this macro will output all input parameters separated by ",...
#define NS_LOG_INFO(msg)
Use NS_LOG to output a message of level LOG_INFO.
Definition: log.h:281
#define NS_OBJECT_ENSURE_REGISTERED(type)
Register an Object subclass with the TypeId system.
Definition: object-base.h:45
#define HARQ_PERIOD
Definition: lte-common.h:30
#define SRS_CQI_RNTI_VSP
Every class exported by the ns3 library is enclosed in the ns3 namespace.
std::vector< UlDciListElement_s > UlHarqProcessesDciBuffer_t
UL HARQ process DCI buffer vector.
std::vector< uint8_t > DlHarqProcessesTimer_t
DL HARQ process timer vector typedef.
std::vector< uint8_t > DlHarqProcessesStatus_t
DL HARQ process status vector typedef.
std::vector< RlcPduList_t > DlHarqRlcPduListBuffer_t
vector of the 8 HARQ processes per UE
@ SUCCESS
Definition: ff-mac-common.h:62
static const int Type0AllocationRbg[4]
Type 0 RGB allocation.
std::vector< DlDciListElement_s > DlHarqProcessesDciBuffer_t
DL HARQ process DCI buffer vector typedef.
std::vector< uint8_t > UlHarqProcessesStatus_t
UL HARQ process status vector.
See section 4.3.8 builDataListElement.
struct DlDciListElement_s m_dci
DCI.
std::vector< std::vector< struct RlcPduListElement_s > > m_rlcPduList
RLC PDU list.
See section 4.3.10 buildRARListElement.
See section 4.3.1 dlDciListElement.
Definition: ff-mac-common.h:94
std::vector< uint8_t > m_ndi
New data indicator.
uint8_t m_harqProcess
HARQ process.
uint32_t m_rbBitmap
RB bitmap.
Definition: ff-mac-common.h:96
std::vector< uint8_t > m_mcs
MCS.
uint8_t m_resAlloc
The type of resource allocation.
Definition: ff-mac-common.h:98
std::vector< uint16_t > m_tbsSize
The TBs size.
Definition: ff-mac-common.h:99
std::vector< uint8_t > m_rv
Redundancy version.
uint8_t m_tpc
Tx power control command.
Parameters of the CSCHED_LC_CONFIG_REQ primitive.
Parameters of the CSCHED_LC_RELEASE_REQ primitive.
std::vector< uint8_t > m_logicalChannelIdentity
logical channel identity
Parameters of the CSCHED_UE_CONFIG_REQ primitive.
Parameters of the CSCHED_UE_RELEASE_REQ primitive.
Parameters of the CSCHED_UE_CONFIG_CNF primitive.
Parameters of the CSCHED_UE_CONFIG_UPDATE_IND primitive.
Parameters of the SCHED_DL_CQI_INFO_REQ primitive.
std::vector< struct CqiListElement_s > m_cqiList
CQI list.
Parameters of the SCHED_DL_MAC_BUFFER_REQ primitive.
Parameters of the SCHED_DL_PAGING_BUFFER_REQ primitive.
Parameters of the SCHED_DL_RACH_INFO_REQ primitive.
std::vector< struct RachListElement_s > m_rachList
RACH list.
uint32_t m_rlcRetransmissionQueueSize
RLC retransmission queue size.
uint32_t m_rlcTransmissionQueueSize
RLC transmission queue size.
Parameters of the SCHED_DL_TRIGGER_REQ primitive.
std::vector< struct DlInfoListElement_s > m_dlInfoList
DL info list.
Parameters of the SCHED_UL_CQI_INFO_REQ primitive.
std::vector< struct VendorSpecificListElement_s > m_vendorSpecificList
vendor specific list
Parameters of the SCHED_UL_MAC_CTRL_INFO_REQ primitive.
std::vector< struct MacCeListElement_s > m_macCeList
MAC CE list.
Parameters of the SCHED_UL_NOISE_INTERFERENCE_REQ primitive.
Parameters of the SCHED_UL_SR_INFO_REQ primitive.
Parameters of the SCHED_UL_TRIGGER_REQ primitive.
std::vector< struct UlInfoListElement_s > m_ulInfoList
UL info list.
uint8_t m_nrOfPdcchOfdmSymbols
number of PDCCH OFDM symbols
std::vector< struct BuildDataListElement_s > m_buildDataList
build data list
std::vector< struct BuildRarListElement_s > m_buildRarList
build rar list
Parameters of the SCHED_UL_CONFIG_IND primitive.
std::vector< struct UlDciListElement_s > m_dciList
DCI list.
See section 4.3.9 rlcPDU_ListElement.
uint8_t m_logicalChannelIdentity
logical channel identity
std::vector< uint16_t > m_sinr
SINR.
See section 4.3.2 ulDciListElement.
int8_t m_pdcchPowerOffset
CCH power offset.
int8_t m_tpc
Tx power control command.
uint8_t m_dai
DL assignment index.
uint8_t m_cceIndex
Control Channel Element index.
uint8_t m_ulIndex
UL index.
uint8_t m_ueTxAntennaSelection
UE antenna selection.
bool m_cqiRequest
CQI request.
uint8_t m_n2Dmrs
n2 DMRS
uint8_t m_freqHopping
freq hopping
uint8_t m_aggrLevel
The aggregation level.
bool m_ulDelay
UL delay?
int8_t m_tpc
Tx power control command.
bool m_cqiRequest
CQI request?
bool m_hopping
hopping?
uint16_t m_tbSize
size
uint8_t m_rbLen
length
uint8_t m_mcs
MCS.
uint8_t m_rbStart
start
uint16_t m_rnti
RNTI.