A Discrete-Event Network Simulator
API
tap-fd-net-device-helper.cc
Go to the documentation of this file.
1/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
2/*
3 * Copyright (c) 2012 INRIA, 2012 University of Washington
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation;
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 */
18
20#include "encode-decode.h"
21
22#include "ns3/abort.h"
23#include "ns3/config.h"
24#include "ns3/fd-net-device.h"
25#include "ns3/log.h"
26#include "ns3/names.h"
27#include "ns3/object-factory.h"
28#include "ns3/packet.h"
29#include "ns3/simulator.h"
30#include "ns3/trace-helper.h"
31#include "ns3/internet-module.h"
32
33#include <arpa/inet.h>
34#include <errno.h>
35#include <iostream>
36#include <iomanip>
37#include <limits>
38#include <linux/if_tun.h>
39#include <memory>
40#include <net/ethernet.h>
41#include <net/if.h>
42#include <netinet/in.h>
43#include <netpacket/packet.h>
44
45#include <stdlib.h>
46#include <string.h>
47#include <sys/wait.h>
48#include <sys/stat.h>
49#include <sys/socket.h>
50#include <sys/un.h>
51#include <sys/ioctl.h>
52#include <time.h>
53#include <unistd.h>
54
55#include <string>
56
57namespace ns3 {
58
59NS_LOG_COMPONENT_DEFINE ("TapFdNetDeviceHelper");
60
61#define TAP_MAGIC 95549
62
64{
65 m_deviceName = "";
66 m_modePi = false;
70 m_tapPrefix6 = 64;
72}
73
74void
76{
77 m_modePi = modePi;
78}
79
80void
82{
84}
85
86void
88{
89 m_tapMask4 = mask;
90}
91
92void
94{
96}
97
98void
100{
101 m_tapPrefix6 = prefix;
102}
103
104void
106{
107 m_tapMac = mac;
108}
109
112{
114 Ptr<FdNetDevice> device = d->GetObject<FdNetDevice> ();
115
116 //
117 // We need to explicitly set the encapsulation mode for the traffic
118 // traversing the TAP device, so the FdNetDevice is able to know
119 // how to treat the traffic in a way that in compatible with the
120 // TAP device.
121 //
122 if (m_modePi)
123 {
124 device->SetEncapsulationMode (FdNetDevice::DIXPI);
125 }
126
127 SetFileDescriptor (device);
128 return device;
129}
130
131void
133{
134 NS_LOG_LOGIC ("Creating TAP device");
135
136 //
137 // Call out to a separate process running as suid root in order to create a
138 // TAP device. We do this to avoid having the entire simulation running as root.
139 //
140 int fd = CreateFileDescriptor ();
141 device->SetFileDescriptor (fd);
142}
143
144int
146{
147 NS_LOG_FUNCTION (this);
148
149 //
150 // We're going to fork and exec that program soon, but first we need to have
151 // a socket to talk to it with. So we create a local interprocess (Unix)
152 // socket for that purpose.
153 //
154 int sock = socket (PF_UNIX, SOCK_DGRAM, 0);
155 NS_ABORT_MSG_IF (sock == -1, "TapFdNetDeviceHelper::CreateFileDescriptor(): Unix socket creation error, errno = " << strerror (errno));
156
157 //
158 // Bind to that socket and let the kernel allocate an endpoint
159 //
160 struct sockaddr_un un;
161 memset (&un, 0, sizeof (un));
162 un.sun_family = AF_UNIX;
163 int status = bind (sock, (struct sockaddr*)&un, sizeof (sa_family_t));
164 NS_ABORT_MSG_IF (status == -1, "TapFdNetDeviceHelper::CreateFileDescriptor(): Could not bind(): errno = " << strerror (errno));
165 NS_LOG_INFO ("Created Unix socket");
166 NS_LOG_INFO ("sun_family = " << un.sun_family);
167 NS_LOG_INFO ("sun_path = " << un.sun_path);
168
169 //
170 // We have a socket here, but we want to get it there -- to the program we're
171 // going to exec. What we'll do is to do a getsockname and then encode the
172 // resulting address information as a string, and then send the string to the
173 // program as an argument. So we need to get the sock name.
174 //
175 socklen_t len = sizeof (un);
176 status = getsockname (sock, (struct sockaddr*)&un, &len);
177 NS_ABORT_MSG_IF (status == -1, "TapFdNetDeviceHelper::CreateFileDescriptor(): Could not getsockname(): errno = " << strerror (errno));
178
179 //
180 // Now encode that socket name (family and path) as a string of hex digits
181 //
182 std::string path = BufferToString ((uint8_t *)&un, len);
183 NS_LOG_INFO ("Encoded Unix socket as \"" << path << "\"");
184
185 //
186 // Fork and exec the process to create our socket. If we're us (the parent)
187 // we wait for the child (the creator) to complete and read the socket it
188 // created and passed back using the ancillary data mechanism.
189 //
190 pid_t pid = ::fork ();
191 if (pid == 0)
192 {
193 NS_LOG_DEBUG ("Child process");
194
195 //
196 // build a command line argument from the encoded endpoint string that
197 // the socket creation process will use to figure out how to respond to
198 // the (now) parent process. We're going to have to give this program
199 // quite a bit of information.
200 //
201 // -d<device-name> The name of the tap device we want to create;
202 // -m<MAC-address> The MAC-48 address to assign to the new tap device;
203 // -i<IPv4-address> The IP v4 address to assign to the new tap device;
204 // -I<IPv6-address> The IP v6 address to assign to the new tap device;
205 // -n<network-IPv4-mask> The network IPv4 mask to assign to the new tap device;
206 // -N<network-IPv6-mask> The network IPv6 mask to assign to the new tap device;
207 // -t Set the IFF_TAP flag
208 // -h Set the IFF_NO_PI flag
209 // -p<path> the path to the unix socket described above.
210 //
211 // Example tap-creator -dnewdev -i1.2.3.1 -m08:00:2e:00:01:23 -n255.255.255.0 -t -h -pblah
212 //
213
214 //
215 // The device-name is something we may want the system to make up in
216 // every case. We also rely on it being configured via an Attribute
217 // through the helper. By default, it is set to the empty string
218 // which tells the system to make up a device name such as "tap123".
219 //
220 std::ostringstream ossDeviceName;
221 if (m_deviceName != "")
222 {
223 ossDeviceName << "-d" << m_deviceName;
224 }
225
226 std::ostringstream ossMac;
227 ossMac << "-m" << m_tapMac;
228
229 std::ostringstream ossIp4;
231 {
232 ossIp4 << "-i" << m_tapIp4;
233 }
234
235 std::ostringstream ossIp6;
237 {
238 ossIp6 << "-I" << m_tapIp6;
239 }
240
241 std::ostringstream ossNetmask4;
242 if (m_tapMask4 != Ipv4Mask::GetZero () )
243 {
244 ossNetmask4 << "-n" << m_tapMask4;
245 }
246
247 std::ostringstream ossPrefix6;
248 ossPrefix6 << "-P" << m_tapPrefix6;
249
250 std::ostringstream ossMode;
251 ossMode << "-t";
252
253 std::ostringstream ossPI;
254 if (m_modePi)
255 {
256 ossPI << "-h";
257 }
258
259 std::ostringstream ossPath;
260 ossPath << "-p" << path;
261
262 //
263 // Execute the socket creation process image.
264 //
265 status = ::execlp (TAP_DEV_CREATOR,
266 TAP_DEV_CREATOR, // argv[0] (filename)
267 ossDeviceName.str ().c_str (), // argv[1] (-d<device name>)
268 ossMac.str ().c_str (), // argv[2] (-m<MAC address>
269 ossIp4.str ().c_str (), // argv[3] (-i<IP v4 address>)
270 ossIp6.str ().c_str (), // argv[4] (-I<IP v6 address>)
271 ossNetmask4.str ().c_str (), // argv[5] (-n<IP v4 net mask>)
272 ossPrefix6.str ().c_str (), // argv[6] (-P<IP v6 prefix>)
273 ossMode.str ().c_str (), // argv[7] (-t <tap>)
274 ossPI.str ().c_str (), // argv[8] (-h <pi>)
275 ossPath.str ().c_str (), // argv[9] (-p<path>)
276 (char *)NULL);
277
278 //
279 // If the execlp successfully completes, it never returns. If it returns it failed or the OS is
280 // broken. In either case, we bail.
281 //
282 NS_FATAL_ERROR ("TapFdNetDeviceHelper::CreateFileDescriptor(): Back from execlp(), status = " <<
283 status << ", errno = " << ::strerror (errno));
284 }
285 else
286 {
287 NS_LOG_DEBUG ("Parent process");
288 //
289 // We're the process running the emu net device. We need to wait for the
290 // socket creator process to finish its job.
291 //
292 int st;
293 pid_t waited = waitpid (pid, &st, 0);
294 NS_ABORT_MSG_IF (waited == -1, "TapFdNetDeviceHelper::CreateFileDescriptor(): waitpid() fails, errno = " << strerror (errno));
295 NS_ASSERT_MSG (pid == waited, "TapFdNetDeviceHelper::CreateFileDescriptor(): pid mismatch");
296
297 //
298 // Check to see if the socket creator exited normally and then take a
299 // look at the exit code. If it bailed, so should we. If it didn't
300 // even exit normally, we bail too.
301 //
302 if (WIFEXITED (st))
303 {
304 int exitStatus = WEXITSTATUS (st);
305 NS_ABORT_MSG_IF (exitStatus != 0,
306 "TapFdNetDeviceHelper::CreateFileDescriptor(): socket creator exited normally with status " << exitStatus);
307 }
308 else
309 {
310 NS_FATAL_ERROR ("TapFdNetDeviceHelper::CreateFileDescriptor(): socket creator exited abnormally");
311 }
312
313 //
314 // At this point, the socket creator has run successfully and should
315 // have created our tap device, initialized it with the information we
316 // passed and sent it back to the socket address we provided. A socket
317 // (fd) we can use to talk to this tap device should be waiting on the
318 // Unix socket we set up to receive information back from the creator
319 // program. We've got to do a bunch of grunt work to get at it, though.
320 //
321 // The struct iovec below is part of a scatter-gather list. It describes a
322 // buffer. In this case, it describes a buffer (an integer) that will
323 // get the data that comes back from the socket creator process. It will
324 // be a magic number that we use as a consistency/sanity check.
325 //
326 struct iovec iov;
327 uint32_t magic;
328 iov.iov_base = &magic;
329 iov.iov_len = sizeof(magic);
330
331 //
332 // The CMSG macros you'll see below are used to create and access control
333 // messages (which is another name for ancillary data). The ancillary
334 // data is made up of pairs of struct cmsghdr structures and associated
335 // data arrays.
336 //
337 // First, we're going to allocate a buffer on the stack to receive our
338 // data array (that contains the socket). Sometimes you'll see this called
339 // an "ancillary element" but the msghdr uses the control message termimology
340 // so we call it "control."
341 //
342 size_t msg_size = sizeof(int);
343 char control[CMSG_SPACE (msg_size)];
344
345 //
346 // There is a msghdr that is used to minimize the number of parameters
347 // passed to recvmsg (which we will use to receive our ancillary data).
348 // This structure uses terminology corresponding to control messages, so
349 // you'll see msg_control, which is the pointer to the ancillary data and
350 // controllen which is the size of the ancillary data array.
351 //
352 // So, initialize the message header that describes the ancillary/control
353 // data we expect to receive and point it to buffer.
354 //
355 struct msghdr msg;
356 msg.msg_name = 0;
357 msg.msg_namelen = 0;
358 msg.msg_iov = &iov;
359 msg.msg_iovlen = 1;
360 msg.msg_control = control;
361 msg.msg_controllen = sizeof (control);
362 msg.msg_flags = 0;
363
364 //
365 // Now we can actually receive the interesting bits from the tap
366 // creator process. Lots of pain to get four bytes.
367 //
368 ssize_t bytesRead = recvmsg (sock, &msg, 0);
369 NS_ABORT_MSG_IF (bytesRead != sizeof(int), "TapFdNetDeviceHelper::CreateFileDescriptor(): Wrong byte count from socket creator");
370
371 //
372 // There may be a number of message headers/ancillary data arrays coming in.
373 // Let's look for the one with a type SCM_RIGHTS which indicates it's the
374 // one we're interested in.
375 //
376 struct cmsghdr *cmsg;
377 for (cmsg = CMSG_FIRSTHDR (&msg); cmsg != NULL; cmsg = CMSG_NXTHDR (&msg, cmsg))
378 {
379 if (cmsg->cmsg_level == SOL_SOCKET
380 && cmsg->cmsg_type == SCM_RIGHTS)
381 {
382 //
383 // This is the type of message we want. Check to see if the magic
384 // number is correct and then pull out the socket we care about if
385 // it matches
386 //
387 if (magic == TAP_MAGIC)
388 {
389 NS_LOG_INFO ("Got SCM_RIGHTS with correct magic " << magic);
390 int *rawSocket = (int*)CMSG_DATA (cmsg);
391 NS_LOG_INFO ("Got the socket from the socket creator = " << *rawSocket);
392 return *rawSocket;
393 }
394 else
395 {
396 NS_LOG_INFO ("Got SCM_RIGHTS, but with bad magic " << magic);
397 }
398 }
399 }
400 NS_FATAL_ERROR ("Did not get the raw socket from the socket creator");
401 }
402
403}
404
405} // namespace ns3
406
407
std::string m_deviceName
The Unix/Linux name of the underlying device (e.g., eth0)
virtual Ptr< NetDevice > InstallPriv(Ptr< Node > node) const
This method creates an ns3::FdNetDevice and associates it to a node.
a NetDevice to read/write network traffic from/into a file descriptor.
Definition: fd-net-device.h:86
@ DIXPI
When using TAP devices, if flag IFF_NO_PI is not set on the device, IP packets will have an extra hea...
Ipv4 addresses are stored in host order in this class.
Definition: ipv4-address.h:41
static Ipv4Address GetZero(void)
a class to represent an Ipv4 address mask
Definition: ipv4-address.h:256
static Ipv4Mask GetZero(void)
Describes an IPv6 address.
Definition: ipv6-address.h:50
static Ipv6Address GetZero()
Get the 0 (::) Ipv6Address.
an EUI-48 address
Definition: mac48-address.h:44
static Mac48Address Allocate(void)
Allocate a new Mac48Address.
Ptr< T > GetObject(void) const
Get a pointer to the requested aggregated Object.
Definition: object.h:470
virtual void SetFileDescriptor(Ptr< FdNetDevice > device) const
Sets a file descriptor on the FileDescriptorNetDevice.
Ptr< NetDevice > InstallPriv(Ptr< Node > node) const
This method creates an ns3::FdNetDevice attached to a virtual TAP network interface.
void SetTapMacAddress(Mac48Address mac)
Set the MAC address for the TAP device.
bool m_modePi
The TAP device flag IFF_NO_PI.
void SetTapIpv6Prefix(int prefix)
Set the IPv6 network mask for the TAP device.
Ipv6Address m_tapIp6
The IPv6 address for the TAP device.
void SetTapIpv4Mask(Ipv4Mask mask)
Set the IPv4 network mask for the TAP device.
Ipv4Mask m_tapMask4
The network mask IPv4 for the TAP device.
Ipv4Address m_tapIp4
The IPv4 address for the TAP device.
TapFdNetDeviceHelper()
Construct a TapFdNetDeviceHelper.
Mac48Address m_tapMac
The TAP device MAC address.
int m_tapPrefix6
The network prefix IPv6 for the TAP device.
void SetTapIpv4Address(Ipv4Address address)
Set the device IPv4 address.
void SetModePi(bool pi)
Set flag IFF_NO_PI on the device.
virtual int CreateFileDescriptor(void) const
Call out to a separate process running as suid root in order to create a TAP device and obtain the fi...
void SetTapIpv6Address(Ipv6Address address)
Set the device IPv6 address.
#define NS_ASSERT_MSG(condition, message)
At runtime, in debugging builds, if this condition is not true, the program prints the message to out...
Definition: assert.h:88
#define NS_FATAL_ERROR(msg)
Report a fatal error with a message and terminate.
Definition: fatal-error.h:165
#define NS_ABORT_MSG_IF(cond, msg)
Abnormal program termination if a condition is true, with a message.
Definition: abort.h:108
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:205
#define NS_LOG_DEBUG(msg)
Use NS_LOG to output a message of level LOG_DEBUG.
Definition: log.h:273
#define NS_LOG_LOGIC(msg)
Use NS_LOG to output a message of level LOG_LOGIC.
Definition: log.h:289
#define NS_LOG_FUNCTION(parameters)
If log level LOG_FUNCTION is enabled, this macro will output all input parameters separated by ",...
#define NS_LOG_INFO(msg)
Use NS_LOG to output a message of level LOG_INFO.
Definition: log.h:281
address
Definition: first.py:44
Every class exported by the ns3 library is enclosed in the ns3 namespace.
std::string BufferToString(uint8_t *buffer, uint32_t len)
Convert a byte buffer to a string containing a hex representation of the buffer.
mac
Definition: third.py:96
ns3::StringValue attribute value declarations.
#define TAP_MAGIC