A Discrete-Event Network Simulator
API
tdbet-ff-mac-scheduler.cc
Go to the documentation of this file.
1/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
2/*
3 * Copyright (c) 2011 Centre Tecnologic de Telecomunicacions de Catalunya (CTTC)
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation;
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Author: Marco Miozzo <marco.miozzo@cttc.es>
19 * Modification: Dizhi Zhou <dizhi.zhou@gmail.com> // modify codes related to downlink scheduler
20 */
21
22#include <ns3/log.h>
23#include <ns3/pointer.h>
24#include <ns3/math.h>
25
26#include <ns3/simulator.h>
27#include <ns3/lte-amc.h>
28#include <ns3/tdbet-ff-mac-scheduler.h>
29#include <ns3/lte-vendor-specific-parameters.h>
30#include <ns3/boolean.h>
31#include <set>
32#include <cfloat>
33
34namespace ns3 {
35
36NS_LOG_COMPONENT_DEFINE ("TdBetFfMacScheduler");
37
39static const int TdBetType0AllocationRbg[4] = {
40 10, // RGB size 1
41 26, // RGB size 2
42 63, // RGB size 3
43 110 // RGB size 4
44}; // see table 7.1.6.1-1 of 36.213
45
46
47NS_OBJECT_ENSURE_REGISTERED (TdBetFfMacScheduler);
48
49
50
52 : m_cschedSapUser (0),
53 m_schedSapUser (0),
54 m_timeWindow (99.0),
55 m_nextRntiUl (0)
56{
57 m_amc = CreateObject <LteAmc> ();
60}
61
63{
64 NS_LOG_FUNCTION (this);
65}
66
67void
69{
70 NS_LOG_FUNCTION (this);
74 m_dlInfoListBuffered.clear ();
79 delete m_schedSapProvider;
80}
81
84{
85 static TypeId tid = TypeId ("ns3::TdBetFfMacScheduler")
87 .SetGroupName("Lte")
88 .AddConstructor<TdBetFfMacScheduler> ()
89 .AddAttribute ("CqiTimerThreshold",
90 "The number of TTIs a CQI is valid (default 1000 - 1 sec.)",
91 UintegerValue (1000),
93 MakeUintegerChecker<uint32_t> ())
94 .AddAttribute ("HarqEnabled",
95 "Activate/Deactivate the HARQ [by default is active].",
96 BooleanValue (true),
99 .AddAttribute ("UlGrantMcs",
100 "The MCS of the UL grant, must be [0..15] (default 0)",
101 UintegerValue (0),
103 MakeUintegerChecker<uint8_t> ())
104 ;
105 return tid;
106}
107
108
109
110void
112{
113 m_cschedSapUser = s;
114}
115
116void
118{
119 m_schedSapUser = s;
120}
121
124{
125 return m_cschedSapProvider;
126}
127
130{
131 return m_schedSapProvider;
132}
133
134void
136{
138}
139
142{
143 return m_ffrSapUser;
144}
145
146void
148{
149 NS_LOG_FUNCTION (this);
150 // Read the subset of parameters used
151 m_cschedCellConfig = params;
154 cnf.m_result = SUCCESS;
156 return;
157}
158
159void
161{
162 NS_LOG_FUNCTION (this << " RNTI " << params.m_rnti << " txMode " << (uint16_t)params.m_transmissionMode);
163 std::map <uint16_t,uint8_t>::iterator it = m_uesTxMode.find (params.m_rnti);
164 if (it == m_uesTxMode.end ())
165 {
166 m_uesTxMode.insert (std::pair <uint16_t, double> (params.m_rnti, params.m_transmissionMode));
167 // generate HARQ buffers
168 m_dlHarqCurrentProcessId.insert (std::pair <uint16_t,uint8_t > (params.m_rnti, 0));
169 DlHarqProcessesStatus_t dlHarqPrcStatus;
170 dlHarqPrcStatus.resize (8,0);
171 m_dlHarqProcessesStatus.insert (std::pair <uint16_t, DlHarqProcessesStatus_t> (params.m_rnti, dlHarqPrcStatus));
172 DlHarqProcessesTimer_t dlHarqProcessesTimer;
173 dlHarqProcessesTimer.resize (8,0);
174 m_dlHarqProcessesTimer.insert (std::pair <uint16_t, DlHarqProcessesTimer_t> (params.m_rnti, dlHarqProcessesTimer));
176 dlHarqdci.resize (8);
177 m_dlHarqProcessesDciBuffer.insert (std::pair <uint16_t, DlHarqProcessesDciBuffer_t> (params.m_rnti, dlHarqdci));
178 DlHarqRlcPduListBuffer_t dlHarqRlcPdu;
179 dlHarqRlcPdu.resize (2);
180 dlHarqRlcPdu.at (0).resize (8);
181 dlHarqRlcPdu.at (1).resize (8);
182 m_dlHarqProcessesRlcPduListBuffer.insert (std::pair <uint16_t, DlHarqRlcPduListBuffer_t> (params.m_rnti, dlHarqRlcPdu));
183 m_ulHarqCurrentProcessId.insert (std::pair <uint16_t,uint8_t > (params.m_rnti, 0));
184 UlHarqProcessesStatus_t ulHarqPrcStatus;
185 ulHarqPrcStatus.resize (8,0);
186 m_ulHarqProcessesStatus.insert (std::pair <uint16_t, UlHarqProcessesStatus_t> (params.m_rnti, ulHarqPrcStatus));
188 ulHarqdci.resize (8);
189 m_ulHarqProcessesDciBuffer.insert (std::pair <uint16_t, UlHarqProcessesDciBuffer_t> (params.m_rnti, ulHarqdci));
190 }
191 else
192 {
193 (*it).second = params.m_transmissionMode;
194 }
195 return;
196}
197
198void
200{
201 NS_LOG_FUNCTION (this << " New LC, rnti: " << params.m_rnti);
202
203 std::map <uint16_t, tdbetsFlowPerf_t>::iterator it;
204 for (uint16_t i = 0; i < params.m_logicalChannelConfigList.size (); i++)
205 {
206 it = m_flowStatsDl.find (params.m_rnti);
207
208 if (it == m_flowStatsDl.end ())
209 {
210 tdbetsFlowPerf_t flowStatsDl;
211 flowStatsDl.flowStart = Simulator::Now ();
212 flowStatsDl.totalBytesTransmitted = 0;
213 flowStatsDl.lastTtiBytesTrasmitted = 0;
214 flowStatsDl.lastAveragedThroughput = 1;
215 m_flowStatsDl.insert (std::pair<uint16_t, tdbetsFlowPerf_t> (params.m_rnti, flowStatsDl));
216 tdbetsFlowPerf_t flowStatsUl;
217 flowStatsUl.flowStart = Simulator::Now ();
218 flowStatsUl.totalBytesTransmitted = 0;
219 flowStatsUl.lastTtiBytesTrasmitted = 0;
220 flowStatsUl.lastAveragedThroughput = 1;
221 m_flowStatsUl.insert (std::pair<uint16_t, tdbetsFlowPerf_t> (params.m_rnti, flowStatsUl));
222 }
223 }
224
225 return;
226}
227
228void
230{
231 NS_LOG_FUNCTION (this);
232 for (uint16_t i = 0; i < params.m_logicalChannelIdentity.size (); i++)
233 {
234 std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it = m_rlcBufferReq.begin ();
235 std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator temp;
236 while (it!=m_rlcBufferReq.end ())
237 {
238 if (((*it).first.m_rnti == params.m_rnti) && ((*it).first.m_lcId == params.m_logicalChannelIdentity.at (i)))
239 {
240 temp = it;
241 it++;
242 m_rlcBufferReq.erase (temp);
243 }
244 else
245 {
246 it++;
247 }
248 }
249 }
250 return;
251}
252
253void
255{
256 NS_LOG_FUNCTION (this);
257
258 m_uesTxMode.erase (params.m_rnti);
259 m_dlHarqCurrentProcessId.erase (params.m_rnti);
260 m_dlHarqProcessesStatus.erase (params.m_rnti);
261 m_dlHarqProcessesTimer.erase (params.m_rnti);
262 m_dlHarqProcessesDciBuffer.erase (params.m_rnti);
264 m_ulHarqCurrentProcessId.erase (params.m_rnti);
265 m_ulHarqProcessesStatus.erase (params.m_rnti);
266 m_ulHarqProcessesDciBuffer.erase (params.m_rnti);
267 m_flowStatsDl.erase (params.m_rnti);
268 m_flowStatsUl.erase (params.m_rnti);
269 m_ceBsrRxed.erase (params.m_rnti);
270 std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it = m_rlcBufferReq.begin ();
271 std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator temp;
272 while (it!=m_rlcBufferReq.end ())
273 {
274 if ((*it).first.m_rnti == params.m_rnti)
275 {
276 temp = it;
277 it++;
278 m_rlcBufferReq.erase (temp);
279 }
280 else
281 {
282 it++;
283 }
284 }
285 if (m_nextRntiUl == params.m_rnti)
286 {
287 m_nextRntiUl = 0;
288 }
289
290 return;
291}
292
293
294void
296{
297 NS_LOG_FUNCTION (this << params.m_rnti << (uint32_t) params.m_logicalChannelIdentity);
298 // API generated by RLC for updating RLC parameters on a LC (tx and retx queues)
299
300 std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
301
302 LteFlowId_t flow (params.m_rnti, params.m_logicalChannelIdentity);
303
304 it = m_rlcBufferReq.find (flow);
305
306 if (it == m_rlcBufferReq.end ())
307 {
308 m_rlcBufferReq.insert (std::pair <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters> (flow, params));
309 }
310 else
311 {
312 (*it).second = params;
313 }
314
315 return;
316}
317
318void
320{
321 NS_LOG_FUNCTION (this);
322 NS_FATAL_ERROR ("method not implemented");
323 return;
324}
325
326void
328{
329 NS_LOG_FUNCTION (this);
330 NS_FATAL_ERROR ("method not implemented");
331 return;
332}
333
334int
336{
337 for (int i = 0; i < 4; i++)
338 {
339 if (dlbandwidth < TdBetType0AllocationRbg[i])
340 {
341 return (i + 1);
342 }
343 }
344
345 return (-1);
346}
347
348
349unsigned int
351{
352 std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
353 unsigned int lcActive = 0;
354 for (it = m_rlcBufferReq.begin (); it != m_rlcBufferReq.end (); it++)
355 {
356 if (((*it).first.m_rnti == rnti) && (((*it).second.m_rlcTransmissionQueueSize > 0)
357 || ((*it).second.m_rlcRetransmissionQueueSize > 0)
358 || ((*it).second.m_rlcStatusPduSize > 0) ))
359 {
360 lcActive++;
361 }
362 if ((*it).first.m_rnti > rnti)
363 {
364 break;
365 }
366 }
367 return (lcActive);
368
369}
370
371
372uint8_t
374{
375 NS_LOG_FUNCTION (this << rnti);
376
377 std::map <uint16_t, uint8_t>::iterator it = m_dlHarqCurrentProcessId.find (rnti);
378 if (it == m_dlHarqCurrentProcessId.end ())
379 {
380 NS_FATAL_ERROR ("No Process Id found for this RNTI " << rnti);
381 }
382 std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find (rnti);
383 if (itStat == m_dlHarqProcessesStatus.end ())
384 {
385 NS_FATAL_ERROR ("No Process Id Statusfound for this RNTI " << rnti);
386 }
387 uint8_t i = (*it).second;
388 do
389 {
390 i = (i + 1) % HARQ_PROC_NUM;
391 }
392 while ( ((*itStat).second.at (i) != 0)&&(i != (*it).second));
393 if ((*itStat).second.at (i) == 0)
394 {
395 return (true);
396 }
397 else
398 {
399 return (false); // return a not valid harq proc id
400 }
401}
402
403
404
405uint8_t
407{
408 NS_LOG_FUNCTION (this << rnti);
409
410 if (m_harqOn == false)
411 {
412 return (0);
413 }
414
415
416 std::map <uint16_t, uint8_t>::iterator it = m_dlHarqCurrentProcessId.find (rnti);
417 if (it == m_dlHarqCurrentProcessId.end ())
418 {
419 NS_FATAL_ERROR ("No Process Id found for this RNTI " << rnti);
420 }
421 std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find (rnti);
422 if (itStat == m_dlHarqProcessesStatus.end ())
423 {
424 NS_FATAL_ERROR ("No Process Id Statusfound for this RNTI " << rnti);
425 }
426 uint8_t i = (*it).second;
427 do
428 {
429 i = (i + 1) % HARQ_PROC_NUM;
430 }
431 while ( ((*itStat).second.at (i) != 0)&&(i != (*it).second));
432 if ((*itStat).second.at (i) == 0)
433 {
434 (*it).second = i;
435 (*itStat).second.at (i) = 1;
436 }
437 else
438 {
439 NS_FATAL_ERROR ("No HARQ process available for RNTI " << rnti << " check before update with HarqProcessAvailability");
440 }
441
442 return ((*it).second);
443}
444
445
446void
448{
449 NS_LOG_FUNCTION (this);
450
451 std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itTimers;
452 for (itTimers = m_dlHarqProcessesTimer.begin (); itTimers != m_dlHarqProcessesTimer.end (); itTimers ++)
453 {
454 for (uint16_t i = 0; i < HARQ_PROC_NUM; i++)
455 {
456 if ((*itTimers).second.at (i) == HARQ_DL_TIMEOUT)
457 {
458 // reset HARQ process
459
460 NS_LOG_DEBUG (this << " Reset HARQ proc " << i << " for RNTI " << (*itTimers).first);
461 std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find ((*itTimers).first);
462 if (itStat == m_dlHarqProcessesStatus.end ())
463 {
464 NS_FATAL_ERROR ("No Process Id Status found for this RNTI " << (*itTimers).first);
465 }
466 (*itStat).second.at (i) = 0;
467 (*itTimers).second.at (i) = 0;
468 }
469 else
470 {
471 (*itTimers).second.at (i)++;
472 }
473 }
474 }
475
476}
477
478
479void
481{
482 NS_LOG_FUNCTION (this << " Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf));
483 // API generated by RLC for triggering the scheduling of a DL subframe
484
485
486 // evaluate the relative channel quality indicator for each UE per each RBG
487 // (since we are using allocation type 0 the small unit of allocation is RBG)
488 // Resource allocation type 0 (see sec 7.1.6.1 of 36.213)
489
491
493 int rbgNum = m_cschedCellConfig.m_dlBandwidth / rbgSize;
494 std::map <uint16_t, std::vector <uint16_t> > allocationMap; // RBs map per RNTI
495 std::vector <bool> rbgMap; // global RBGs map
496 uint16_t rbgAllocatedNum = 0;
497 std::set <uint16_t> rntiAllocated;
498 rbgMap.resize (m_cschedCellConfig.m_dlBandwidth / rbgSize, false);
500
501 // update UL HARQ proc id
502 std::map <uint16_t, uint8_t>::iterator itProcId;
503 for (itProcId = m_ulHarqCurrentProcessId.begin (); itProcId != m_ulHarqCurrentProcessId.end (); itProcId++)
504 {
505 (*itProcId).second = ((*itProcId).second + 1) % HARQ_PROC_NUM;
506 }
507
508 // RACH Allocation
510 uint16_t rbStart = 0;
511 std::vector <struct RachListElement_s>::iterator itRach;
512 for (itRach = m_rachList.begin (); itRach != m_rachList.end (); itRach++)
513 {
514 NS_ASSERT_MSG (m_amc->GetUlTbSizeFromMcs (m_ulGrantMcs, m_cschedCellConfig.m_ulBandwidth) > (*itRach).m_estimatedSize, " Default UL Grant MCS does not allow to send RACH messages");
516 newRar.m_rnti = (*itRach).m_rnti;
517 // DL-RACH Allocation
518 // Ideal: no needs of configuring m_dci
519 // UL-RACH Allocation
520 newRar.m_grant.m_rnti = newRar.m_rnti;
521 newRar.m_grant.m_mcs = m_ulGrantMcs;
522 uint16_t rbLen = 1;
523 uint16_t tbSizeBits = 0;
524 // find lowest TB size that fits UL grant estimated size
525 while ((tbSizeBits < (*itRach).m_estimatedSize) && (rbStart + rbLen < m_cschedCellConfig.m_ulBandwidth))
526 {
527 rbLen++;
528 tbSizeBits = m_amc->GetUlTbSizeFromMcs (m_ulGrantMcs, rbLen);
529 }
530 if (tbSizeBits < (*itRach).m_estimatedSize)
531 {
532 // no more allocation space: finish allocation
533 break;
534 }
535 newRar.m_grant.m_rbStart = rbStart;
536 newRar.m_grant.m_rbLen = rbLen;
537 newRar.m_grant.m_tbSize = tbSizeBits / 8;
538 newRar.m_grant.m_hopping = false;
539 newRar.m_grant.m_tpc = 0;
540 newRar.m_grant.m_cqiRequest = false;
541 newRar.m_grant.m_ulDelay = false;
542 NS_LOG_INFO (this << " UL grant allocated to RNTI " << (*itRach).m_rnti << " rbStart " << rbStart << " rbLen " << rbLen << " MCS " << m_ulGrantMcs << " tbSize " << newRar.m_grant.m_tbSize);
543 for (uint16_t i = rbStart; i < rbStart + rbLen; i++)
544 {
545 m_rachAllocationMap.at (i) = (*itRach).m_rnti;
546 }
547
548 if (m_harqOn == true)
549 {
550 // generate UL-DCI for HARQ retransmissions
551 UlDciListElement_s uldci;
552 uldci.m_rnti = newRar.m_rnti;
553 uldci.m_rbLen = rbLen;
554 uldci.m_rbStart = rbStart;
555 uldci.m_mcs = m_ulGrantMcs;
556 uldci.m_tbSize = tbSizeBits / 8;
557 uldci.m_ndi = 1;
558 uldci.m_cceIndex = 0;
559 uldci.m_aggrLevel = 1;
560 uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
561 uldci.m_hopping = false;
562 uldci.m_n2Dmrs = 0;
563 uldci.m_tpc = 0; // no power control
564 uldci.m_cqiRequest = false; // only period CQI at this stage
565 uldci.m_ulIndex = 0; // TDD parameter
566 uldci.m_dai = 1; // TDD parameter
567 uldci.m_freqHopping = 0;
568 uldci.m_pdcchPowerOffset = 0; // not used
569
570 uint8_t harqId = 0;
571 std::map <uint16_t, uint8_t>::iterator itProcId;
572 itProcId = m_ulHarqCurrentProcessId.find (uldci.m_rnti);
573 if (itProcId == m_ulHarqCurrentProcessId.end ())
574 {
575 NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << uldci.m_rnti);
576 }
577 harqId = (*itProcId).second;
578 std::map <uint16_t, UlHarqProcessesDciBuffer_t>::iterator itDci = m_ulHarqProcessesDciBuffer.find (uldci.m_rnti);
579 if (itDci == m_ulHarqProcessesDciBuffer.end ())
580 {
581 NS_FATAL_ERROR ("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI " << uldci.m_rnti);
582 }
583 (*itDci).second.at (harqId) = uldci;
584 }
585
586 rbStart = rbStart + rbLen;
587 ret.m_buildRarList.push_back (newRar);
588 }
589 m_rachList.clear ();
590
591
592 // Process DL HARQ feedback
594 // retrieve past HARQ retx buffered
595 if (m_dlInfoListBuffered.size () > 0)
596 {
597 if (params.m_dlInfoList.size () > 0)
598 {
599 NS_LOG_INFO (this << " Received DL-HARQ feedback");
600 m_dlInfoListBuffered.insert (m_dlInfoListBuffered.end (), params.m_dlInfoList.begin (), params.m_dlInfoList.end ());
601 }
602 }
603 else
604 {
605 if (params.m_dlInfoList.size () > 0)
606 {
608 }
609 }
610 if (m_harqOn == false)
611 {
612 // Ignore HARQ feedback
613 m_dlInfoListBuffered.clear ();
614 }
615 std::vector <struct DlInfoListElement_s> dlInfoListUntxed;
616 for (uint16_t i = 0; i < m_dlInfoListBuffered.size (); i++)
617 {
618 std::set <uint16_t>::iterator itRnti = rntiAllocated.find (m_dlInfoListBuffered.at (i).m_rnti);
619 if (itRnti != rntiAllocated.end ())
620 {
621 // RNTI already allocated for retx
622 continue;
623 }
624 uint8_t nLayers = m_dlInfoListBuffered.at (i).m_harqStatus.size ();
625 std::vector <bool> retx;
626 NS_LOG_INFO (this << " Processing DLHARQ feedback");
627 if (nLayers == 1)
628 {
629 retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (0) == DlInfoListElement_s::NACK);
630 retx.push_back (false);
631 }
632 else
633 {
634 retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (0) == DlInfoListElement_s::NACK);
635 retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (1) == DlInfoListElement_s::NACK);
636 }
637 if (retx.at (0) || retx.at (1))
638 {
639 // retrieve HARQ process information
640 uint16_t rnti = m_dlInfoListBuffered.at (i).m_rnti;
641 uint8_t harqId = m_dlInfoListBuffered.at (i).m_harqProcessId;
642 NS_LOG_INFO (this << " HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId);
643 std::map <uint16_t, DlHarqProcessesDciBuffer_t>::iterator itHarq = m_dlHarqProcessesDciBuffer.find (rnti);
644 if (itHarq == m_dlHarqProcessesDciBuffer.end ())
645 {
646 NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << rnti);
647 }
648
649 DlDciListElement_s dci = (*itHarq).second.at (harqId);
650 int rv = 0;
651 if (dci.m_rv.size () == 1)
652 {
653 rv = dci.m_rv.at (0);
654 }
655 else
656 {
657 rv = (dci.m_rv.at (0) > dci.m_rv.at (1) ? dci.m_rv.at (0) : dci.m_rv.at (1));
658 }
659
660 if (rv == 3)
661 {
662 // maximum number of retx reached -> drop process
663 NS_LOG_INFO ("Maximum number of retransmissions reached -> drop process");
664 std::map <uint16_t, DlHarqProcessesStatus_t>::iterator it = m_dlHarqProcessesStatus.find (rnti);
665 if (it == m_dlHarqProcessesStatus.end ())
666 {
667 NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << m_dlInfoListBuffered.at (i).m_rnti);
668 }
669 (*it).second.at (harqId) = 0;
670 std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (rnti);
671 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
672 {
673 NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << m_dlInfoListBuffered.at (i).m_rnti);
674 }
675 for (uint16_t k = 0; k < (*itRlcPdu).second.size (); k++)
676 {
677 (*itRlcPdu).second.at (k).at (harqId).clear ();
678 }
679 continue;
680 }
681 // check the feasibility of retransmitting on the same RBGs
682 // translate the DCI to Spectrum framework
683 std::vector <int> dciRbg;
684 uint32_t mask = 0x1;
685 NS_LOG_INFO ("Original RBGs " << dci.m_rbBitmap << " rnti " << dci.m_rnti);
686 for (int j = 0; j < 32; j++)
687 {
688 if (((dci.m_rbBitmap & mask) >> j) == 1)
689 {
690 dciRbg.push_back (j);
691 NS_LOG_INFO ("\t" << j);
692 }
693 mask = (mask << 1);
694 }
695 bool free = true;
696 for (uint8_t j = 0; j < dciRbg.size (); j++)
697 {
698 if (rbgMap.at (dciRbg.at (j)) == true)
699 {
700 free = false;
701 break;
702 }
703 }
704 if (free)
705 {
706 // use the same RBGs for the retx
707 // reserve RBGs
708 for (uint8_t j = 0; j < dciRbg.size (); j++)
709 {
710 rbgMap.at (dciRbg.at (j)) = true;
711 NS_LOG_INFO ("RBG " << dciRbg.at (j) << " assigned");
712 rbgAllocatedNum++;
713 }
714
715 NS_LOG_INFO (this << " Send retx in the same RBGs");
716 }
717 else
718 {
719 // find RBGs for sending HARQ retx
720 uint8_t j = 0;
721 uint8_t rbgId = (dciRbg.at (dciRbg.size () - 1) + 1) % rbgNum;
722 uint8_t startRbg = dciRbg.at (dciRbg.size () - 1);
723 std::vector <bool> rbgMapCopy = rbgMap;
724 while ((j < dciRbg.size ())&&(startRbg != rbgId))
725 {
726 if (rbgMapCopy.at (rbgId) == false)
727 {
728 rbgMapCopy.at (rbgId) = true;
729 dciRbg.at (j) = rbgId;
730 j++;
731 }
732 rbgId = (rbgId + 1) % rbgNum;
733 }
734 if (j == dciRbg.size ())
735 {
736 // find new RBGs -> update DCI map
737 uint32_t rbgMask = 0;
738 for (uint16_t k = 0; k < dciRbg.size (); k++)
739 {
740 rbgMask = rbgMask + (0x1 << dciRbg.at (k));
741 rbgAllocatedNum++;
742 }
743 dci.m_rbBitmap = rbgMask;
744 rbgMap = rbgMapCopy;
745 NS_LOG_INFO (this << " Move retx in RBGs " << dciRbg.size ());
746 }
747 else
748 {
749 // HARQ retx cannot be performed on this TTI -> store it
750 dlInfoListUntxed.push_back (m_dlInfoListBuffered.at (i));
751 NS_LOG_INFO (this << " No resource for this retx -> buffer it");
752 }
753 }
754 // retrieve RLC PDU list for retx TBsize and update DCI
756 std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (rnti);
757 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
758 {
759 NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << rnti);
760 }
761 for (uint8_t j = 0; j < nLayers; j++)
762 {
763 if (retx.at (j))
764 {
765 if (j >= dci.m_ndi.size ())
766 {
767 // for avoiding errors in MIMO transient phases
768 dci.m_ndi.push_back (0);
769 dci.m_rv.push_back (0);
770 dci.m_mcs.push_back (0);
771 dci.m_tbsSize.push_back (0);
772 NS_LOG_INFO (this << " layer " << (uint16_t)j << " no txed (MIMO transition)");
773 }
774 else
775 {
776 dci.m_ndi.at (j) = 0;
777 dci.m_rv.at (j)++;
778 (*itHarq).second.at (harqId).m_rv.at (j)++;
779 NS_LOG_INFO (this << " layer " << (uint16_t)j << " RV " << (uint16_t)dci.m_rv.at (j));
780 }
781 }
782 else
783 {
784 // empty TB of layer j
785 dci.m_ndi.at (j) = 0;
786 dci.m_rv.at (j) = 0;
787 dci.m_mcs.at (j) = 0;
788 dci.m_tbsSize.at (j) = 0;
789 NS_LOG_INFO (this << " layer " << (uint16_t)j << " no retx");
790 }
791 }
792 for (uint16_t k = 0; k < (*itRlcPdu).second.at (0).at (dci.m_harqProcess).size (); k++)
793 {
794 std::vector <struct RlcPduListElement_s> rlcPduListPerLc;
795 for (uint8_t j = 0; j < nLayers; j++)
796 {
797 if (retx.at (j))
798 {
799 if (j < dci.m_ndi.size ())
800 {
801 NS_LOG_INFO (" layer " << (uint16_t)j << " tb size " << dci.m_tbsSize.at (j));
802 rlcPduListPerLc.push_back ((*itRlcPdu).second.at (j).at (dci.m_harqProcess).at (k));
803 }
804 }
805 else
806 { // if no retx needed on layer j, push an RlcPduListElement_s object with m_size=0 to keep the size of rlcPduListPerLc vector = 2 in case of MIMO
807 NS_LOG_INFO (" layer " << (uint16_t)j << " tb size "<<dci.m_tbsSize.at (j));
808 RlcPduListElement_s emptyElement;
809 emptyElement.m_logicalChannelIdentity = (*itRlcPdu).second.at (j).at (dci.m_harqProcess).at (k).m_logicalChannelIdentity;
810 emptyElement.m_size = 0;
811 rlcPduListPerLc.push_back (emptyElement);
812 }
813 }
814
815 if (rlcPduListPerLc.size () > 0)
816 {
817 newEl.m_rlcPduList.push_back (rlcPduListPerLc);
818 }
819 }
820 newEl.m_rnti = rnti;
821 newEl.m_dci = dci;
822 (*itHarq).second.at (harqId).m_rv = dci.m_rv;
823 // refresh timer
824 std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itHarqTimer = m_dlHarqProcessesTimer.find (rnti);
825 if (itHarqTimer== m_dlHarqProcessesTimer.end ())
826 {
827 NS_FATAL_ERROR ("Unable to find HARQ timer for RNTI " << (uint16_t)rnti);
828 }
829 (*itHarqTimer).second.at (harqId) = 0;
830 ret.m_buildDataList.push_back (newEl);
831 rntiAllocated.insert (rnti);
832 }
833 else
834 {
835 // update HARQ process status
836 NS_LOG_INFO (this << " HARQ received ACK for UE " << m_dlInfoListBuffered.at (i).m_rnti);
837 std::map <uint16_t, DlHarqProcessesStatus_t>::iterator it = m_dlHarqProcessesStatus.find (m_dlInfoListBuffered.at (i).m_rnti);
838 if (it == m_dlHarqProcessesStatus.end ())
839 {
840 NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << m_dlInfoListBuffered.at (i).m_rnti);
841 }
842 (*it).second.at (m_dlInfoListBuffered.at (i).m_harqProcessId) = 0;
843 std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (m_dlInfoListBuffered.at (i).m_rnti);
844 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
845 {
846 NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << m_dlInfoListBuffered.at (i).m_rnti);
847 }
848 for (uint16_t k = 0; k < (*itRlcPdu).second.size (); k++)
849 {
850 (*itRlcPdu).second.at (k).at (m_dlInfoListBuffered.at (i).m_harqProcessId).clear ();
851 }
852 }
853 }
854 m_dlInfoListBuffered.clear ();
855 m_dlInfoListBuffered = dlInfoListUntxed;
856
857 if (rbgAllocatedNum == rbgNum)
858 {
859 // all the RBGs are already allocated -> exit
860 if ((ret.m_buildDataList.size () > 0) || (ret.m_buildRarList.size () > 0))
861 {
863 }
864 return;
865 }
866
867
868 std::map <uint16_t, tdbetsFlowPerf_t>::iterator it;
869 std::map <uint16_t, tdbetsFlowPerf_t>::iterator itMax = m_flowStatsDl.end ();
870 double metricMax = 0.0;
871 for (it = m_flowStatsDl.begin (); it != m_flowStatsDl.end (); it++)
872 {
873
874 // check first what are channel conditions for this UE, if CQI!=0
875 std::map <uint16_t,uint8_t>::iterator itCqi;
876 itCqi = m_p10CqiRxed.find ((*it).first);
877 std::map <uint16_t,uint8_t>::iterator itTxMode;
878 itTxMode = m_uesTxMode.find ((*it).first);
879 if (itTxMode == m_uesTxMode.end ())
880 {
881 NS_FATAL_ERROR ("No Transmission Mode info on user " << (*it).first);
882 }
883 int nLayer = TransmissionModesLayers::TxMode2LayerNum ((*itTxMode).second);
884
885 uint8_t cqiSum = 0;
886 for (uint8_t j = 0; j < nLayer; j++)
887 {
888 if (itCqi == m_p10CqiRxed.end ())
889 {
890 cqiSum += 1; // no info on this user -> lowest MCS
891 }
892 else
893 {
894 cqiSum = (*itCqi).second;
895 }
896 }
897 if (cqiSum == 0)
898 {
899 NS_LOG_INFO ("Skip this flow, CQI==0, rnti:"<<(*it).first);
900 continue;
901 }
902
903 std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it).first);
904 if ((itRnti != rntiAllocated.end ())||(!HarqProcessAvailability ((*it).first)))
905 {
906 // UE already allocated for HARQ or without HARQ process available -> drop it
907 if (itRnti != rntiAllocated.end ())
908 {
909 NS_LOG_DEBUG (this << " RNTI discared for HARQ tx" << (uint16_t)(*it).first);
910 }
911 if (!HarqProcessAvailability ((*it).first))
912 {
913 NS_LOG_DEBUG (this << " RNTI discared for HARQ id" << (uint16_t)(*it).first);
914 }
915 continue;
916 }
917
918 double metric = 1 / (*it).second.lastAveragedThroughput;
919
920 if (metric > metricMax)
921 {
922 metricMax = metric;
923 itMax = it;
924 }
925 } // end for m_flowStatsDl
926
927
928 if (itMax == m_flowStatsDl.end ())
929 {
930 // no UE available for downlink
931 return;
932 }
933 else
934 {
935 // assign all RBGs to this UE
936 std::vector <uint16_t> tempMap;
937 for (int i = 0; i < rbgNum; i++)
938 {
939 tempMap.push_back (i);
940 }
941 allocationMap.insert (std::pair <uint16_t, std::vector <uint16_t> > ((*itMax).first, tempMap));
942 }
943
944
945 // reset TTI stats of users
946 std::map <uint16_t, tdbetsFlowPerf_t>::iterator itStats;
947 for (itStats = m_flowStatsDl.begin (); itStats != m_flowStatsDl.end (); itStats++)
948 {
949 (*itStats).second.lastTtiBytesTrasmitted = 0;
950 }
951
952 // generate the transmission opportunities by grouping the RBGs of the same RNTI and
953 // creating the correspondent DCIs
954 std::map <uint16_t, std::vector <uint16_t> >::iterator itMap = allocationMap.begin ();
955 while (itMap != allocationMap.end ())
956 {
957 // create new BuildDataListElement_s for this LC
959 newEl.m_rnti = (*itMap).first;
960 // create the DlDciListElement_s
961 DlDciListElement_s newDci;
962 newDci.m_rnti = (*itMap).first;
963 newDci.m_harqProcess = UpdateHarqProcessId ((*itMap).first);
964
965 uint16_t lcActives = LcActivePerFlow ((*itMap).first);
966 NS_LOG_INFO (this << "Allocate user " << newEl.m_rnti << " rbg " << lcActives);
967 if (lcActives == 0)
968 {
969 // Set to max value, to avoid divide by 0 below
970 lcActives = (uint16_t)65535; // UINT16_MAX;
971 }
972 uint16_t RgbPerRnti = (*itMap).second.size ();
973 std::map <uint16_t,uint8_t>::iterator itCqi;
974 itCqi = m_p10CqiRxed.find ((*itMap).first);
975 std::map <uint16_t,uint8_t>::iterator itTxMode;
976 itTxMode = m_uesTxMode.find ((*itMap).first);
977 if (itTxMode == m_uesTxMode.end ())
978 {
979 NS_FATAL_ERROR ("No Transmission Mode info on user " << (*itMap).first);
980 }
981 int nLayer = TransmissionModesLayers::TxMode2LayerNum ((*itTxMode).second);
982
983 uint32_t bytesTxed = 0;
984 for (uint8_t j = 0; j < nLayer; j++)
985 {
986 if (itCqi == m_p10CqiRxed.end ())
987 {
988 newDci.m_mcs.push_back (0); // no info on this user -> lowest MCS
989 }
990 else
991 {
992 newDci.m_mcs.push_back ( m_amc->GetMcsFromCqi ((*itCqi).second) );
993 }
994
995 int tbSize = (m_amc->GetDlTbSizeFromMcs (newDci.m_mcs.at (j), RgbPerRnti * rbgSize) / 8); // (size of TB in bytes according to table 7.1.7.2.1-1 of 36.213)
996 newDci.m_tbsSize.push_back (tbSize);
997 bytesTxed += tbSize;
998 }
999
1000 newDci.m_resAlloc = 0; // only allocation type 0 at this stage
1001 newDci.m_rbBitmap = 0; // TBD (32 bit bitmap see 7.1.6 of 36.213)
1002 uint32_t rbgMask = 0;
1003 for (uint16_t k = 0; k < (*itMap).second.size (); k++)
1004 {
1005 rbgMask = rbgMask + (0x1 << (*itMap).second.at (k));
1006 NS_LOG_INFO (this << " Allocated RBG " << (*itMap).second.at (k));
1007 }
1008 newDci.m_rbBitmap = rbgMask; // (32 bit bitmap see 7.1.6 of 36.213)
1009
1010 // create the rlc PDUs -> equally divide resources among actives LCs
1011 std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator itBufReq;
1012 for (itBufReq = m_rlcBufferReq.begin (); itBufReq != m_rlcBufferReq.end (); itBufReq++)
1013 {
1014 if (((*itBufReq).first.m_rnti == (*itMap).first)
1015 && (((*itBufReq).second.m_rlcTransmissionQueueSize > 0)
1016 || ((*itBufReq).second.m_rlcRetransmissionQueueSize > 0)
1017 || ((*itBufReq).second.m_rlcStatusPduSize > 0) ))
1018 {
1019 std::vector <struct RlcPduListElement_s> newRlcPduLe;
1020 for (uint8_t j = 0; j < nLayer; j++)
1021 {
1022 RlcPduListElement_s newRlcEl;
1023 newRlcEl.m_logicalChannelIdentity = (*itBufReq).first.m_lcId;
1024 newRlcEl.m_size = newDci.m_tbsSize.at (j) / lcActives;
1025 NS_LOG_INFO (this << " LCID " << (uint32_t) newRlcEl.m_logicalChannelIdentity << " size " << newRlcEl.m_size << " layer " << (uint16_t)j);
1026 newRlcPduLe.push_back (newRlcEl);
1027 UpdateDlRlcBufferInfo (newDci.m_rnti, newRlcEl.m_logicalChannelIdentity, newRlcEl.m_size);
1028 if (m_harqOn == true)
1029 {
1030 // store RLC PDU list for HARQ
1031 std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find ((*itMap).first);
1032 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
1033 {
1034 NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << (*itMap).first);
1035 }
1036 (*itRlcPdu).second.at (j).at (newDci.m_harqProcess).push_back (newRlcEl);
1037 }
1038 }
1039 newEl.m_rlcPduList.push_back (newRlcPduLe);
1040 }
1041 if ((*itBufReq).first.m_rnti > (*itMap).first)
1042 {
1043 break;
1044 }
1045 }
1046 for (uint8_t j = 0; j < nLayer; j++)
1047 {
1048 newDci.m_ndi.push_back (1);
1049 newDci.m_rv.push_back (0);
1050 }
1051
1052 newDci.m_tpc = 1; //1 is mapped to 0 in Accumulated Mode and to -1 in Absolute Mode
1053
1054 newEl.m_dci = newDci;
1055
1056 if (m_harqOn == true)
1057 {
1058 // store DCI for HARQ
1059 std::map <uint16_t, DlHarqProcessesDciBuffer_t>::iterator itDci = m_dlHarqProcessesDciBuffer.find (newEl.m_rnti);
1060 if (itDci == m_dlHarqProcessesDciBuffer.end ())
1061 {
1062 NS_FATAL_ERROR ("Unable to find RNTI entry in DCI HARQ buffer for RNTI " << newEl.m_rnti);
1063 }
1064 (*itDci).second.at (newDci.m_harqProcess) = newDci;
1065 // refresh timer
1066 std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itHarqTimer = m_dlHarqProcessesTimer.find (newEl.m_rnti);
1067 if (itHarqTimer== m_dlHarqProcessesTimer.end ())
1068 {
1069 NS_FATAL_ERROR ("Unable to find HARQ timer for RNTI " << (uint16_t)newEl.m_rnti);
1070 }
1071 (*itHarqTimer).second.at (newDci.m_harqProcess) = 0;
1072 }
1073
1074 // ...more parameters -> ignored in this version
1075
1076 ret.m_buildDataList.push_back (newEl);
1077 // update UE stats
1078 std::map <uint16_t, tdbetsFlowPerf_t>::iterator it;
1079 it = m_flowStatsDl.find ((*itMap).first);
1080 if (it != m_flowStatsDl.end ())
1081 {
1082 (*it).second.lastTtiBytesTrasmitted = bytesTxed;
1083 NS_LOG_INFO (this << " UE total bytes txed " << (*it).second.lastTtiBytesTrasmitted);
1084
1085
1086 }
1087 else
1088 {
1089 NS_FATAL_ERROR (this << " No Stats for this allocated UE");
1090 }
1091
1092 itMap++;
1093 } // end while allocation
1094 ret.m_nrOfPdcchOfdmSymbols = 1;
1095
1096
1097 // update UEs stats
1098 NS_LOG_INFO (this << " Update UEs statistics");
1099 for (itStats = m_flowStatsDl.begin (); itStats != m_flowStatsDl.end (); itStats++)
1100 {
1101 (*itStats).second.totalBytesTransmitted += (*itStats).second.lastTtiBytesTrasmitted;
1102 // update average throughput (see eq. 12.3 of Sec 12.3.1.2 of LTE – The UMTS Long Term Evolution, Ed Wiley)
1103 (*itStats).second.lastAveragedThroughput = ((1.0 - (1.0 / m_timeWindow)) * (*itStats).second.lastAveragedThroughput) + ((1.0 / m_timeWindow) * (double)((*itStats).second.lastTtiBytesTrasmitted / 0.001));
1104 NS_LOG_INFO (this << " UE total bytes " << (*itStats).second.totalBytesTransmitted);
1105 NS_LOG_INFO (this << " UE average throughput " << (*itStats).second.lastAveragedThroughput);
1106 (*itStats).second.lastTtiBytesTrasmitted = 0;
1107 }
1108
1110
1111
1112 return;
1113}
1114
1115void
1117{
1118 NS_LOG_FUNCTION (this);
1119
1120 m_rachList = params.m_rachList;
1121
1122 return;
1123}
1124
1125void
1127{
1128 NS_LOG_FUNCTION (this);
1129
1130 for (unsigned int i = 0; i < params.m_cqiList.size (); i++)
1131 {
1132 if ( params.m_cqiList.at (i).m_cqiType == CqiListElement_s::P10 )
1133 {
1134 NS_LOG_LOGIC ("wideband CQI " << (uint32_t) params.m_cqiList.at (i).m_wbCqi.at (0) << " reported");
1135 std::map <uint16_t,uint8_t>::iterator it;
1136 uint16_t rnti = params.m_cqiList.at (i).m_rnti;
1137 it = m_p10CqiRxed.find (rnti);
1138 if (it == m_p10CqiRxed.end ())
1139 {
1140 // create the new entry
1141 m_p10CqiRxed.insert ( std::pair<uint16_t, uint8_t > (rnti, params.m_cqiList.at (i).m_wbCqi.at (0)) ); // only codeword 0 at this stage (SISO)
1142 // generate correspondent timer
1143 m_p10CqiTimers.insert ( std::pair<uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1144 }
1145 else
1146 {
1147 // update the CQI value and refresh correspondent timer
1148 (*it).second = params.m_cqiList.at (i).m_wbCqi.at (0);
1149 // update correspondent timer
1150 std::map <uint16_t,uint32_t>::iterator itTimers;
1151 itTimers = m_p10CqiTimers.find (rnti);
1152 (*itTimers).second = m_cqiTimersThreshold;
1153 }
1154 }
1155 else if ( params.m_cqiList.at (i).m_cqiType == CqiListElement_s::A30 )
1156 {
1157 // subband CQI reporting high layer configured
1158 std::map <uint16_t,SbMeasResult_s>::iterator it;
1159 uint16_t rnti = params.m_cqiList.at (i).m_rnti;
1160 it = m_a30CqiRxed.find (rnti);
1161 if (it == m_a30CqiRxed.end ())
1162 {
1163 // create the new entry
1164 m_a30CqiRxed.insert ( std::pair<uint16_t, SbMeasResult_s > (rnti, params.m_cqiList.at (i).m_sbMeasResult) );
1165 m_a30CqiTimers.insert ( std::pair<uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1166 }
1167 else
1168 {
1169 // update the CQI value and refresh correspondent timer
1170 (*it).second = params.m_cqiList.at (i).m_sbMeasResult;
1171 std::map <uint16_t,uint32_t>::iterator itTimers;
1172 itTimers = m_a30CqiTimers.find (rnti);
1173 (*itTimers).second = m_cqiTimersThreshold;
1174 }
1175 }
1176 else
1177 {
1178 NS_LOG_ERROR (this << " CQI type unknown");
1179 }
1180 }
1181
1182 return;
1183}
1184
1185
1186double
1187TdBetFfMacScheduler::EstimateUlSinr (uint16_t rnti, uint16_t rb)
1188{
1189 std::map <uint16_t, std::vector <double> >::iterator itCqi = m_ueCqi.find (rnti);
1190 if (itCqi == m_ueCqi.end ())
1191 {
1192 // no cqi info about this UE
1193 return (NO_SINR);
1194
1195 }
1196 else
1197 {
1198 // take the average SINR value among the available
1199 double sinrSum = 0;
1200 unsigned int sinrNum = 0;
1201 for (uint32_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1202 {
1203 double sinr = (*itCqi).second.at (i);
1204 if (sinr != NO_SINR)
1205 {
1206 sinrSum += sinr;
1207 sinrNum++;
1208 }
1209 }
1210 double estimatedSinr = (sinrNum > 0) ? (sinrSum / sinrNum) : DBL_MAX;
1211 // store the value
1212 (*itCqi).second.at (rb) = estimatedSinr;
1213 return (estimatedSinr);
1214 }
1215}
1216
1217void
1219{
1220 NS_LOG_FUNCTION (this << " UL - Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf) << " size " << params.m_ulInfoList.size ());
1221
1223
1224 // Generate RBs map
1226 std::vector <bool> rbMap;
1227 uint16_t rbAllocatedNum = 0;
1228 std::set <uint16_t> rntiAllocated;
1229 std::vector <uint16_t> rbgAllocationMap;
1230 // update with RACH allocation map
1231 rbgAllocationMap = m_rachAllocationMap;
1232 //rbgAllocationMap.resize (m_cschedCellConfig.m_ulBandwidth, 0);
1233 m_rachAllocationMap.clear ();
1235
1236 rbMap.resize (m_cschedCellConfig.m_ulBandwidth, false);
1237 // remove RACH allocation
1238 for (uint16_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1239 {
1240 if (rbgAllocationMap.at (i) != 0)
1241 {
1242 rbMap.at (i) = true;
1243 NS_LOG_DEBUG (this << " Allocated for RACH " << i);
1244 }
1245 }
1246
1247
1248 if (m_harqOn == true)
1249 {
1250 // Process UL HARQ feedback
1251 for (uint16_t i = 0; i < params.m_ulInfoList.size (); i++)
1252 {
1253 if (params.m_ulInfoList.at (i).m_receptionStatus == UlInfoListElement_s::NotOk)
1254 {
1255 // retx correspondent block: retrieve the UL-DCI
1256 uint16_t rnti = params.m_ulInfoList.at (i).m_rnti;
1257 std::map <uint16_t, uint8_t>::iterator itProcId = m_ulHarqCurrentProcessId.find (rnti);
1258 if (itProcId == m_ulHarqCurrentProcessId.end ())
1259 {
1260 NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1261 }
1262 uint8_t harqId = (uint8_t)((*itProcId).second - HARQ_PERIOD) % HARQ_PROC_NUM;
1263 NS_LOG_INFO (this << " UL-HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId << " i " << i << " size " << params.m_ulInfoList.size ());
1264 std::map <uint16_t, UlHarqProcessesDciBuffer_t>::iterator itHarq = m_ulHarqProcessesDciBuffer.find (rnti);
1265 if (itHarq == m_ulHarqProcessesDciBuffer.end ())
1266 {
1267 NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1268 continue;
1269 }
1270 UlDciListElement_s dci = (*itHarq).second.at (harqId);
1271 std::map <uint16_t, UlHarqProcessesStatus_t>::iterator itStat = m_ulHarqProcessesStatus.find (rnti);
1272 if (itStat == m_ulHarqProcessesStatus.end ())
1273 {
1274 NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1275 }
1276 if ((*itStat).second.at (harqId) >= 3)
1277 {
1278 NS_LOG_INFO ("Max number of retransmissions reached (UL)-> drop process");
1279 continue;
1280 }
1281 bool free = true;
1282 for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1283 {
1284 if (rbMap.at (j) == true)
1285 {
1286 free = false;
1287 NS_LOG_INFO (this << " BUSY " << j);
1288 }
1289 }
1290 if (free)
1291 {
1292 // retx on the same RBs
1293 for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1294 {
1295 rbMap.at (j) = true;
1296 rbgAllocationMap.at (j) = dci.m_rnti;
1297 NS_LOG_INFO ("\tRB " << j);
1298 rbAllocatedNum++;
1299 }
1300 NS_LOG_INFO (this << " Send retx in the same RBs " << (uint16_t)dci.m_rbStart << " to " << dci.m_rbStart + dci.m_rbLen << " RV " << (*itStat).second.at (harqId) + 1);
1301 }
1302 else
1303 {
1304 NS_LOG_INFO ("Cannot allocate retx due to RACH allocations for UE " << rnti);
1305 continue;
1306 }
1307 dci.m_ndi = 0;
1308 // Update HARQ buffers with new HarqId
1309 (*itStat).second.at ((*itProcId).second) = (*itStat).second.at (harqId) + 1;
1310 (*itStat).second.at (harqId) = 0;
1311 (*itHarq).second.at ((*itProcId).second) = dci;
1312 ret.m_dciList.push_back (dci);
1313 rntiAllocated.insert (dci.m_rnti);
1314 }
1315 else
1316 {
1317 NS_LOG_INFO (this << " HARQ-ACK feedback from RNTI " << params.m_ulInfoList.at (i).m_rnti);
1318 }
1319 }
1320 }
1321
1322 std::map <uint16_t,uint32_t>::iterator it;
1323 int nflows = 0;
1324
1325 for (it = m_ceBsrRxed.begin (); it != m_ceBsrRxed.end (); it++)
1326 {
1327 std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it).first);
1328 // select UEs with queues not empty and not yet allocated for HARQ
1329 if (((*it).second > 0)&&(itRnti == rntiAllocated.end ()))
1330 {
1331 nflows++;
1332 }
1333 }
1334
1335 if (nflows == 0)
1336 {
1337 if (ret.m_dciList.size () > 0)
1338 {
1339 m_allocationMaps.insert (std::pair <uint16_t, std::vector <uint16_t> > (params.m_sfnSf, rbgAllocationMap));
1341 }
1342
1343 return; // no flows to be scheduled
1344 }
1345
1346
1347 // Divide the remaining resources equally among the active users starting from the subsequent one served last scheduling trigger
1348 uint16_t rbPerFlow = (m_cschedCellConfig.m_ulBandwidth) / (nflows + rntiAllocated.size ());
1349 if (rbPerFlow < 3)
1350 {
1351 rbPerFlow = 3; // at least 3 rbg per flow (till available resource) to ensure TxOpportunity >= 7 bytes
1352 }
1353 int rbAllocated = 0;
1354
1355 std::map <uint16_t, tdbetsFlowPerf_t>::iterator itStats;
1356 if (m_nextRntiUl != 0)
1357 {
1358 for (it = m_ceBsrRxed.begin (); it != m_ceBsrRxed.end (); it++)
1359 {
1360 if ((*it).first == m_nextRntiUl)
1361 {
1362 break;
1363 }
1364 }
1365 if (it == m_ceBsrRxed.end ())
1366 {
1367 NS_LOG_ERROR (this << " no user found");
1368 }
1369 }
1370 else
1371 {
1372 it = m_ceBsrRxed.begin ();
1373 m_nextRntiUl = (*it).first;
1374 }
1375 do
1376 {
1377 std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it).first);
1378 if ((itRnti != rntiAllocated.end ())||((*it).second == 0))
1379 {
1380 // UE already allocated for UL-HARQ -> skip it
1381 NS_LOG_DEBUG (this << " UE already allocated in HARQ -> discared, RNTI " << (*it).first);
1382 it++;
1383 if (it == m_ceBsrRxed.end ())
1384 {
1385 // restart from the first
1386 it = m_ceBsrRxed.begin ();
1387 }
1388 continue;
1389 }
1390 if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1391 {
1392 // limit to physical resources last resource assignment
1393 rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1394 // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1395 if (rbPerFlow < 3)
1396 {
1397 // terminate allocation
1398 rbPerFlow = 0;
1399 }
1400 }
1401
1402 UlDciListElement_s uldci;
1403 uldci.m_rnti = (*it).first;
1404 uldci.m_rbLen = rbPerFlow;
1405 bool allocated = false;
1406 NS_LOG_INFO (this << " RB Allocated " << rbAllocated << " rbPerFlow " << rbPerFlow << " flows " << nflows);
1407 while ((!allocated)&&((rbAllocated + rbPerFlow - m_cschedCellConfig.m_ulBandwidth) < 1) && (rbPerFlow != 0))
1408 {
1409 // check availability
1410 bool free = true;
1411 for (uint16_t j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1412 {
1413 if (rbMap.at (j) == true)
1414 {
1415 free = false;
1416 break;
1417 }
1418 }
1419 if (free)
1420 {
1421 uldci.m_rbStart = rbAllocated;
1422
1423 for (uint16_t j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1424 {
1425 rbMap.at (j) = true;
1426 // store info on allocation for managing ul-cqi interpretation
1427 rbgAllocationMap.at (j) = (*it).first;
1428 }
1429 rbAllocated += rbPerFlow;
1430 allocated = true;
1431 break;
1432 }
1433 rbAllocated++;
1434 if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1435 {
1436 // limit to physical resources last resource assignment
1437 rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1438 // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1439 if (rbPerFlow < 3)
1440 {
1441 // terminate allocation
1442 rbPerFlow = 0;
1443 }
1444 }
1445 }
1446 if (!allocated)
1447 {
1448 // unable to allocate new resource: finish scheduling
1449 m_nextRntiUl = (*it).first;
1450 if (ret.m_dciList.size () > 0)
1451 {
1453 }
1454 m_allocationMaps.insert (std::pair <uint16_t, std::vector <uint16_t> > (params.m_sfnSf, rbgAllocationMap));
1455 return;
1456 }
1457
1458
1459
1460 std::map <uint16_t, std::vector <double> >::iterator itCqi = m_ueCqi.find ((*it).first);
1461 int cqi = 0;
1462 if (itCqi == m_ueCqi.end ())
1463 {
1464 // no cqi info about this UE
1465 uldci.m_mcs = 0; // MCS 0 -> UL-AMC TBD
1466 }
1467 else
1468 {
1469 // take the lowest CQI value (worst RB)
1470 NS_ABORT_MSG_IF ((*itCqi).second.size() == 0, "CQI of RNTI = " << (*it).first << " has expired");
1471 double minSinr = (*itCqi).second.at (uldci.m_rbStart);
1472 if (minSinr == NO_SINR)
1473 {
1474 minSinr = EstimateUlSinr ((*it).first, uldci.m_rbStart);
1475 }
1476 for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1477 {
1478 double sinr = (*itCqi).second.at (i);
1479 if (sinr == NO_SINR)
1480 {
1481 sinr = EstimateUlSinr ((*it).first, i);
1482 }
1483 if (sinr < minSinr)
1484 {
1485 minSinr = sinr;
1486 }
1487 }
1488
1489 // translate SINR -> cqi: WILD ACK: same as DL
1490 double s = log2 ( 1 + (
1491 std::pow (10, minSinr / 10 ) /
1492 ( (-std::log (5.0 * 0.00005 )) / 1.5) ));
1493 cqi = m_amc->GetCqiFromSpectralEfficiency (s);
1494 if (cqi == 0)
1495 {
1496 it++;
1497 if (it == m_ceBsrRxed.end ())
1498 {
1499 // restart from the first
1500 it = m_ceBsrRxed.begin ();
1501 }
1502 NS_LOG_DEBUG (this << " UE discarded for CQI = 0, RNTI " << uldci.m_rnti);
1503 // remove UE from allocation map
1504 for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1505 {
1506 rbgAllocationMap.at (i) = 0;
1507 }
1508 continue; // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
1509 }
1510 uldci.m_mcs = m_amc->GetMcsFromCqi (cqi);
1511 }
1512
1513 uldci.m_tbSize = (m_amc->GetUlTbSizeFromMcs (uldci.m_mcs, rbPerFlow) / 8);
1514 UpdateUlRlcBufferInfo (uldci.m_rnti, uldci.m_tbSize);
1515 uldci.m_ndi = 1;
1516 uldci.m_cceIndex = 0;
1517 uldci.m_aggrLevel = 1;
1518 uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
1519 uldci.m_hopping = false;
1520 uldci.m_n2Dmrs = 0;
1521 uldci.m_tpc = 0; // no power control
1522 uldci.m_cqiRequest = false; // only period CQI at this stage
1523 uldci.m_ulIndex = 0; // TDD parameter
1524 uldci.m_dai = 1; // TDD parameter
1525 uldci.m_freqHopping = 0;
1526 uldci.m_pdcchPowerOffset = 0; // not used
1527 ret.m_dciList.push_back (uldci);
1528 // store DCI for HARQ_PERIOD
1529 uint8_t harqId = 0;
1530 if (m_harqOn == true)
1531 {
1532 std::map <uint16_t, uint8_t>::iterator itProcId;
1533 itProcId = m_ulHarqCurrentProcessId.find (uldci.m_rnti);
1534 if (itProcId == m_ulHarqCurrentProcessId.end ())
1535 {
1536 NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << uldci.m_rnti);
1537 }
1538 harqId = (*itProcId).second;
1539 std::map <uint16_t, UlHarqProcessesDciBuffer_t>::iterator itDci = m_ulHarqProcessesDciBuffer.find (uldci.m_rnti);
1540 if (itDci == m_ulHarqProcessesDciBuffer.end ())
1541 {
1542 NS_FATAL_ERROR ("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI " << uldci.m_rnti);
1543 }
1544 (*itDci).second.at (harqId) = uldci;
1545 // Update HARQ process status (RV 0)
1546 std::map <uint16_t, UlHarqProcessesStatus_t>::iterator itStat = m_ulHarqProcessesStatus.find (uldci.m_rnti);
1547 if (itStat == m_ulHarqProcessesStatus.end ())
1548 {
1549 NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << uldci.m_rnti);
1550 }
1551 (*itStat).second.at (harqId) = 0;
1552 }
1553
1554 NS_LOG_INFO (this << " UE Allocation RNTI " << (*it).first << " startPRB " << (uint32_t)uldci.m_rbStart << " nPRB " << (uint32_t)uldci.m_rbLen << " CQI " << cqi << " MCS " << (uint32_t)uldci.m_mcs << " TBsize " << uldci.m_tbSize << " RbAlloc " << rbAllocated << " harqId " << (uint16_t)harqId);
1555
1556 // update TTI UE stats
1557 itStats = m_flowStatsUl.find ((*it).first);
1558 if (itStats != m_flowStatsUl.end ())
1559 {
1560 (*itStats).second.lastTtiBytesTrasmitted = uldci.m_tbSize;
1561 }
1562 else
1563 {
1564 NS_LOG_DEBUG (this << " No Stats for this allocated UE");
1565 }
1566
1567
1568 it++;
1569 if (it == m_ceBsrRxed.end ())
1570 {
1571 // restart from the first
1572 it = m_ceBsrRxed.begin ();
1573 }
1574 if ((rbAllocated == m_cschedCellConfig.m_ulBandwidth) || (rbPerFlow == 0))
1575 {
1576 // Stop allocation: no more PRBs
1577 m_nextRntiUl = (*it).first;
1578 break;
1579 }
1580 }
1581 while (((*it).first != m_nextRntiUl)&&(rbPerFlow!=0));
1582
1583
1584 // Update global UE stats
1585 // update UEs stats
1586 for (itStats = m_flowStatsUl.begin (); itStats != m_flowStatsUl.end (); itStats++)
1587 {
1588 (*itStats).second.totalBytesTransmitted += (*itStats).second.lastTtiBytesTrasmitted;
1589 // update average throughput (see eq. 12.3 of Sec 12.3.1.2 of LTE – The UMTS Long Term Evolution, Ed Wiley)
1590 (*itStats).second.lastAveragedThroughput = ((1.0 - (1.0 / m_timeWindow)) * (*itStats).second.lastAveragedThroughput) + ((1.0 / m_timeWindow) * (double)((*itStats).second.lastTtiBytesTrasmitted / 0.001));
1591 NS_LOG_INFO (this << " UE total bytes " << (*itStats).second.totalBytesTransmitted);
1592 NS_LOG_INFO (this << " UE average throughput " << (*itStats).second.lastAveragedThroughput);
1593 (*itStats).second.lastTtiBytesTrasmitted = 0;
1594 }
1595 m_allocationMaps.insert (std::pair <uint16_t, std::vector <uint16_t> > (params.m_sfnSf, rbgAllocationMap));
1597
1598 return;
1599}
1600
1601void
1603{
1604 NS_LOG_FUNCTION (this);
1605 return;
1606}
1607
1608void
1610{
1611 NS_LOG_FUNCTION (this);
1612 return;
1613}
1614
1615void
1617{
1618 NS_LOG_FUNCTION (this);
1619
1620 std::map <uint16_t,uint32_t>::iterator it;
1621
1622 for (unsigned int i = 0; i < params.m_macCeList.size (); i++)
1623 {
1624 if ( params.m_macCeList.at (i).m_macCeType == MacCeListElement_s::BSR )
1625 {
1626 // buffer status report
1627 // note that this scheduler does not differentiate the
1628 // allocation according to which LCGs have more/less bytes
1629 // to send.
1630 // Hence the BSR of different LCGs are just summed up to get
1631 // a total queue size that is used for allocation purposes.
1632
1633 uint32_t buffer = 0;
1634 for (uint8_t lcg = 0; lcg < 4; ++lcg)
1635 {
1636 uint8_t bsrId = params.m_macCeList.at (i).m_macCeValue.m_bufferStatus.at (lcg);
1637 buffer += BufferSizeLevelBsr::BsrId2BufferSize (bsrId);
1638 }
1639
1640 uint16_t rnti = params.m_macCeList.at (i).m_rnti;
1641 NS_LOG_LOGIC (this << "RNTI=" << rnti << " buffer=" << buffer);
1642 it = m_ceBsrRxed.find (rnti);
1643 if (it == m_ceBsrRxed.end ())
1644 {
1645 // create the new entry
1646 m_ceBsrRxed.insert ( std::pair<uint16_t, uint32_t > (rnti, buffer));
1647 }
1648 else
1649 {
1650 // update the buffer size value
1651 (*it).second = buffer;
1652 }
1653 }
1654 }
1655
1656 return;
1657}
1658
1659void
1661{
1662 NS_LOG_FUNCTION (this);
1663// retrieve the allocation for this subframe
1664 switch (m_ulCqiFilter)
1665 {
1667 {
1668 // filter all the CQIs that are not SRS based
1669 if (params.m_ulCqi.m_type != UlCqi_s::SRS)
1670 {
1671 return;
1672 }
1673 }
1674 break;
1676 {
1677 // filter all the CQIs that are not SRS based
1678 if (params.m_ulCqi.m_type != UlCqi_s::PUSCH)
1679 {
1680 return;
1681 }
1682 }
1683 break;
1684 default:
1685 NS_FATAL_ERROR ("Unknown UL CQI type");
1686 }
1687
1688 switch (params.m_ulCqi.m_type)
1689 {
1690 case UlCqi_s::PUSCH:
1691 {
1692 std::map <uint16_t, std::vector <uint16_t> >::iterator itMap;
1693 std::map <uint16_t, std::vector <double> >::iterator itCqi;
1694 NS_LOG_DEBUG (this << " Collect PUSCH CQIs of Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf));
1695 itMap = m_allocationMaps.find (params.m_sfnSf);
1696 if (itMap == m_allocationMaps.end ())
1697 {
1698 return;
1699 }
1700 for (uint32_t i = 0; i < (*itMap).second.size (); i++)
1701 {
1702 // convert from fixed point notation Sxxxxxxxxxxx.xxx to double
1703 double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (i));
1704 itCqi = m_ueCqi.find ((*itMap).second.at (i));
1705 if (itCqi == m_ueCqi.end ())
1706 {
1707 // create a new entry
1708 std::vector <double> newCqi;
1709 for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1710 {
1711 if (i == j)
1712 {
1713 newCqi.push_back (sinr);
1714 }
1715 else
1716 {
1717 // initialize with NO_SINR value.
1718 newCqi.push_back (NO_SINR);
1719 }
1720
1721 }
1722 m_ueCqi.insert (std::pair <uint16_t, std::vector <double> > ((*itMap).second.at (i), newCqi));
1723 // generate correspondent timer
1724 m_ueCqiTimers.insert (std::pair <uint16_t, uint32_t > ((*itMap).second.at (i), m_cqiTimersThreshold));
1725 }
1726 else
1727 {
1728 // update the value
1729 (*itCqi).second.at (i) = sinr;
1730 NS_LOG_DEBUG (this << " RNTI " << (*itMap).second.at (i) << " RB " << i << " SINR " << sinr);
1731 // update correspondent timer
1732 std::map <uint16_t, uint32_t>::iterator itTimers;
1733 itTimers = m_ueCqiTimers.find ((*itMap).second.at (i));
1734 (*itTimers).second = m_cqiTimersThreshold;
1735
1736 }
1737
1738 }
1739 // remove obsolete info on allocation
1740 m_allocationMaps.erase (itMap);
1741 }
1742 break;
1743 case UlCqi_s::SRS:
1744 {
1745 // get the RNTI from vendor specific parameters
1746 uint16_t rnti = 0;
1747 NS_ASSERT (params.m_vendorSpecificList.size () > 0);
1748 for (uint16_t i = 0; i < params.m_vendorSpecificList.size (); i++)
1749 {
1750 if (params.m_vendorSpecificList.at (i).m_type == SRS_CQI_RNTI_VSP)
1751 {
1752 Ptr<SrsCqiRntiVsp> vsp = DynamicCast<SrsCqiRntiVsp> (params.m_vendorSpecificList.at (i).m_value);
1753 rnti = vsp->GetRnti ();
1754 }
1755 }
1756 std::map <uint16_t, std::vector <double> >::iterator itCqi;
1757 itCqi = m_ueCqi.find (rnti);
1758 if (itCqi == m_ueCqi.end ())
1759 {
1760 // create a new entry
1761 std::vector <double> newCqi;
1762 for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1763 {
1764 double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (j));
1765 newCqi.push_back (sinr);
1766 NS_LOG_INFO (this << " RNTI " << rnti << " new SRS-CQI for RB " << j << " value " << sinr);
1767
1768 }
1769 m_ueCqi.insert (std::pair <uint16_t, std::vector <double> > (rnti, newCqi));
1770 // generate correspondent timer
1771 m_ueCqiTimers.insert (std::pair <uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1772 }
1773 else
1774 {
1775 // update the values
1776 for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1777 {
1778 double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (j));
1779 (*itCqi).second.at (j) = sinr;
1780 NS_LOG_INFO (this << " RNTI " << rnti << " update SRS-CQI for RB " << j << " value " << sinr);
1781 }
1782 // update correspondent timer
1783 std::map <uint16_t, uint32_t>::iterator itTimers;
1784 itTimers = m_ueCqiTimers.find (rnti);
1785 (*itTimers).second = m_cqiTimersThreshold;
1786
1787 }
1788
1789
1790 }
1791 break;
1792 case UlCqi_s::PUCCH_1:
1793 case UlCqi_s::PUCCH_2:
1794 case UlCqi_s::PRACH:
1795 {
1796 NS_FATAL_ERROR ("TdBetFfMacScheduler supports only PUSCH and SRS UL-CQIs");
1797 }
1798 break;
1799 default:
1800 NS_FATAL_ERROR ("Unknown type of UL-CQI");
1801 }
1802 return;
1803}
1804
1805void
1807{
1808 // refresh DL CQI P01 Map
1809 std::map <uint16_t,uint32_t>::iterator itP10 = m_p10CqiTimers.begin ();
1810 while (itP10 != m_p10CqiTimers.end ())
1811 {
1812 NS_LOG_INFO (this << " P10-CQI for user " << (*itP10).first << " is " << (uint32_t)(*itP10).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1813 if ((*itP10).second == 0)
1814 {
1815 // delete correspondent entries
1816 std::map <uint16_t,uint8_t>::iterator itMap = m_p10CqiRxed.find ((*itP10).first);
1817 NS_ASSERT_MSG (itMap != m_p10CqiRxed.end (), " Does not find CQI report for user " << (*itP10).first);
1818 NS_LOG_INFO (this << " P10-CQI expired for user " << (*itP10).first);
1819 m_p10CqiRxed.erase (itMap);
1820 std::map <uint16_t,uint32_t>::iterator temp = itP10;
1821 itP10++;
1822 m_p10CqiTimers.erase (temp);
1823 }
1824 else
1825 {
1826 (*itP10).second--;
1827 itP10++;
1828 }
1829 }
1830
1831 // refresh DL CQI A30 Map
1832 std::map <uint16_t,uint32_t>::iterator itA30 = m_a30CqiTimers.begin ();
1833 while (itA30 != m_a30CqiTimers.end ())
1834 {
1835 NS_LOG_INFO (this << " A30-CQI for user " << (*itA30).first << " is " << (uint32_t)(*itA30).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1836 if ((*itA30).second == 0)
1837 {
1838 // delete correspondent entries
1839 std::map <uint16_t,SbMeasResult_s>::iterator itMap = m_a30CqiRxed.find ((*itA30).first);
1840 NS_ASSERT_MSG (itMap != m_a30CqiRxed.end (), " Does not find CQI report for user " << (*itA30).first);
1841 NS_LOG_INFO (this << " A30-CQI expired for user " << (*itA30).first);
1842 m_a30CqiRxed.erase (itMap);
1843 std::map <uint16_t,uint32_t>::iterator temp = itA30;
1844 itA30++;
1845 m_a30CqiTimers.erase (temp);
1846 }
1847 else
1848 {
1849 (*itA30).second--;
1850 itA30++;
1851 }
1852 }
1853
1854 return;
1855}
1856
1857
1858void
1860{
1861 // refresh UL CQI Map
1862 std::map <uint16_t,uint32_t>::iterator itUl = m_ueCqiTimers.begin ();
1863 while (itUl != m_ueCqiTimers.end ())
1864 {
1865 NS_LOG_INFO (this << " UL-CQI for user " << (*itUl).first << " is " << (uint32_t)(*itUl).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1866 if ((*itUl).second == 0)
1867 {
1868 // delete correspondent entries
1869 std::map <uint16_t, std::vector <double> >::iterator itMap = m_ueCqi.find ((*itUl).first);
1870 NS_ASSERT_MSG (itMap != m_ueCqi.end (), " Does not find CQI report for user " << (*itUl).first);
1871 NS_LOG_INFO (this << " UL-CQI exired for user " << (*itUl).first);
1872 (*itMap).second.clear ();
1873 m_ueCqi.erase (itMap);
1874 std::map <uint16_t,uint32_t>::iterator temp = itUl;
1875 itUl++;
1876 m_ueCqiTimers.erase (temp);
1877 }
1878 else
1879 {
1880 (*itUl).second--;
1881 itUl++;
1882 }
1883 }
1884
1885 return;
1886}
1887
1888void
1889TdBetFfMacScheduler::UpdateDlRlcBufferInfo (uint16_t rnti, uint8_t lcid, uint16_t size)
1890{
1891 std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
1892 LteFlowId_t flow (rnti, lcid);
1893 it = m_rlcBufferReq.find (flow);
1894 if (it != m_rlcBufferReq.end ())
1895 {
1896 NS_LOG_INFO (this << " UE " << rnti << " LC " << (uint16_t)lcid << " txqueue " << (*it).second.m_rlcTransmissionQueueSize << " retxqueue " << (*it).second.m_rlcRetransmissionQueueSize << " status " << (*it).second.m_rlcStatusPduSize << " decrease " << size);
1897 // Update queues: RLC tx order Status, ReTx, Tx
1898 // Update status queue
1899 if (((*it).second.m_rlcStatusPduSize > 0) && (size >= (*it).second.m_rlcStatusPduSize))
1900 {
1901 (*it).second.m_rlcStatusPduSize = 0;
1902 }
1903 else if (((*it).second.m_rlcRetransmissionQueueSize > 0) && (size >= (*it).second.m_rlcRetransmissionQueueSize))
1904 {
1905 (*it).second.m_rlcRetransmissionQueueSize = 0;
1906 }
1907 else if ((*it).second.m_rlcTransmissionQueueSize > 0)
1908 {
1909 uint32_t rlcOverhead;
1910 if (lcid == 1)
1911 {
1912 // for SRB1 (using RLC AM) it's better to
1913 // overestimate RLC overhead rather than
1914 // underestimate it and risk unneeded
1915 // segmentation which increases delay
1916 rlcOverhead = 4;
1917 }
1918 else
1919 {
1920 // minimum RLC overhead due to header
1921 rlcOverhead = 2;
1922 }
1923 // update transmission queue
1924 if ((*it).second.m_rlcTransmissionQueueSize <= size - rlcOverhead)
1925 {
1926 (*it).second.m_rlcTransmissionQueueSize = 0;
1927 }
1928 else
1929 {
1930 (*it).second.m_rlcTransmissionQueueSize -= size - rlcOverhead;
1931 }
1932 }
1933 }
1934 else
1935 {
1936 NS_LOG_ERROR (this << " Does not find DL RLC Buffer Report of UE " << rnti);
1937 }
1938}
1939
1940void
1942{
1943
1944 size = size - 2; // remove the minimum RLC overhead
1945 std::map <uint16_t,uint32_t>::iterator it = m_ceBsrRxed.find (rnti);
1946 if (it != m_ceBsrRxed.end ())
1947 {
1948 NS_LOG_INFO (this << " UE " << rnti << " size " << size << " BSR " << (*it).second);
1949 if ((*it).second >= size)
1950 {
1951 (*it).second -= size;
1952 }
1953 else
1954 {
1955 (*it).second = 0;
1956 }
1957 }
1958 else
1959 {
1960 NS_LOG_ERROR (this << " Does not find BSR report info of UE " << rnti);
1961 }
1962
1963}
1964
1965void
1967{
1968 NS_LOG_FUNCTION (this << " RNTI " << rnti << " txMode " << (uint16_t)txMode);
1970 params.m_rnti = rnti;
1971 params.m_transmissionMode = txMode;
1973}
1974
1975
1976}
AttributeValue implementation for Boolean.
Definition: boolean.h:37
static uint32_t BsrId2BufferSize(uint8_t val)
Convert BSR ID to buffer size.
Definition: lte-common.cc:184
Provides the CSCHED SAP.
FfMacCschedSapUser class.
virtual void CschedUeConfigUpdateInd(const struct CschedUeConfigUpdateIndParameters &params)=0
CSCHED_UE_UPDATE_IND.
virtual void CschedUeConfigCnf(const struct CschedUeConfigCnfParameters &params)=0
CSCHED_UE_CONFIG_CNF.
Provides the SCHED SAP.
FfMacSchedSapUser class.
virtual void SchedUlConfigInd(const struct SchedUlConfigIndParameters &params)=0
SCHED_UL_CONFIG_IND.
virtual void SchedDlConfigInd(const struct SchedDlConfigIndParameters &params)=0
SCHED_DL_CONFIG_IND.
This abstract base class identifies the interface by means of which the helper object can plug on the...
UlCqiFilter_t m_ulCqiFilter
UL CQI filter.
static double fpS11dot3toDouble(uint16_t val)
Convert from fixed point S11.3 notation to double.
Definition: lte-common.cc:155
Service Access Point (SAP) offered by the Frequency Reuse algorithm instance to the MAC Scheduler ins...
Definition: lte-ffr-sap.h:40
Service Access Point (SAP) offered by the eNodeB RRC instance to the Frequency Reuse algorithm instan...
Definition: lte-ffr-sap.h:139
Smart pointer class similar to boost::intrusive_ptr.
Definition: ptr.h:74
static Time Now(void)
Return the current simulation virtual time.
Definition: simulator.cc:195
Implements the SCHED SAP and CSCHED SAP for a Time Domain Blind Equal Throughput scheduler.
std::map< uint16_t, uint8_t > m_uesTxMode
txMode of the UEs
double EstimateUlSinr(uint16_t rnti, uint16_t rb)
Estimate UL SINR function.
std::map< uint16_t, SbMeasResult_s > m_a30CqiRxed
Map of UE's DL CQI A30 received.
FfMacCschedSapUser * m_cschedSapUser
CSched SAP user.
void DoSchedDlCqiInfoReq(const struct FfMacSchedSapProvider::SchedDlCqiInfoReqParameters &params)
Sched DL CQI info request.
std::vector< DlInfoListElement_s > m_dlInfoListBuffered
HARQ retx buffered.
void DoSchedDlTriggerReq(const struct FfMacSchedSapProvider::SchedDlTriggerReqParameters &params)
Sched DL trigger request.
std::map< uint16_t, tdbetsFlowPerf_t > m_flowStatsDl
Map of UE statistics (per RNTI basis) in downlink.
int GetRbgSize(int dlbandwidth)
Get RBG size function.
void DoSchedDlMacBufferReq(const struct FfMacSchedSapProvider::SchedDlMacBufferReqParameters &params)
Sched DL MAC buffer request.
std::map< uint16_t, uint8_t > m_dlHarqCurrentProcessId
DL HARQ process ID.
void DoCschedCellConfigReq(const struct FfMacCschedSapProvider::CschedCellConfigReqParameters &params)
CSched cell config request.
std::map< uint16_t, uint32_t > m_ueCqiTimers
Map of UEs' timers on UL-CQI per RBG.
LteFfrSapProvider * m_ffrSapProvider
FFR SAP provider.
std::map< uint16_t, DlHarqProcessesStatus_t > m_dlHarqProcessesStatus
DL HARQ process status.
std::map< uint16_t, tdbetsFlowPerf_t > m_flowStatsUl
Map of UE statistics (per RNTI basis)
std::vector< struct RachListElement_s > m_rachList
RACH list.
std::map< uint16_t, uint32_t > m_a30CqiTimers
Map of UE's timers on DL CQI A30 received.
std::map< LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters > m_rlcBufferReq
Vectors of UE's LC info.
FfMacCschedSapProvider::CschedCellConfigReqParameters m_cschedCellConfig
CSched cell config.
std::map< uint16_t, uint32_t > m_ceBsrRxed
Map of UE's buffer status reports received.
virtual void SetFfMacCschedSapUser(FfMacCschedSapUser *s)
set the user part of the FfMacCschedSap that this Scheduler will interact with.
std::vector< uint16_t > m_rachAllocationMap
RACH allocation map.
void DoSchedDlRlcBufferReq(const struct FfMacSchedSapProvider::SchedDlRlcBufferReqParameters &params)
Sched DL RLC buffer request.
std::map< uint16_t, std::vector< uint16_t > > m_allocationMaps
Map of previous allocated UE per RBG (used to retrieve info from UL-CQI)
virtual LteFfrSapUser * GetLteFfrSapUser()
void DoSchedDlRachInfoReq(const struct FfMacSchedSapProvider::SchedDlRachInfoReqParameters &params)
Sched DL RACH info request.
FfMacSchedSapUser * m_schedSapUser
Sched SAP user.
LteFfrSapUser * m_ffrSapUser
FFR SAP user.
void RefreshDlCqiMaps(void)
Refresh DL CQI maps function.
virtual void SetFfMacSchedSapUser(FfMacSchedSapUser *s)
set the user part of the FfMacSchedSap that this Scheduler will interact with.
void DoSchedUlTriggerReq(const struct FfMacSchedSapProvider::SchedUlTriggerReqParameters &params)
Sched UL trigger request.
FfMacSchedSapProvider * m_schedSapProvider
Sched SAP provider.
static TypeId GetTypeId(void)
Get the type ID.
bool m_harqOn
m_harqOn when false inhibit the HARQ mechanisms (by default active)
friend class MemberSchedSapProvider< TdBetFfMacScheduler >
allow MemberSchedSapProvider<TdBetFfMacScheduler> class friend access
void DoCschedLcReleaseReq(const struct FfMacCschedSapProvider::CschedLcReleaseReqParameters &params)
CSched LC release request.
std::map< uint16_t, uint32_t > m_p10CqiTimers
Map of UE's timers on DL CQI P01 received.
std::map< uint16_t, UlHarqProcessesStatus_t > m_ulHarqProcessesStatus
UL HARQ process status.
std::map< uint16_t, UlHarqProcessesDciBuffer_t > m_ulHarqProcessesDciBuffer
UL HARQ process DCI buffer.
void TransmissionModeConfigurationUpdate(uint16_t rnti, uint8_t txMode)
Transmission mode configuration update function.
void DoSchedUlSrInfoReq(const struct FfMacSchedSapProvider::SchedUlSrInfoReqParameters &params)
Sched UL SR info request.
friend class MemberCschedSapProvider< TdBetFfMacScheduler >
allow MemberCschedSapProvider<TdBetFfMacScheduler> class friend access
void RefreshHarqProcesses()
Refresh HARQ processes according to the timers.
void DoCschedUeReleaseReq(const struct FfMacCschedSapProvider::CschedUeReleaseReqParameters &params)
CSched UE release request.
void DoSchedUlNoiseInterferenceReq(const struct FfMacSchedSapProvider::SchedUlNoiseInterferenceReqParameters &params)
Sched UL noise interference request.
void DoCschedUeConfigReq(const struct FfMacCschedSapProvider::CschedUeConfigReqParameters &params)
CSched UE config request.
FfMacCschedSapProvider * m_cschedSapProvider
CSched SAP provider.
std::map< uint16_t, std::vector< double > > m_ueCqi
Map of UEs' UL-CQI per RBG.
virtual ~TdBetFfMacScheduler()
Destructor.
void DoSchedUlCqiInfoReq(const struct FfMacSchedSapProvider::SchedUlCqiInfoReqParameters &params)
Sched UL CQI info request.
void UpdateUlRlcBufferInfo(uint16_t rnti, uint16_t size)
Update UL RLC buffer info function.
uint8_t UpdateHarqProcessId(uint16_t rnti)
Update and return a new process Id for the RNTI specified.
uint8_t HarqProcessAvailability(uint16_t rnti)
Return the availability of free process for the RNTI specified.
std::map< uint16_t, DlHarqProcessesDciBuffer_t > m_dlHarqProcessesDciBuffer
DL HARQ process DCI buffer.
void RefreshUlCqiMaps(void)
Refresh UL CQI maps function.
void DoSchedDlPagingBufferReq(const struct FfMacSchedSapProvider::SchedDlPagingBufferReqParameters &params)
Sched DL paging buffer request.
virtual FfMacCschedSapProvider * GetFfMacCschedSapProvider()
unsigned int LcActivePerFlow(uint16_t rnti)
LC active flow function.
void DoSchedUlMacCtrlInfoReq(const struct FfMacSchedSapProvider::SchedUlMacCtrlInfoReqParameters &params)
Sched UL MAC control info request.
uint8_t m_ulGrantMcs
MCS for UL grant (default 0)
void DoCschedLcConfigReq(const struct FfMacCschedSapProvider::CschedLcConfigReqParameters &params)
CSched LC config request.
virtual void SetLteFfrSapProvider(LteFfrSapProvider *s)
Set the Provider part of the LteFfrSap that this Scheduler will interact with.
std::map< uint16_t, DlHarqRlcPduListBuffer_t > m_dlHarqProcessesRlcPduListBuffer
DL HARQ process RLC PDU list buffer.
virtual FfMacSchedSapProvider * GetFfMacSchedSapProvider()
virtual void DoDispose(void)
Destructor implementation.
std::map< uint16_t, uint8_t > m_p10CqiRxed
Map of UE's DL CQI P01 received.
void UpdateDlRlcBufferInfo(uint16_t rnti, uint8_t lcid, uint16_t size)
Update DL RLC buffer info function.
std::map< uint16_t, uint8_t > m_ulHarqCurrentProcessId
UL HARQ current process ID.
std::map< uint16_t, DlHarqProcessesTimer_t > m_dlHarqProcessesTimer
DL HARQ process timer.
uint16_t m_nextRntiUl
RNTI of the next user to be served next scheduling in UL.
static uint8_t TxMode2LayerNum(uint8_t txMode)
Transmit mode 2 layer number.
Definition: lte-common.cc:212
a unique identifier for an interface.
Definition: type-id.h:59
TypeId SetParent(TypeId tid)
Set the parent TypeId.
Definition: type-id.cc:922
Hold an unsigned integer type.
Definition: uinteger.h:44
#define NO_SINR
#define HARQ_PROC_NUM
#define HARQ_DL_TIMEOUT
#define NS_ASSERT(condition)
At runtime, in debugging builds, if this condition is not true, the program prints the source file,...
Definition: assert.h:67
#define NS_ASSERT_MSG(condition, message)
At runtime, in debugging builds, if this condition is not true, the program prints the message to out...
Definition: assert.h:88
Ptr< const AttributeChecker > MakeBooleanChecker(void)
Definition: boolean.cc:121
Ptr< const AttributeAccessor > MakeBooleanAccessor(T1 a1)
Definition: boolean.h:85
Ptr< const AttributeAccessor > MakeUintegerAccessor(T1 a1)
Definition: uinteger.h:45
#define NS_FATAL_ERROR(msg)
Report a fatal error with a message and terminate.
Definition: fatal-error.h:165
#define NS_ABORT_MSG_IF(cond, msg)
Abnormal program termination if a condition is true, with a message.
Definition: abort.h:108
#define NS_LOG_ERROR(msg)
Use NS_LOG to output a message of level LOG_ERROR.
Definition: log.h:257
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:205
#define NS_LOG_DEBUG(msg)
Use NS_LOG to output a message of level LOG_DEBUG.
Definition: log.h:273
#define NS_LOG_LOGIC(msg)
Use NS_LOG to output a message of level LOG_LOGIC.
Definition: log.h:289
#define NS_LOG_FUNCTION(parameters)
If log level LOG_FUNCTION is enabled, this macro will output all input parameters separated by ",...
#define NS_LOG_INFO(msg)
Use NS_LOG to output a message of level LOG_INFO.
Definition: log.h:281
#define NS_OBJECT_ENSURE_REGISTERED(type)
Register an Object subclass with the TypeId system.
Definition: object-base.h:45
#define HARQ_PERIOD
Definition: lte-common.h:30
#define SRS_CQI_RNTI_VSP
Every class exported by the ns3 library is enclosed in the ns3 namespace.
std::vector< UlDciListElement_s > UlHarqProcessesDciBuffer_t
UL HARQ process DCI buffer vector.
std::vector< uint8_t > DlHarqProcessesTimer_t
DL HARQ process timer vector typedef.
std::vector< uint8_t > DlHarqProcessesStatus_t
DL HARQ process status vector typedef.
std::vector< RlcPduList_t > DlHarqRlcPduListBuffer_t
vector of the 8 HARQ processes per UE
static const int TdBetType0AllocationRbg[4]
TDBET type 0 allocation RBG.
@ SUCCESS
Definition: ff-mac-common.h:62
std::vector< DlDciListElement_s > DlHarqProcessesDciBuffer_t
DL HARQ process DCI buffer vector typedef.
std::vector< uint8_t > UlHarqProcessesStatus_t
UL HARQ process status vector.
See section 4.3.8 builDataListElement.
struct DlDciListElement_s m_dci
DCI.
std::vector< std::vector< struct RlcPduListElement_s > > m_rlcPduList
RLC PDU list.
See section 4.3.10 buildRARListElement.
See section 4.3.1 dlDciListElement.
Definition: ff-mac-common.h:94
std::vector< uint8_t > m_ndi
New data indicator.
uint8_t m_harqProcess
HARQ process.
uint32_t m_rbBitmap
RB bitmap.
Definition: ff-mac-common.h:96
std::vector< uint8_t > m_mcs
MCS.
uint8_t m_resAlloc
The type of resource allocation.
Definition: ff-mac-common.h:98
std::vector< uint16_t > m_tbsSize
The TBs size.
Definition: ff-mac-common.h:99
std::vector< uint8_t > m_rv
Redundancy version.
uint8_t m_tpc
Tx power control command.
Parameters of the CSCHED_LC_CONFIG_REQ primitive.
std::vector< struct LogicalChannelConfigListElement_s > m_logicalChannelConfigList
logicalChannelConfigList
Parameters of the CSCHED_LC_RELEASE_REQ primitive.
std::vector< uint8_t > m_logicalChannelIdentity
logical channel identity
Parameters of the CSCHED_UE_CONFIG_REQ primitive.
Parameters of the CSCHED_UE_RELEASE_REQ primitive.
Parameters of the CSCHED_UE_CONFIG_CNF primitive.
Parameters of the CSCHED_UE_CONFIG_UPDATE_IND primitive.
Parameters of the SCHED_DL_CQI_INFO_REQ primitive.
std::vector< struct CqiListElement_s > m_cqiList
CQI list.
Parameters of the SCHED_DL_MAC_BUFFER_REQ primitive.
Parameters of the SCHED_DL_PAGING_BUFFER_REQ primitive.
Parameters of the SCHED_DL_RACH_INFO_REQ primitive.
std::vector< struct RachListElement_s > m_rachList
RACH list.
Parameters of the SCHED_DL_TRIGGER_REQ primitive.
std::vector< struct DlInfoListElement_s > m_dlInfoList
DL info list.
Parameters of the SCHED_UL_CQI_INFO_REQ primitive.
std::vector< struct VendorSpecificListElement_s > m_vendorSpecificList
vendor specific list
Parameters of the SCHED_UL_MAC_CTRL_INFO_REQ primitive.
std::vector< struct MacCeListElement_s > m_macCeList
MAC CE list.
Parameters of the SCHED_UL_NOISE_INTERFERENCE_REQ primitive.
Parameters of the SCHED_UL_SR_INFO_REQ primitive.
Parameters of the SCHED_UL_TRIGGER_REQ primitive.
std::vector< struct UlInfoListElement_s > m_ulInfoList
UL info list.
uint8_t m_nrOfPdcchOfdmSymbols
number of PDCCH OFDM symbols
std::vector< struct BuildDataListElement_s > m_buildDataList
build data list
std::vector< struct BuildRarListElement_s > m_buildRarList
build rar list
Parameters of the SCHED_UL_CONFIG_IND primitive.
std::vector< struct UlDciListElement_s > m_dciList
DCI list.
LteFlowId structure.
Definition: lte-common.h:37
See section 4.3.9 rlcPDU_ListElement.
uint8_t m_logicalChannelIdentity
logical channel identity
std::vector< uint16_t > m_sinr
SINR.
See section 4.3.2 ulDciListElement.
int8_t m_pdcchPowerOffset
CCH power offset.
int8_t m_tpc
Tx power control command.
uint8_t m_dai
DL assignment index.
uint8_t m_cceIndex
Control Channel Element index.
uint8_t m_ulIndex
UL index.
uint8_t m_ueTxAntennaSelection
UE antenna selection.
bool m_cqiRequest
CQI request.
uint8_t m_n2Dmrs
n2 DMRS
uint8_t m_freqHopping
freq hopping
uint8_t m_aggrLevel
The aggregation level.
bool m_ulDelay
UL delay?
int8_t m_tpc
Tx power control command.
bool m_cqiRequest
CQI request?
bool m_hopping
hopping?
uint16_t m_tbSize
size
uint8_t m_rbLen
length
uint8_t m_mcs
MCS.
uint8_t m_rbStart
start
uint16_t m_rnti
RNTI.
tdbetsFlowPerf_t structure
double lastAveragedThroughput
last average throughput
Time flowStart
flow start time
unsigned long totalBytesTransmitted
total bytes transmitted
unsigned int lastTtiBytesTrasmitted
last total bytes transmitted