A Discrete-Event Network Simulator
API
tta-ff-mac-scheduler.cc
Go to the documentation of this file.
1/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */
2/*
3 * Copyright (c) 2011 Centre Tecnologic de Telecomunicacions de Catalunya (CTTC)
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation;
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Author: Marco Miozzo <marco.miozzo@cttc.es>
19 * Modification: Dizhi Zhou <dizhi.zhou@gmail.com> // modify codes related to downlink scheduler
20 */
21
22#include <ns3/log.h>
23#include <ns3/pointer.h>
24#include <ns3/math.h>
25
26#include <ns3/simulator.h>
27#include <ns3/lte-amc.h>
28#include <ns3/tta-ff-mac-scheduler.h>
29#include <ns3/lte-vendor-specific-parameters.h>
30#include <ns3/boolean.h>
31#include <set>
32#include <cfloat>
33
34namespace ns3 {
35
36NS_LOG_COMPONENT_DEFINE ("TtaFfMacScheduler");
37
39static const int TtaType0AllocationRbg[4] = {
40 10, // RGB size 1
41 26, // RGB size 2
42 63, // RGB size 3
43 110 // RGB size 4
44}; // see table 7.1.6.1-1 of 36.213
45
46
47NS_OBJECT_ENSURE_REGISTERED (TtaFfMacScheduler);
48
49
50
52 : m_cschedSapUser (0),
53 m_schedSapUser (0),
54 m_nextRntiUl (0)
55{
56 m_amc = CreateObject <LteAmc> ();
59}
60
62{
63 NS_LOG_FUNCTION (this);
64}
65
66void
68{
69 NS_LOG_FUNCTION (this);
73 m_dlInfoListBuffered.clear ();
78 delete m_schedSapProvider;
79}
80
83{
84 static TypeId tid = TypeId ("ns3::TtaFfMacScheduler")
86 .SetGroupName("Lte")
87 .AddConstructor<TtaFfMacScheduler> ()
88 .AddAttribute ("CqiTimerThreshold",
89 "The number of TTIs a CQI is valid (default 1000 - 1 sec.)",
90 UintegerValue (1000),
92 MakeUintegerChecker<uint32_t> ())
93 .AddAttribute ("HarqEnabled",
94 "Activate/Deactivate the HARQ [by default is active].",
95 BooleanValue (true),
98 .AddAttribute ("UlGrantMcs",
99 "The MCS of the UL grant, must be [0..15] (default 0)",
100 UintegerValue (0),
102 MakeUintegerChecker<uint8_t> ())
103 ;
104 return tid;
105}
106
107
108
109void
111{
112 m_cschedSapUser = s;
113}
114
115void
117{
118 m_schedSapUser = s;
119}
120
123{
124 return m_cschedSapProvider;
125}
126
129{
130 return m_schedSapProvider;
131}
132
133void
135{
137}
138
141{
142 return m_ffrSapUser;
143}
144
145void
147{
148 NS_LOG_FUNCTION (this);
149 // Read the subset of parameters used
150 m_cschedCellConfig = params;
153 cnf.m_result = SUCCESS;
155 return;
156}
157
158void
160{
161 NS_LOG_FUNCTION (this << " RNTI " << params.m_rnti << " txMode " << (uint16_t)params.m_transmissionMode);
162 std::map <uint16_t,uint8_t>::iterator it = m_uesTxMode.find (params.m_rnti);
163 if (it == m_uesTxMode.end ())
164 {
165 m_uesTxMode.insert (std::pair <uint16_t, double> (params.m_rnti, params.m_transmissionMode));
166 // generate HARQ buffers
167 m_dlHarqCurrentProcessId.insert (std::pair <uint16_t,uint8_t > (params.m_rnti, 0));
168 DlHarqProcessesStatus_t dlHarqPrcStatus;
169 dlHarqPrcStatus.resize (8,0);
170 m_dlHarqProcessesStatus.insert (std::pair <uint16_t, DlHarqProcessesStatus_t> (params.m_rnti, dlHarqPrcStatus));
171 DlHarqProcessesTimer_t dlHarqProcessesTimer;
172 dlHarqProcessesTimer.resize (8,0);
173 m_dlHarqProcessesTimer.insert (std::pair <uint16_t, DlHarqProcessesTimer_t> (params.m_rnti, dlHarqProcessesTimer));
175 dlHarqdci.resize (8);
176 m_dlHarqProcessesDciBuffer.insert (std::pair <uint16_t, DlHarqProcessesDciBuffer_t> (params.m_rnti, dlHarqdci));
177 DlHarqRlcPduListBuffer_t dlHarqRlcPdu;
178 dlHarqRlcPdu.resize (2);
179 dlHarqRlcPdu.at (0).resize (8);
180 dlHarqRlcPdu.at (1).resize (8);
181 m_dlHarqProcessesRlcPduListBuffer.insert (std::pair <uint16_t, DlHarqRlcPduListBuffer_t> (params.m_rnti, dlHarqRlcPdu));
182 m_ulHarqCurrentProcessId.insert (std::pair <uint16_t,uint8_t > (params.m_rnti, 0));
183 UlHarqProcessesStatus_t ulHarqPrcStatus;
184 ulHarqPrcStatus.resize (8,0);
185 m_ulHarqProcessesStatus.insert (std::pair <uint16_t, UlHarqProcessesStatus_t> (params.m_rnti, ulHarqPrcStatus));
187 ulHarqdci.resize (8);
188 m_ulHarqProcessesDciBuffer.insert (std::pair <uint16_t, UlHarqProcessesDciBuffer_t> (params.m_rnti, ulHarqdci));
189 }
190 else
191 {
192 (*it).second = params.m_transmissionMode;
193 }
194 return;
195}
196
197void
199{
200 NS_LOG_FUNCTION (this << " New LC, rnti: " << params.m_rnti);
201
202 std::set <uint16_t>::iterator it;
203 for (uint16_t i = 0; i < params.m_logicalChannelConfigList.size (); i++)
204 {
205 it = m_flowStatsDl.find (params.m_rnti);
206
207 if (it == m_flowStatsDl.end ())
208 {
209 m_flowStatsDl.insert (params.m_rnti);
210 m_flowStatsUl.insert (params.m_rnti);
211 }
212 }
213
214 return;
215}
216
217void
219{
220 NS_LOG_FUNCTION (this);
221 for (uint16_t i = 0; i < params.m_logicalChannelIdentity.size (); i++)
222 {
223 std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it = m_rlcBufferReq.begin ();
224 std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator temp;
225 while (it!=m_rlcBufferReq.end ())
226 {
227 if (((*it).first.m_rnti == params.m_rnti) && ((*it).first.m_lcId == params.m_logicalChannelIdentity.at (i)))
228 {
229 temp = it;
230 it++;
231 m_rlcBufferReq.erase (temp);
232 }
233 else
234 {
235 it++;
236 }
237 }
238 }
239 return;
240}
241
242void
244{
245 NS_LOG_FUNCTION (this);
246
247 m_uesTxMode.erase (params.m_rnti);
248 m_dlHarqCurrentProcessId.erase (params.m_rnti);
249 m_dlHarqProcessesStatus.erase (params.m_rnti);
250 m_dlHarqProcessesTimer.erase (params.m_rnti);
251 m_dlHarqProcessesDciBuffer.erase (params.m_rnti);
253 m_ulHarqCurrentProcessId.erase (params.m_rnti);
254 m_ulHarqProcessesStatus.erase (params.m_rnti);
255 m_ulHarqProcessesDciBuffer.erase (params.m_rnti);
256 m_flowStatsDl.erase (params.m_rnti);
257 m_flowStatsUl.erase (params.m_rnti);
258 m_ceBsrRxed.erase (params.m_rnti);
259 std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it = m_rlcBufferReq.begin ();
260 std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator temp;
261 while (it!=m_rlcBufferReq.end ())
262 {
263 if ((*it).first.m_rnti == params.m_rnti)
264 {
265 temp = it;
266 it++;
267 m_rlcBufferReq.erase (temp);
268 }
269 else
270 {
271 it++;
272 }
273 }
274 if (m_nextRntiUl == params.m_rnti)
275 {
276 m_nextRntiUl = 0;
277 }
278
279 return;
280}
281
282
283void
285{
286 NS_LOG_FUNCTION (this << params.m_rnti << (uint32_t) params.m_logicalChannelIdentity);
287 // API generated by RLC for updating RLC parameters on a LC (tx and retx queues)
288
289 std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
290
291 LteFlowId_t flow (params.m_rnti, params.m_logicalChannelIdentity);
292
293 it = m_rlcBufferReq.find (flow);
294
295 if (it == m_rlcBufferReq.end ())
296 {
297 m_rlcBufferReq.insert (std::pair <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters> (flow, params));
298 }
299 else
300 {
301 (*it).second = params;
302 }
303
304 return;
305}
306
307void
309{
310 NS_LOG_FUNCTION (this);
311 NS_FATAL_ERROR ("method not implemented");
312 return;
313}
314
315void
317{
318 NS_LOG_FUNCTION (this);
319 NS_FATAL_ERROR ("method not implemented");
320 return;
321}
322
323int
325{
326 for (int i = 0; i < 4; i++)
327 {
328 if (dlbandwidth < TtaType0AllocationRbg[i])
329 {
330 return (i + 1);
331 }
332 }
333
334 return (-1);
335}
336
337
338unsigned int
340{
341 std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
342 unsigned int lcActive = 0;
343 for (it = m_rlcBufferReq.begin (); it != m_rlcBufferReq.end (); it++)
344 {
345 if (((*it).first.m_rnti == rnti) && (((*it).second.m_rlcTransmissionQueueSize > 0)
346 || ((*it).second.m_rlcRetransmissionQueueSize > 0)
347 || ((*it).second.m_rlcStatusPduSize > 0) ))
348 {
349 lcActive++;
350 }
351 if ((*it).first.m_rnti > rnti)
352 {
353 break;
354 }
355 }
356 return (lcActive);
357
358}
359
360
361uint8_t
363{
364 NS_LOG_FUNCTION (this << rnti);
365
366 std::map <uint16_t, uint8_t>::iterator it = m_dlHarqCurrentProcessId.find (rnti);
367 if (it == m_dlHarqCurrentProcessId.end ())
368 {
369 NS_FATAL_ERROR ("No Process Id found for this RNTI " << rnti);
370 }
371 std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find (rnti);
372 if (itStat == m_dlHarqProcessesStatus.end ())
373 {
374 NS_FATAL_ERROR ("No Process Id Statusfound for this RNTI " << rnti);
375 }
376 uint8_t i = (*it).second;
377 do
378 {
379 i = (i + 1) % HARQ_PROC_NUM;
380 }
381 while ( ((*itStat).second.at (i) != 0)&&(i != (*it).second));
382 if ((*itStat).second.at (i) == 0)
383 {
384 return (true);
385 }
386 else
387 {
388 return (false); // return a not valid harq proc id
389 }
390}
391
392
393
394uint8_t
396{
397 NS_LOG_FUNCTION (this << rnti);
398
399 if (m_harqOn == false)
400 {
401 return (0);
402 }
403
404
405 std::map <uint16_t, uint8_t>::iterator it = m_dlHarqCurrentProcessId.find (rnti);
406 if (it == m_dlHarqCurrentProcessId.end ())
407 {
408 NS_FATAL_ERROR ("No Process Id found for this RNTI " << rnti);
409 }
410 std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find (rnti);
411 if (itStat == m_dlHarqProcessesStatus.end ())
412 {
413 NS_FATAL_ERROR ("No Process Id Statusfound for this RNTI " << rnti);
414 }
415 uint8_t i = (*it).second;
416 do
417 {
418 i = (i + 1) % HARQ_PROC_NUM;
419 }
420 while ( ((*itStat).second.at (i) != 0)&&(i != (*it).second));
421 if ((*itStat).second.at (i) == 0)
422 {
423 (*it).second = i;
424 (*itStat).second.at (i) = 1;
425 }
426 else
427 {
428 NS_FATAL_ERROR ("No HARQ process available for RNTI " << rnti << " check before update with HarqProcessAvailability");
429 }
430
431 return ((*it).second);
432}
433
434
435void
437{
438 NS_LOG_FUNCTION (this);
439
440 std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itTimers;
441 for (itTimers = m_dlHarqProcessesTimer.begin (); itTimers != m_dlHarqProcessesTimer.end (); itTimers ++)
442 {
443 for (uint16_t i = 0; i < HARQ_PROC_NUM; i++)
444 {
445 if ((*itTimers).second.at (i) == HARQ_DL_TIMEOUT)
446 {
447 // reset HARQ process
448
449 NS_LOG_DEBUG (this << " Reset HARQ proc " << i << " for RNTI " << (*itTimers).first);
450 std::map <uint16_t, DlHarqProcessesStatus_t>::iterator itStat = m_dlHarqProcessesStatus.find ((*itTimers).first);
451 if (itStat == m_dlHarqProcessesStatus.end ())
452 {
453 NS_FATAL_ERROR ("No Process Id Status found for this RNTI " << (*itTimers).first);
454 }
455 (*itStat).second.at (i) = 0;
456 (*itTimers).second.at (i) = 0;
457 }
458 else
459 {
460 (*itTimers).second.at (i)++;
461 }
462 }
463 }
464
465}
466
467
468void
470{
471 NS_LOG_FUNCTION (this << " Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf));
472 // API generated by RLC for triggering the scheduling of a DL subframe
473
474
475 // evaluate the relative channel quality indicator for each UE per each RBG
476 // (since we are using allocation type 0 the small unit of allocation is RBG)
477 // Resource allocation type 0 (see sec 7.1.6.1 of 36.213)
478
480
482 int rbgNum = m_cschedCellConfig.m_dlBandwidth / rbgSize;
483 std::map <uint16_t, std::vector <uint16_t> > allocationMap; // RBs map per RNTI
484 std::vector <bool> rbgMap; // global RBGs map
485 uint16_t rbgAllocatedNum = 0;
486 std::set <uint16_t> rntiAllocated;
487 rbgMap.resize (m_cschedCellConfig.m_dlBandwidth / rbgSize, false);
489
490 // update UL HARQ proc id
491 std::map <uint16_t, uint8_t>::iterator itProcId;
492 for (itProcId = m_ulHarqCurrentProcessId.begin (); itProcId != m_ulHarqCurrentProcessId.end (); itProcId++)
493 {
494 (*itProcId).second = ((*itProcId).second + 1) % HARQ_PROC_NUM;
495 }
496
497 // RACH Allocation
499 uint16_t rbStart = 0;
500 std::vector <struct RachListElement_s>::iterator itRach;
501 for (itRach = m_rachList.begin (); itRach != m_rachList.end (); itRach++)
502 {
503 NS_ASSERT_MSG (m_amc->GetUlTbSizeFromMcs (m_ulGrantMcs, m_cschedCellConfig.m_ulBandwidth) > (*itRach).m_estimatedSize, " Default UL Grant MCS does not allow to send RACH messages");
505 newRar.m_rnti = (*itRach).m_rnti;
506 // DL-RACH Allocation
507 // Ideal: no needs of configuring m_dci
508 // UL-RACH Allocation
509 newRar.m_grant.m_rnti = newRar.m_rnti;
510 newRar.m_grant.m_mcs = m_ulGrantMcs;
511 uint16_t rbLen = 1;
512 uint16_t tbSizeBits = 0;
513 // find lowest TB size that fits UL grant estimated size
514 while ((tbSizeBits < (*itRach).m_estimatedSize) && (rbStart + rbLen < m_cschedCellConfig.m_ulBandwidth))
515 {
516 rbLen++;
517 tbSizeBits = m_amc->GetUlTbSizeFromMcs (m_ulGrantMcs, rbLen);
518 }
519 if (tbSizeBits < (*itRach).m_estimatedSize)
520 {
521 // no more allocation space: finish allocation
522 break;
523 }
524 newRar.m_grant.m_rbStart = rbStart;
525 newRar.m_grant.m_rbLen = rbLen;
526 newRar.m_grant.m_tbSize = tbSizeBits / 8;
527 newRar.m_grant.m_hopping = false;
528 newRar.m_grant.m_tpc = 0;
529 newRar.m_grant.m_cqiRequest = false;
530 newRar.m_grant.m_ulDelay = false;
531 NS_LOG_INFO (this << " UL grant allocated to RNTI " << (*itRach).m_rnti << " rbStart " << rbStart << " rbLen " << rbLen << " MCS " << m_ulGrantMcs << " tbSize " << newRar.m_grant.m_tbSize);
532 for (uint16_t i = rbStart; i < rbStart + rbLen; i++)
533 {
534 m_rachAllocationMap.at (i) = (*itRach).m_rnti;
535 }
536
537 if (m_harqOn == true)
538 {
539 // generate UL-DCI for HARQ retransmissions
540 UlDciListElement_s uldci;
541 uldci.m_rnti = newRar.m_rnti;
542 uldci.m_rbLen = rbLen;
543 uldci.m_rbStart = rbStart;
544 uldci.m_mcs = m_ulGrantMcs;
545 uldci.m_tbSize = tbSizeBits / 8;
546 uldci.m_ndi = 1;
547 uldci.m_cceIndex = 0;
548 uldci.m_aggrLevel = 1;
549 uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
550 uldci.m_hopping = false;
551 uldci.m_n2Dmrs = 0;
552 uldci.m_tpc = 0; // no power control
553 uldci.m_cqiRequest = false; // only period CQI at this stage
554 uldci.m_ulIndex = 0; // TDD parameter
555 uldci.m_dai = 1; // TDD parameter
556 uldci.m_freqHopping = 0;
557 uldci.m_pdcchPowerOffset = 0; // not used
558
559 uint8_t harqId = 0;
560 std::map <uint16_t, uint8_t>::iterator itProcId;
561 itProcId = m_ulHarqCurrentProcessId.find (uldci.m_rnti);
562 if (itProcId == m_ulHarqCurrentProcessId.end ())
563 {
564 NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << uldci.m_rnti);
565 }
566 harqId = (*itProcId).second;
567 std::map <uint16_t, UlHarqProcessesDciBuffer_t>::iterator itDci = m_ulHarqProcessesDciBuffer.find (uldci.m_rnti);
568 if (itDci == m_ulHarqProcessesDciBuffer.end ())
569 {
570 NS_FATAL_ERROR ("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI " << uldci.m_rnti);
571 }
572 (*itDci).second.at (harqId) = uldci;
573 }
574
575 rbStart = rbStart + rbLen;
576 ret.m_buildRarList.push_back (newRar);
577 }
578 m_rachList.clear ();
579
580
581 // Process DL HARQ feedback
583 // retrieve past HARQ retx buffered
584 if (m_dlInfoListBuffered.size () > 0)
585 {
586 if (params.m_dlInfoList.size () > 0)
587 {
588 NS_LOG_INFO (this << " Received DL-HARQ feedback");
589 m_dlInfoListBuffered.insert (m_dlInfoListBuffered.end (), params.m_dlInfoList.begin (), params.m_dlInfoList.end ());
590 }
591 }
592 else
593 {
594 if (params.m_dlInfoList.size () > 0)
595 {
597 }
598 }
599 if (m_harqOn == false)
600 {
601 // Ignore HARQ feedback
602 m_dlInfoListBuffered.clear ();
603 }
604 std::vector <struct DlInfoListElement_s> dlInfoListUntxed;
605 for (uint16_t i = 0; i < m_dlInfoListBuffered.size (); i++)
606 {
607 std::set <uint16_t>::iterator itRnti = rntiAllocated.find (m_dlInfoListBuffered.at (i).m_rnti);
608 if (itRnti != rntiAllocated.end ())
609 {
610 // RNTI already allocated for retx
611 continue;
612 }
613 uint8_t nLayers = m_dlInfoListBuffered.at (i).m_harqStatus.size ();
614 std::vector <bool> retx;
615 NS_LOG_INFO (this << " Processing DLHARQ feedback");
616 if (nLayers == 1)
617 {
618 retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (0) == DlInfoListElement_s::NACK);
619 retx.push_back (false);
620 }
621 else
622 {
623 retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (0) == DlInfoListElement_s::NACK);
624 retx.push_back (m_dlInfoListBuffered.at (i).m_harqStatus.at (1) == DlInfoListElement_s::NACK);
625 }
626 if (retx.at (0) || retx.at (1))
627 {
628 // retrieve HARQ process information
629 uint16_t rnti = m_dlInfoListBuffered.at (i).m_rnti;
630 uint8_t harqId = m_dlInfoListBuffered.at (i).m_harqProcessId;
631 NS_LOG_INFO (this << " HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId);
632 std::map <uint16_t, DlHarqProcessesDciBuffer_t>::iterator itHarq = m_dlHarqProcessesDciBuffer.find (rnti);
633 if (itHarq == m_dlHarqProcessesDciBuffer.end ())
634 {
635 NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << rnti);
636 }
637
638 DlDciListElement_s dci = (*itHarq).second.at (harqId);
639 int rv = 0;
640 if (dci.m_rv.size () == 1)
641 {
642 rv = dci.m_rv.at (0);
643 }
644 else
645 {
646 rv = (dci.m_rv.at (0) > dci.m_rv.at (1) ? dci.m_rv.at (0) : dci.m_rv.at (1));
647 }
648
649 if (rv == 3)
650 {
651 // maximum number of retx reached -> drop process
652 NS_LOG_INFO ("Maximum number of retransmissions reached -> drop process");
653 std::map <uint16_t, DlHarqProcessesStatus_t>::iterator it = m_dlHarqProcessesStatus.find (rnti);
654 if (it == m_dlHarqProcessesStatus.end ())
655 {
656 NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << m_dlInfoListBuffered.at (i).m_rnti);
657 }
658 (*it).second.at (harqId) = 0;
659 std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (rnti);
660 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
661 {
662 NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << m_dlInfoListBuffered.at (i).m_rnti);
663 }
664 for (uint16_t k = 0; k < (*itRlcPdu).second.size (); k++)
665 {
666 (*itRlcPdu).second.at (k).at (harqId).clear ();
667 }
668 continue;
669 }
670 // check the feasibility of retransmitting on the same RBGs
671 // translate the DCI to Spectrum framework
672 std::vector <int> dciRbg;
673 uint32_t mask = 0x1;
674 NS_LOG_INFO ("Original RBGs " << dci.m_rbBitmap << " rnti " << dci.m_rnti);
675 for (int j = 0; j < 32; j++)
676 {
677 if (((dci.m_rbBitmap & mask) >> j) == 1)
678 {
679 dciRbg.push_back (j);
680 NS_LOG_INFO ("\t" << j);
681 }
682 mask = (mask << 1);
683 }
684 bool free = true;
685 for (uint8_t j = 0; j < dciRbg.size (); j++)
686 {
687 if (rbgMap.at (dciRbg.at (j)) == true)
688 {
689 free = false;
690 break;
691 }
692 }
693 if (free)
694 {
695 // use the same RBGs for the retx
696 // reserve RBGs
697 for (uint8_t j = 0; j < dciRbg.size (); j++)
698 {
699 rbgMap.at (dciRbg.at (j)) = true;
700 NS_LOG_INFO ("RBG " << dciRbg.at (j) << " assigned");
701 rbgAllocatedNum++;
702 }
703
704 NS_LOG_INFO (this << " Send retx in the same RBGs");
705 }
706 else
707 {
708 // find RBGs for sending HARQ retx
709 uint8_t j = 0;
710 uint8_t rbgId = (dciRbg.at (dciRbg.size () - 1) + 1) % rbgNum;
711 uint8_t startRbg = dciRbg.at (dciRbg.size () - 1);
712 std::vector <bool> rbgMapCopy = rbgMap;
713 while ((j < dciRbg.size ())&&(startRbg != rbgId))
714 {
715 if (rbgMapCopy.at (rbgId) == false)
716 {
717 rbgMapCopy.at (rbgId) = true;
718 dciRbg.at (j) = rbgId;
719 j++;
720 }
721 rbgId = (rbgId + 1) % rbgNum;
722 }
723 if (j == dciRbg.size ())
724 {
725 // find new RBGs -> update DCI map
726 uint32_t rbgMask = 0;
727 for (uint16_t k = 0; k < dciRbg.size (); k++)
728 {
729 rbgMask = rbgMask + (0x1 << dciRbg.at (k));
730 rbgAllocatedNum++;
731 }
732 dci.m_rbBitmap = rbgMask;
733 rbgMap = rbgMapCopy;
734 NS_LOG_INFO (this << " Move retx in RBGs " << dciRbg.size ());
735 }
736 else
737 {
738 // HARQ retx cannot be performed on this TTI -> store it
739 dlInfoListUntxed.push_back (m_dlInfoListBuffered.at (i));
740 NS_LOG_INFO (this << " No resource for this retx -> buffer it");
741 }
742 }
743 // retrieve RLC PDU list for retx TBsize and update DCI
745 std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (rnti);
746 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
747 {
748 NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << rnti);
749 }
750 for (uint8_t j = 0; j < nLayers; j++)
751 {
752 if (retx.at (j))
753 {
754 if (j >= dci.m_ndi.size ())
755 {
756 // for avoiding errors in MIMO transient phases
757 dci.m_ndi.push_back (0);
758 dci.m_rv.push_back (0);
759 dci.m_mcs.push_back (0);
760 dci.m_tbsSize.push_back (0);
761 NS_LOG_INFO (this << " layer " << (uint16_t)j << " no txed (MIMO transition)");
762 }
763 else
764 {
765 dci.m_ndi.at (j) = 0;
766 dci.m_rv.at (j)++;
767 (*itHarq).second.at (harqId).m_rv.at (j)++;
768 NS_LOG_INFO (this << " layer " << (uint16_t)j << " RV " << (uint16_t)dci.m_rv.at (j));
769 }
770 }
771 else
772 {
773 // empty TB of layer j
774 dci.m_ndi.at (j) = 0;
775 dci.m_rv.at (j) = 0;
776 dci.m_mcs.at (j) = 0;
777 dci.m_tbsSize.at (j) = 0;
778 NS_LOG_INFO (this << " layer " << (uint16_t)j << " no retx");
779 }
780 }
781 for (uint16_t k = 0; k < (*itRlcPdu).second.at (0).at (dci.m_harqProcess).size (); k++)
782 {
783 std::vector <struct RlcPduListElement_s> rlcPduListPerLc;
784 for (uint8_t j = 0; j < nLayers; j++)
785 {
786 if (retx.at (j))
787 {
788 if (j < dci.m_ndi.size ())
789 {
790 NS_LOG_INFO (" layer " << (uint16_t)j << " tb size " << dci.m_tbsSize.at (j));
791 rlcPduListPerLc.push_back ((*itRlcPdu).second.at (j).at (dci.m_harqProcess).at (k));
792 }
793 }
794 else
795 { // if no retx needed on layer j, push an RlcPduListElement_s object with m_size=0 to keep the size of rlcPduListPerLc vector = 2 in case of MIMO
796 NS_LOG_INFO (" layer " << (uint16_t)j << " tb size "<<dci.m_tbsSize.at (j));
797 RlcPduListElement_s emptyElement;
798 emptyElement.m_logicalChannelIdentity = (*itRlcPdu).second.at (j).at (dci.m_harqProcess).at (k).m_logicalChannelIdentity;
799 emptyElement.m_size = 0;
800 rlcPduListPerLc.push_back (emptyElement);
801 }
802 }
803
804 if (rlcPduListPerLc.size () > 0)
805 {
806 newEl.m_rlcPduList.push_back (rlcPduListPerLc);
807 }
808 }
809 newEl.m_rnti = rnti;
810 newEl.m_dci = dci;
811 (*itHarq).second.at (harqId).m_rv = dci.m_rv;
812 // refresh timer
813 std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itHarqTimer = m_dlHarqProcessesTimer.find (rnti);
814 if (itHarqTimer== m_dlHarqProcessesTimer.end ())
815 {
816 NS_FATAL_ERROR ("Unable to find HARQ timer for RNTI " << (uint16_t)rnti);
817 }
818 (*itHarqTimer).second.at (harqId) = 0;
819 ret.m_buildDataList.push_back (newEl);
820 rntiAllocated.insert (rnti);
821 }
822 else
823 {
824 // update HARQ process status
825 NS_LOG_INFO (this << " HARQ received ACK for UE " << m_dlInfoListBuffered.at (i).m_rnti);
826 std::map <uint16_t, DlHarqProcessesStatus_t>::iterator it = m_dlHarqProcessesStatus.find (m_dlInfoListBuffered.at (i).m_rnti);
827 if (it == m_dlHarqProcessesStatus.end ())
828 {
829 NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << m_dlInfoListBuffered.at (i).m_rnti);
830 }
831 (*it).second.at (m_dlInfoListBuffered.at (i).m_harqProcessId) = 0;
832 std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find (m_dlInfoListBuffered.at (i).m_rnti);
833 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
834 {
835 NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << m_dlInfoListBuffered.at (i).m_rnti);
836 }
837 for (uint16_t k = 0; k < (*itRlcPdu).second.size (); k++)
838 {
839 (*itRlcPdu).second.at (k).at (m_dlInfoListBuffered.at (i).m_harqProcessId).clear ();
840 }
841 }
842 }
843 m_dlInfoListBuffered.clear ();
844 m_dlInfoListBuffered = dlInfoListUntxed;
845
846 if (rbgAllocatedNum == rbgNum)
847 {
848 // all the RBGs are already allocated -> exit
849 if ((ret.m_buildDataList.size () > 0) || (ret.m_buildRarList.size () > 0))
850 {
852 }
853 return;
854 }
855
856
857
858 for (int i = 0; i < rbgNum; i++)
859 {
860 NS_LOG_INFO (this << " ALLOCATION for RBG " << i << " of " << rbgNum);
861 if (rbgMap.at (i) == false)
862 {
863 std::set <uint16_t>::iterator it;
864 std::set <uint16_t>::iterator itMax = m_flowStatsDl.end ();
865 double rcqiMax = 0.0;
866 for (it = m_flowStatsDl.begin (); it != m_flowStatsDl.end (); it++)
867 {
868 std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it));
869 if ((itRnti != rntiAllocated.end ())||(!HarqProcessAvailability ((*it))))
870 {
871 // UE already allocated for HARQ or without HARQ process available -> drop it
872 if (itRnti != rntiAllocated.end ())
873 {
874 NS_LOG_DEBUG (this << " RNTI discared for HARQ tx" << (uint16_t)(*it));
875 }
876 if (!HarqProcessAvailability ((*it)))
877 {
878 NS_LOG_DEBUG (this << " RNTI discared for HARQ id" << (uint16_t)(*it));
879 }
880 continue;
881 }
882
883 std::map <uint16_t,SbMeasResult_s>::iterator itSbCqi;
884 itSbCqi = m_a30CqiRxed.find ((*it));
885 std::map <uint16_t,uint8_t>::iterator itWbCqi;
886 itWbCqi = m_p10CqiRxed.find ((*it));
887
888 std::map <uint16_t,uint8_t>::iterator itTxMode;
889 itTxMode = m_uesTxMode.find ((*it));
890 if (itTxMode == m_uesTxMode.end ())
891 {
892 NS_FATAL_ERROR ("No Transmission Mode info on user " << (*it));
893 }
894 int nLayer = TransmissionModesLayers::TxMode2LayerNum ((*itTxMode).second);
895
896 std::vector <uint8_t> sbCqi;
897 if (itSbCqi == m_a30CqiRxed.end ())
898 {
899 for (uint8_t k = 0; k < nLayer; k++)
900 {
901 sbCqi.push_back (1); // start with lowest value
902 }
903 }
904 else
905 {
906 sbCqi = (*itSbCqi).second.m_higherLayerSelected.at (i).m_sbCqi;
907 }
908
909 uint8_t wbCqi = 0;
910 if (itWbCqi != m_p10CqiRxed.end ())
911 {
912 wbCqi = (*itWbCqi).second;
913 }
914 else
915 {
916 wbCqi = 1; // lowest value for trying a transmission
917 }
918
919 uint8_t cqi1 = sbCqi.at (0);
920 uint8_t cqi2 = 0;
921 if (sbCqi.size () > 1)
922 {
923 cqi2 = sbCqi.at (1);
924 }
925 if ((cqi1 > 0)||(cqi2 > 0)) // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
926 {
927 if (LcActivePerFlow ((*it)) > 0)
928 {
929 // this UE has data to transmit
930 double achievableSbRate = 0.0;
931 double achievableWbRate = 0.0;
932 uint8_t sbMcs = 0;
933 uint8_t wbMcs = 0;
934 for (uint8_t k = 0; k < nLayer; k++)
935 {
936 if (sbCqi.size () > k)
937 {
938 sbMcs = m_amc->GetMcsFromCqi (sbCqi.at (k));
939 }
940 else
941 {
942 // no info on this subband -> worst MCS
943 sbMcs = 0;
944 }
945 achievableSbRate += ((m_amc->GetDlTbSizeFromMcs (sbMcs, rbgSize) / 8) / 0.001); // = TB size / TTI
946 wbMcs = m_amc->GetMcsFromCqi (wbCqi);
947 achievableWbRate += ((m_amc->GetDlTbSizeFromMcs (wbMcs, rbgSize) / 8) / 0.001); // = TB size / TTI
948 }
949
950 double metric = achievableSbRate / achievableWbRate;
951
952 if (metric > rcqiMax)
953 {
954 rcqiMax = metric;
955 itMax = it;
956 }
957 }
958 } // end if cqi
959
960 } // end for m_rlcBufferReq
961
962 if (itMax == m_flowStatsDl.end ())
963 {
964 // no UE available for this RB
965 NS_LOG_INFO (this << " any UE found");
966 }
967 else
968 {
969 rbgMap.at (i) = true;
970 std::map <uint16_t, std::vector <uint16_t> >::iterator itMap;
971 itMap = allocationMap.find ((*itMax));
972 if (itMap == allocationMap.end ())
973 {
974 // insert new element
975 std::vector <uint16_t> tempMap;
976 tempMap.push_back (i);
977 allocationMap.insert (std::pair <uint16_t, std::vector <uint16_t> > ((*itMax), tempMap));
978 }
979 else
980 {
981 (*itMap).second.push_back (i);
982 }
983 NS_LOG_INFO (this << " UE assigned " << (*itMax));
984 }
985 } // end for RBG free
986 } // end for RBGs
987
988 // generate the transmission opportunities by grouping the RBGs of the same RNTI and
989 // creating the correspondent DCIs
990 std::map <uint16_t, std::vector <uint16_t> >::iterator itMap = allocationMap.begin ();
991 while (itMap != allocationMap.end ())
992 {
993 // create new BuildDataListElement_s for this LC
995 newEl.m_rnti = (*itMap).first;
996 // create the DlDciListElement_s
997 DlDciListElement_s newDci;
998 newDci.m_rnti = (*itMap).first;
999 newDci.m_harqProcess = UpdateHarqProcessId ((*itMap).first);
1000
1001 uint16_t lcActives = LcActivePerFlow ((*itMap).first);
1002 NS_LOG_INFO (this << "Allocate user " << newEl.m_rnti << " rbg " << lcActives);
1003 if (lcActives == 0)
1004 {
1005 // Set to max value, to avoid divide by 0 below
1006 lcActives = (uint16_t)65535; // UINT16_MAX;
1007 }
1008 uint16_t RgbPerRnti = (*itMap).second.size ();
1009 std::map <uint16_t,SbMeasResult_s>::iterator itCqi;
1010 itCqi = m_a30CqiRxed.find ((*itMap).first);
1011 std::map <uint16_t,uint8_t>::iterator itTxMode;
1012 itTxMode = m_uesTxMode.find ((*itMap).first);
1013 if (itTxMode == m_uesTxMode.end ())
1014 {
1015 NS_FATAL_ERROR ("No Transmission Mode info on user " << (*itMap).first);
1016 }
1017 int nLayer = TransmissionModesLayers::TxMode2LayerNum ((*itTxMode).second);
1018 std::vector <uint8_t> worstCqi (2, 15);
1019 if (itCqi != m_a30CqiRxed.end ())
1020 {
1021 for (uint16_t k = 0; k < (*itMap).second.size (); k++)
1022 {
1023 if ((*itCqi).second.m_higherLayerSelected.size () > (*itMap).second.at (k))
1024 {
1025 NS_LOG_INFO (this << " RBG " << (*itMap).second.at (k) << " CQI " << (uint16_t)((*itCqi).second.m_higherLayerSelected.at ((*itMap).second.at (k)).m_sbCqi.at (0)) );
1026 for (uint8_t j = 0; j < nLayer; j++)
1027 {
1028 if ((*itCqi).second.m_higherLayerSelected.at ((*itMap).second.at (k)).m_sbCqi.size () > j)
1029 {
1030 if (((*itCqi).second.m_higherLayerSelected.at ((*itMap).second.at (k)).m_sbCqi.at (j)) < worstCqi.at (j))
1031 {
1032 worstCqi.at (j) = ((*itCqi).second.m_higherLayerSelected.at ((*itMap).second.at (k)).m_sbCqi.at (j));
1033 }
1034 }
1035 else
1036 {
1037 // no CQI for this layer of this suband -> worst one
1038 worstCqi.at (j) = 1;
1039 }
1040 }
1041 }
1042 else
1043 {
1044 for (uint8_t j = 0; j < nLayer; j++)
1045 {
1046 worstCqi.at (j) = 1; // try with lowest MCS in RBG with no info on channel
1047 }
1048 }
1049 }
1050 }
1051 else
1052 {
1053 for (uint8_t j = 0; j < nLayer; j++)
1054 {
1055 worstCqi.at (j) = 1; // try with lowest MCS in RBG with no info on channel
1056 }
1057 }
1058 for (uint8_t j = 0; j < nLayer; j++)
1059 {
1060 NS_LOG_INFO (this << " Layer " << (uint16_t)j << " CQI selected " << (uint16_t)worstCqi.at (j));
1061 }
1062 for (uint8_t j = 0; j < nLayer; j++)
1063 {
1064 newDci.m_mcs.push_back (m_amc->GetMcsFromCqi (worstCqi.at (j)));
1065 int tbSize = (m_amc->GetDlTbSizeFromMcs (newDci.m_mcs.at (j), RgbPerRnti * rbgSize) / 8); // (size of TB in bytes according to table 7.1.7.2.1-1 of 36.213)
1066 newDci.m_tbsSize.push_back (tbSize);
1067 NS_LOG_INFO (this << " Layer " << (uint16_t)j << " MCS selected" << m_amc->GetMcsFromCqi (worstCqi.at (j)));
1068 }
1069
1070 newDci.m_resAlloc = 0; // only allocation type 0 at this stage
1071 newDci.m_rbBitmap = 0; // TBD (32 bit bitmap see 7.1.6 of 36.213)
1072 uint32_t rbgMask = 0;
1073 for (uint16_t k = 0; k < (*itMap).second.size (); k++)
1074 {
1075 rbgMask = rbgMask + (0x1 << (*itMap).second.at (k));
1076 NS_LOG_INFO (this << " Allocated RBG " << (*itMap).second.at (k));
1077 }
1078 newDci.m_rbBitmap = rbgMask; // (32 bit bitmap see 7.1.6 of 36.213)
1079
1080 // create the rlc PDUs -> equally divide resources among actives LCs
1081 std::map <LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator itBufReq;
1082 for (itBufReq = m_rlcBufferReq.begin (); itBufReq != m_rlcBufferReq.end (); itBufReq++)
1083 {
1084 if (((*itBufReq).first.m_rnti == (*itMap).first)
1085 && (((*itBufReq).second.m_rlcTransmissionQueueSize > 0)
1086 || ((*itBufReq).second.m_rlcRetransmissionQueueSize > 0)
1087 || ((*itBufReq).second.m_rlcStatusPduSize > 0) ))
1088 {
1089 std::vector <struct RlcPduListElement_s> newRlcPduLe;
1090 for (uint8_t j = 0; j < nLayer; j++)
1091 {
1092 RlcPduListElement_s newRlcEl;
1093 newRlcEl.m_logicalChannelIdentity = (*itBufReq).first.m_lcId;
1094 newRlcEl.m_size = newDci.m_tbsSize.at (j) / lcActives;
1095 NS_LOG_INFO (this << " LCID " << (uint32_t) newRlcEl.m_logicalChannelIdentity << " size " << newRlcEl.m_size << " layer " << (uint16_t)j);
1096 newRlcPduLe.push_back (newRlcEl);
1097 UpdateDlRlcBufferInfo (newDci.m_rnti, newRlcEl.m_logicalChannelIdentity, newRlcEl.m_size);
1098 if (m_harqOn == true)
1099 {
1100 // store RLC PDU list for HARQ
1101 std::map <uint16_t, DlHarqRlcPduListBuffer_t>::iterator itRlcPdu = m_dlHarqProcessesRlcPduListBuffer.find ((*itMap).first);
1102 if (itRlcPdu == m_dlHarqProcessesRlcPduListBuffer.end ())
1103 {
1104 NS_FATAL_ERROR ("Unable to find RlcPdcList in HARQ buffer for RNTI " << (*itMap).first);
1105 }
1106 (*itRlcPdu).second.at (j).at (newDci.m_harqProcess).push_back (newRlcEl);
1107 }
1108 }
1109 newEl.m_rlcPduList.push_back (newRlcPduLe);
1110 }
1111 if ((*itBufReq).first.m_rnti > (*itMap).first)
1112 {
1113 break;
1114 }
1115 }
1116 for (uint8_t j = 0; j < nLayer; j++)
1117 {
1118 newDci.m_ndi.push_back (1);
1119 newDci.m_rv.push_back (0);
1120 }
1121
1122 newDci.m_tpc = 1; //1 is mapped to 0 in Accumulated Mode and to -1 in Absolute Mode
1123
1124 newEl.m_dci = newDci;
1125
1126 if (m_harqOn == true)
1127 {
1128 // store DCI for HARQ
1129 std::map <uint16_t, DlHarqProcessesDciBuffer_t>::iterator itDci = m_dlHarqProcessesDciBuffer.find (newEl.m_rnti);
1130 if (itDci == m_dlHarqProcessesDciBuffer.end ())
1131 {
1132 NS_FATAL_ERROR ("Unable to find RNTI entry in DCI HARQ buffer for RNTI " << newEl.m_rnti);
1133 }
1134 (*itDci).second.at (newDci.m_harqProcess) = newDci;
1135 // refresh timer
1136 std::map <uint16_t, DlHarqProcessesTimer_t>::iterator itHarqTimer = m_dlHarqProcessesTimer.find (newEl.m_rnti);
1137 if (itHarqTimer== m_dlHarqProcessesTimer.end ())
1138 {
1139 NS_FATAL_ERROR ("Unable to find HARQ timer for RNTI " << (uint16_t)newEl.m_rnti);
1140 }
1141 (*itHarqTimer).second.at (newDci.m_harqProcess) = 0;
1142 }
1143
1144 // ...more parameters -> ignored in this version
1145
1146 ret.m_buildDataList.push_back (newEl);
1147
1148 itMap++;
1149 } // end while allocation
1150 ret.m_nrOfPdcchOfdmSymbols = 1;
1151
1153
1154
1155 return;
1156}
1157
1158void
1160{
1161 NS_LOG_FUNCTION (this);
1162
1163 m_rachList = params.m_rachList;
1164
1165 return;
1166}
1167
1168void
1170{
1171 NS_LOG_FUNCTION (this);
1172
1173 for (unsigned int i = 0; i < params.m_cqiList.size (); i++)
1174 {
1175 if ( params.m_cqiList.at (i).m_cqiType == CqiListElement_s::P10 )
1176 {
1177 NS_LOG_LOGIC ("wideband CQI " << (uint32_t) params.m_cqiList.at (i).m_wbCqi.at (0) << " reported");
1178 std::map <uint16_t,uint8_t>::iterator it;
1179 uint16_t rnti = params.m_cqiList.at (i).m_rnti;
1180 it = m_p10CqiRxed.find (rnti);
1181 if (it == m_p10CqiRxed.end ())
1182 {
1183 // create the new entry
1184 m_p10CqiRxed.insert ( std::pair<uint16_t, uint8_t > (rnti, params.m_cqiList.at (i).m_wbCqi.at (0)) ); // only codeword 0 at this stage (SISO)
1185 // generate correspondent timer
1186 m_p10CqiTimers.insert ( std::pair<uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1187 }
1188 else
1189 {
1190 // update the CQI value and refresh correspondent timer
1191 (*it).second = params.m_cqiList.at (i).m_wbCqi.at (0);
1192 // update correspondent timer
1193 std::map <uint16_t,uint32_t>::iterator itTimers;
1194 itTimers = m_p10CqiTimers.find (rnti);
1195 (*itTimers).second = m_cqiTimersThreshold;
1196 }
1197 }
1198 else if ( params.m_cqiList.at (i).m_cqiType == CqiListElement_s::A30 )
1199 {
1200 // subband CQI reporting high layer configured
1201 std::map <uint16_t,SbMeasResult_s>::iterator it;
1202 uint16_t rnti = params.m_cqiList.at (i).m_rnti;
1203 it = m_a30CqiRxed.find (rnti);
1204 if (it == m_a30CqiRxed.end ())
1205 {
1206 // create the new entry
1207 m_a30CqiRxed.insert ( std::pair<uint16_t, SbMeasResult_s > (rnti, params.m_cqiList.at (i).m_sbMeasResult) );
1208 m_a30CqiTimers.insert ( std::pair<uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1209 }
1210 else
1211 {
1212 // update the CQI value and refresh correspondent timer
1213 (*it).second = params.m_cqiList.at (i).m_sbMeasResult;
1214 std::map <uint16_t,uint32_t>::iterator itTimers;
1215 itTimers = m_a30CqiTimers.find (rnti);
1216 (*itTimers).second = m_cqiTimersThreshold;
1217 }
1218 }
1219 else
1220 {
1221 NS_LOG_ERROR (this << " CQI type unknown");
1222 }
1223 }
1224
1225 return;
1226}
1227
1228
1229double
1230TtaFfMacScheduler::EstimateUlSinr (uint16_t rnti, uint16_t rb)
1231{
1232 std::map <uint16_t, std::vector <double> >::iterator itCqi = m_ueCqi.find (rnti);
1233 if (itCqi == m_ueCqi.end ())
1234 {
1235 // no cqi info about this UE
1236 return (NO_SINR);
1237
1238 }
1239 else
1240 {
1241 // take the average SINR value among the available
1242 double sinrSum = 0;
1243 unsigned int sinrNum = 0;
1244 for (uint32_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1245 {
1246 double sinr = (*itCqi).second.at (i);
1247 if (sinr != NO_SINR)
1248 {
1249 sinrSum += sinr;
1250 sinrNum++;
1251 }
1252 }
1253 double estimatedSinr = (sinrNum > 0) ? (sinrSum / sinrNum) : DBL_MAX;
1254 // store the value
1255 (*itCqi).second.at (rb) = estimatedSinr;
1256 return (estimatedSinr);
1257 }
1258}
1259
1260void
1262{
1263 NS_LOG_FUNCTION (this << " UL - Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf) << " size " << params.m_ulInfoList.size ());
1264
1266
1267 // Generate RBs map
1269 std::vector <bool> rbMap;
1270 uint16_t rbAllocatedNum = 0;
1271 std::set <uint16_t> rntiAllocated;
1272 std::vector <uint16_t> rbgAllocationMap;
1273 // update with RACH allocation map
1274 rbgAllocationMap = m_rachAllocationMap;
1275 //rbgAllocationMap.resize (m_cschedCellConfig.m_ulBandwidth, 0);
1276 m_rachAllocationMap.clear ();
1278
1279 rbMap.resize (m_cschedCellConfig.m_ulBandwidth, false);
1280 // remove RACH allocation
1281 for (uint16_t i = 0; i < m_cschedCellConfig.m_ulBandwidth; i++)
1282 {
1283 if (rbgAllocationMap.at (i) != 0)
1284 {
1285 rbMap.at (i) = true;
1286 NS_LOG_DEBUG (this << " Allocated for RACH " << i);
1287 }
1288 }
1289
1290
1291 if (m_harqOn == true)
1292 {
1293 // Process UL HARQ feedback
1294 for (uint16_t i = 0; i < params.m_ulInfoList.size (); i++)
1295 {
1296 if (params.m_ulInfoList.at (i).m_receptionStatus == UlInfoListElement_s::NotOk)
1297 {
1298 // retx correspondent block: retrieve the UL-DCI
1299 uint16_t rnti = params.m_ulInfoList.at (i).m_rnti;
1300 std::map <uint16_t, uint8_t>::iterator itProcId = m_ulHarqCurrentProcessId.find (rnti);
1301 if (itProcId == m_ulHarqCurrentProcessId.end ())
1302 {
1303 NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1304 }
1305 uint8_t harqId = (uint8_t)((*itProcId).second - HARQ_PERIOD) % HARQ_PROC_NUM;
1306 NS_LOG_INFO (this << " UL-HARQ retx RNTI " << rnti << " harqId " << (uint16_t)harqId << " i " << i << " size " << params.m_ulInfoList.size ());
1307 std::map <uint16_t, UlHarqProcessesDciBuffer_t>::iterator itHarq = m_ulHarqProcessesDciBuffer.find (rnti);
1308 if (itHarq == m_ulHarqProcessesDciBuffer.end ())
1309 {
1310 NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1311 continue;
1312 }
1313 UlDciListElement_s dci = (*itHarq).second.at (harqId);
1314 std::map <uint16_t, UlHarqProcessesStatus_t>::iterator itStat = m_ulHarqProcessesStatus.find (rnti);
1315 if (itStat == m_ulHarqProcessesStatus.end ())
1316 {
1317 NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << rnti);
1318 }
1319 if ((*itStat).second.at (harqId) >= 3)
1320 {
1321 NS_LOG_INFO ("Max number of retransmissions reached (UL)-> drop process");
1322 continue;
1323 }
1324 bool free = true;
1325 for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1326 {
1327 if (rbMap.at (j) == true)
1328 {
1329 free = false;
1330 NS_LOG_INFO (this << " BUSY " << j);
1331 }
1332 }
1333 if (free)
1334 {
1335 // retx on the same RBs
1336 for (int j = dci.m_rbStart; j < dci.m_rbStart + dci.m_rbLen; j++)
1337 {
1338 rbMap.at (j) = true;
1339 rbgAllocationMap.at (j) = dci.m_rnti;
1340 NS_LOG_INFO ("\tRB " << j);
1341 rbAllocatedNum++;
1342 }
1343 NS_LOG_INFO (this << " Send retx in the same RBs " << (uint16_t)dci.m_rbStart << " to " << dci.m_rbStart + dci.m_rbLen << " RV " << (*itStat).second.at (harqId) + 1);
1344 }
1345 else
1346 {
1347 NS_LOG_INFO ("Cannot allocate retx due to RACH allocations for UE " << rnti);
1348 continue;
1349 }
1350 dci.m_ndi = 0;
1351 // Update HARQ buffers with new HarqId
1352 (*itStat).second.at ((*itProcId).second) = (*itStat).second.at (harqId) + 1;
1353 (*itStat).second.at (harqId) = 0;
1354 (*itHarq).second.at ((*itProcId).second) = dci;
1355 ret.m_dciList.push_back (dci);
1356 rntiAllocated.insert (dci.m_rnti);
1357 }
1358 else
1359 {
1360 NS_LOG_INFO (this << " HARQ-ACK feedback from RNTI " << params.m_ulInfoList.at (i).m_rnti);
1361 }
1362 }
1363 }
1364
1365 std::map <uint16_t,uint32_t>::iterator it;
1366 int nflows = 0;
1367
1368 for (it = m_ceBsrRxed.begin (); it != m_ceBsrRxed.end (); it++)
1369 {
1370 std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it).first);
1371 // select UEs with queues not empty and not yet allocated for HARQ
1372 if (((*it).second > 0)&&(itRnti == rntiAllocated.end ()))
1373 {
1374 nflows++;
1375 }
1376 }
1377
1378 if (nflows == 0)
1379 {
1380 if (ret.m_dciList.size () > 0)
1381 {
1382 m_allocationMaps.insert (std::pair <uint16_t, std::vector <uint16_t> > (params.m_sfnSf, rbgAllocationMap));
1384 }
1385
1386 return; // no flows to be scheduled
1387 }
1388
1389
1390 // Divide the remaining resources equally among the active users starting from the subsequent one served last scheduling trigger
1391 uint16_t rbPerFlow = (m_cschedCellConfig.m_ulBandwidth) / (nflows + rntiAllocated.size ());
1392 if (rbPerFlow < 3)
1393 {
1394 rbPerFlow = 3; // at least 3 rbg per flow (till available resource) to ensure TxOpportunity >= 7 bytes
1395 }
1396 int rbAllocated = 0;
1397
1398 if (m_nextRntiUl != 0)
1399 {
1400 for (it = m_ceBsrRxed.begin (); it != m_ceBsrRxed.end (); it++)
1401 {
1402 if ((*it).first == m_nextRntiUl)
1403 {
1404 break;
1405 }
1406 }
1407 if (it == m_ceBsrRxed.end ())
1408 {
1409 NS_LOG_ERROR (this << " no user found");
1410 }
1411 }
1412 else
1413 {
1414 it = m_ceBsrRxed.begin ();
1415 m_nextRntiUl = (*it).first;
1416 }
1417 do
1418 {
1419 std::set <uint16_t>::iterator itRnti = rntiAllocated.find ((*it).first);
1420 if ((itRnti != rntiAllocated.end ())||((*it).second == 0))
1421 {
1422 // UE already allocated for UL-HARQ -> skip it
1423 NS_LOG_DEBUG (this << " UE already allocated in HARQ -> discared, RNTI " << (*it).first);
1424 it++;
1425 if (it == m_ceBsrRxed.end ())
1426 {
1427 // restart from the first
1428 it = m_ceBsrRxed.begin ();
1429 }
1430 continue;
1431 }
1432 if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1433 {
1434 // limit to physical resources last resource assignment
1435 rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1436 // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1437 if (rbPerFlow < 3)
1438 {
1439 // terminate allocation
1440 rbPerFlow = 0;
1441 }
1442 }
1443
1444 UlDciListElement_s uldci;
1445 uldci.m_rnti = (*it).first;
1446 uldci.m_rbLen = rbPerFlow;
1447 bool allocated = false;
1448 NS_LOG_INFO (this << " RB Allocated " << rbAllocated << " rbPerFlow " << rbPerFlow << " flows " << nflows);
1449 while ((!allocated)&&((rbAllocated + rbPerFlow - m_cschedCellConfig.m_ulBandwidth) < 1) && (rbPerFlow != 0))
1450 {
1451 // check availability
1452 bool free = true;
1453 for (uint16_t j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1454 {
1455 if (rbMap.at (j) == true)
1456 {
1457 free = false;
1458 break;
1459 }
1460 }
1461 if (free)
1462 {
1463 uldci.m_rbStart = rbAllocated;
1464
1465 for (uint16_t j = rbAllocated; j < rbAllocated + rbPerFlow; j++)
1466 {
1467 rbMap.at (j) = true;
1468 // store info on allocation for managing ul-cqi interpretation
1469 rbgAllocationMap.at (j) = (*it).first;
1470 }
1471 rbAllocated += rbPerFlow;
1472 allocated = true;
1473 break;
1474 }
1475 rbAllocated++;
1476 if (rbAllocated + rbPerFlow - 1 > m_cschedCellConfig.m_ulBandwidth)
1477 {
1478 // limit to physical resources last resource assignment
1479 rbPerFlow = m_cschedCellConfig.m_ulBandwidth - rbAllocated;
1480 // at least 3 rbg per flow to ensure TxOpportunity >= 7 bytes
1481 if (rbPerFlow < 3)
1482 {
1483 // terminate allocation
1484 rbPerFlow = 0;
1485 }
1486 }
1487 }
1488 if (!allocated)
1489 {
1490 // unable to allocate new resource: finish scheduling
1491 m_nextRntiUl = (*it).first;
1492 if (ret.m_dciList.size () > 0)
1493 {
1495 }
1496 m_allocationMaps.insert (std::pair <uint16_t, std::vector <uint16_t> > (params.m_sfnSf, rbgAllocationMap));
1497 return;
1498 }
1499
1500
1501
1502 std::map <uint16_t, std::vector <double> >::iterator itCqi = m_ueCqi.find ((*it).first);
1503 int cqi = 0;
1504 if (itCqi == m_ueCqi.end ())
1505 {
1506 // no cqi info about this UE
1507 uldci.m_mcs = 0; // MCS 0 -> UL-AMC TBD
1508 }
1509 else
1510 {
1511 // take the lowest CQI value (worst RB)
1512 NS_ABORT_MSG_IF ((*itCqi).second.size() == 0, "CQI of RNTI = " << (*it).first << " has expired");
1513 double minSinr = (*itCqi).second.at (uldci.m_rbStart);
1514 if (minSinr == NO_SINR)
1515 {
1516 minSinr = EstimateUlSinr ((*it).first, uldci.m_rbStart);
1517 }
1518 for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1519 {
1520 double sinr = (*itCqi).second.at (i);
1521 if (sinr == NO_SINR)
1522 {
1523 sinr = EstimateUlSinr ((*it).first, i);
1524 }
1525 if (sinr < minSinr)
1526 {
1527 minSinr = sinr;
1528 }
1529 }
1530
1531 // translate SINR -> cqi: WILD ACK: same as DL
1532 double s = log2 ( 1 + (
1533 std::pow (10, minSinr / 10 ) /
1534 ( (-std::log (5.0 * 0.00005 )) / 1.5) ));
1535 cqi = m_amc->GetCqiFromSpectralEfficiency (s);
1536 if (cqi == 0)
1537 {
1538 it++;
1539 if (it == m_ceBsrRxed.end ())
1540 {
1541 // restart from the first
1542 it = m_ceBsrRxed.begin ();
1543 }
1544 NS_LOG_DEBUG (this << " UE discarded for CQI = 0, RNTI " << uldci.m_rnti);
1545 // remove UE from allocation map
1546 for (uint16_t i = uldci.m_rbStart; i < uldci.m_rbStart + uldci.m_rbLen; i++)
1547 {
1548 rbgAllocationMap.at (i) = 0;
1549 }
1550 continue; // CQI == 0 means "out of range" (see table 7.2.3-1 of 36.213)
1551 }
1552 uldci.m_mcs = m_amc->GetMcsFromCqi (cqi);
1553 }
1554
1555 uldci.m_tbSize = (m_amc->GetUlTbSizeFromMcs (uldci.m_mcs, rbPerFlow) / 8);
1556 UpdateUlRlcBufferInfo (uldci.m_rnti, uldci.m_tbSize);
1557 uldci.m_ndi = 1;
1558 uldci.m_cceIndex = 0;
1559 uldci.m_aggrLevel = 1;
1560 uldci.m_ueTxAntennaSelection = 3; // antenna selection OFF
1561 uldci.m_hopping = false;
1562 uldci.m_n2Dmrs = 0;
1563 uldci.m_tpc = 0; // no power control
1564 uldci.m_cqiRequest = false; // only period CQI at this stage
1565 uldci.m_ulIndex = 0; // TDD parameter
1566 uldci.m_dai = 1; // TDD parameter
1567 uldci.m_freqHopping = 0;
1568 uldci.m_pdcchPowerOffset = 0; // not used
1569 ret.m_dciList.push_back (uldci);
1570 // store DCI for HARQ_PERIOD
1571 uint8_t harqId = 0;
1572 if (m_harqOn == true)
1573 {
1574 std::map <uint16_t, uint8_t>::iterator itProcId;
1575 itProcId = m_ulHarqCurrentProcessId.find (uldci.m_rnti);
1576 if (itProcId == m_ulHarqCurrentProcessId.end ())
1577 {
1578 NS_FATAL_ERROR ("No info find in HARQ buffer for UE " << uldci.m_rnti);
1579 }
1580 harqId = (*itProcId).second;
1581 std::map <uint16_t, UlHarqProcessesDciBuffer_t>::iterator itDci = m_ulHarqProcessesDciBuffer.find (uldci.m_rnti);
1582 if (itDci == m_ulHarqProcessesDciBuffer.end ())
1583 {
1584 NS_FATAL_ERROR ("Unable to find RNTI entry in UL DCI HARQ buffer for RNTI " << uldci.m_rnti);
1585 }
1586 (*itDci).second.at (harqId) = uldci;
1587 // Update HARQ process status (RV 0)
1588 std::map <uint16_t, UlHarqProcessesStatus_t>::iterator itStat = m_ulHarqProcessesStatus.find (uldci.m_rnti);
1589 if (itStat == m_ulHarqProcessesStatus.end ())
1590 {
1591 NS_LOG_ERROR ("No info find in HARQ buffer for UE (might change eNB) " << uldci.m_rnti);
1592 }
1593 (*itStat).second.at (harqId) = 0;
1594 }
1595
1596 NS_LOG_INFO (this << " UE Allocation RNTI " << (*it).first << " startPRB " << (uint32_t)uldci.m_rbStart << " nPRB " << (uint32_t)uldci.m_rbLen << " CQI " << cqi << " MCS " << (uint32_t)uldci.m_mcs << " TBsize " << uldci.m_tbSize << " RbAlloc " << rbAllocated << " harqId " << (uint16_t)harqId);
1597
1598
1599 it++;
1600 if (it == m_ceBsrRxed.end ())
1601 {
1602 // restart from the first
1603 it = m_ceBsrRxed.begin ();
1604 }
1605 if ((rbAllocated == m_cschedCellConfig.m_ulBandwidth) || (rbPerFlow == 0))
1606 {
1607 // Stop allocation: no more PRBs
1608 m_nextRntiUl = (*it).first;
1609 break;
1610 }
1611 }
1612 while (((*it).first != m_nextRntiUl)&&(rbPerFlow!=0));
1613
1614
1615 m_allocationMaps.insert (std::pair <uint16_t, std::vector <uint16_t> > (params.m_sfnSf, rbgAllocationMap));
1617
1618 return;
1619}
1620
1621void
1623{
1624 NS_LOG_FUNCTION (this);
1625 return;
1626}
1627
1628void
1630{
1631 NS_LOG_FUNCTION (this);
1632 return;
1633}
1634
1635void
1637{
1638 NS_LOG_FUNCTION (this);
1639
1640 std::map <uint16_t,uint32_t>::iterator it;
1641
1642 for (unsigned int i = 0; i < params.m_macCeList.size (); i++)
1643 {
1644 if ( params.m_macCeList.at (i).m_macCeType == MacCeListElement_s::BSR )
1645 {
1646 // buffer status report
1647 // note that this scheduler does not differentiate the
1648 // allocation according to which LCGs have more/less bytes
1649 // to send.
1650 // Hence the BSR of different LCGs are just summed up to get
1651 // a total queue size that is used for allocation purposes.
1652
1653 uint32_t buffer = 0;
1654 for (uint8_t lcg = 0; lcg < 4; ++lcg)
1655 {
1656 uint8_t bsrId = params.m_macCeList.at (i).m_macCeValue.m_bufferStatus.at (lcg);
1657 buffer += BufferSizeLevelBsr::BsrId2BufferSize (bsrId);
1658 }
1659
1660 uint16_t rnti = params.m_macCeList.at (i).m_rnti;
1661 NS_LOG_LOGIC (this << "RNTI=" << rnti << " buffer=" << buffer);
1662 it = m_ceBsrRxed.find (rnti);
1663 if (it == m_ceBsrRxed.end ())
1664 {
1665 // create the new entry
1666 m_ceBsrRxed.insert ( std::pair<uint16_t, uint32_t > (rnti, buffer));
1667 }
1668 else
1669 {
1670 // update the buffer size value
1671 (*it).second = buffer;
1672 }
1673 }
1674 }
1675
1676 return;
1677}
1678
1679void
1681{
1682 NS_LOG_FUNCTION (this);
1683// retrieve the allocation for this subframe
1684 switch (m_ulCqiFilter)
1685 {
1687 {
1688 // filter all the CQIs that are not SRS based
1689 if (params.m_ulCqi.m_type != UlCqi_s::SRS)
1690 {
1691 return;
1692 }
1693 }
1694 break;
1696 {
1697 // filter all the CQIs that are not SRS based
1698 if (params.m_ulCqi.m_type != UlCqi_s::PUSCH)
1699 {
1700 return;
1701 }
1702 }
1703 break;
1704 default:
1705 NS_FATAL_ERROR ("Unknown UL CQI type");
1706 }
1707
1708 switch (params.m_ulCqi.m_type)
1709 {
1710 case UlCqi_s::PUSCH:
1711 {
1712 std::map <uint16_t, std::vector <uint16_t> >::iterator itMap;
1713 std::map <uint16_t, std::vector <double> >::iterator itCqi;
1714 NS_LOG_DEBUG (this << " Collect PUSCH CQIs of Frame no. " << (params.m_sfnSf >> 4) << " subframe no. " << (0xF & params.m_sfnSf));
1715 itMap = m_allocationMaps.find (params.m_sfnSf);
1716 if (itMap == m_allocationMaps.end ())
1717 {
1718 return;
1719 }
1720 for (uint32_t i = 0; i < (*itMap).second.size (); i++)
1721 {
1722 // convert from fixed point notation Sxxxxxxxxxxx.xxx to double
1723 double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (i));
1724 itCqi = m_ueCqi.find ((*itMap).second.at (i));
1725 if (itCqi == m_ueCqi.end ())
1726 {
1727 // create a new entry
1728 std::vector <double> newCqi;
1729 for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1730 {
1731 if (i == j)
1732 {
1733 newCqi.push_back (sinr);
1734 }
1735 else
1736 {
1737 // initialize with NO_SINR value.
1738 newCqi.push_back (NO_SINR);
1739 }
1740
1741 }
1742 m_ueCqi.insert (std::pair <uint16_t, std::vector <double> > ((*itMap).second.at (i), newCqi));
1743 // generate correspondent timer
1744 m_ueCqiTimers.insert (std::pair <uint16_t, uint32_t > ((*itMap).second.at (i), m_cqiTimersThreshold));
1745 }
1746 else
1747 {
1748 // update the value
1749 (*itCqi).second.at (i) = sinr;
1750 //NS_LOG_DEBUG (this << " RNTI " << (*itMap).second.at (i) << " RB " << i << " SINR " << sinr);
1751 // update correspondent timer
1752 std::map <uint16_t, uint32_t>::iterator itTimers;
1753 itTimers = m_ueCqiTimers.find ((*itMap).second.at (i));
1754 (*itTimers).second = m_cqiTimersThreshold;
1755
1756 }
1757
1758 }
1759 // remove obsolete info on allocation
1760 m_allocationMaps.erase (itMap);
1761 }
1762 break;
1763 case UlCqi_s::SRS:
1764 {
1765 // get the RNTI from vendor specific parameters
1766 uint16_t rnti = 0;
1767 NS_ASSERT (params.m_vendorSpecificList.size () > 0);
1768 for (uint16_t i = 0; i < params.m_vendorSpecificList.size (); i++)
1769 {
1770 if (params.m_vendorSpecificList.at (i).m_type == SRS_CQI_RNTI_VSP)
1771 {
1772 Ptr<SrsCqiRntiVsp> vsp = DynamicCast<SrsCqiRntiVsp> (params.m_vendorSpecificList.at (i).m_value);
1773 rnti = vsp->GetRnti ();
1774 }
1775 }
1776 std::map <uint16_t, std::vector <double> >::iterator itCqi;
1777 itCqi = m_ueCqi.find (rnti);
1778 if (itCqi == m_ueCqi.end ())
1779 {
1780 // create a new entry
1781 std::vector <double> newCqi;
1782 for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1783 {
1784 double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (j));
1785 newCqi.push_back (sinr);
1786 NS_LOG_INFO (this << " RNTI " << rnti << " new SRS-CQI for RB " << j << " value " << sinr);
1787
1788 }
1789 m_ueCqi.insert (std::pair <uint16_t, std::vector <double> > (rnti, newCqi));
1790 // generate correspondent timer
1791 m_ueCqiTimers.insert (std::pair <uint16_t, uint32_t > (rnti, m_cqiTimersThreshold));
1792 }
1793 else
1794 {
1795 // update the values
1796 for (uint32_t j = 0; j < m_cschedCellConfig.m_ulBandwidth; j++)
1797 {
1798 double sinr = LteFfConverter::fpS11dot3toDouble (params.m_ulCqi.m_sinr.at (j));
1799 (*itCqi).second.at (j) = sinr;
1800 NS_LOG_INFO (this << " RNTI " << rnti << " update SRS-CQI for RB " << j << " value " << sinr);
1801 }
1802 // update correspondent timer
1803 std::map <uint16_t, uint32_t>::iterator itTimers;
1804 itTimers = m_ueCqiTimers.find (rnti);
1805 (*itTimers).second = m_cqiTimersThreshold;
1806
1807 }
1808
1809
1810 }
1811 break;
1812 case UlCqi_s::PUCCH_1:
1813 case UlCqi_s::PUCCH_2:
1814 case UlCqi_s::PRACH:
1815 {
1816 NS_FATAL_ERROR ("TtaFfMacScheduler supports only PUSCH and SRS UL-CQIs");
1817 }
1818 break;
1819 default:
1820 NS_FATAL_ERROR ("Unknown type of UL-CQI");
1821 }
1822 return;
1823}
1824
1825void
1827{
1828 // refresh DL CQI P01 Map
1829 std::map <uint16_t,uint32_t>::iterator itP10 = m_p10CqiTimers.begin ();
1830 while (itP10 != m_p10CqiTimers.end ())
1831 {
1832 NS_LOG_INFO (this << " P10-CQI for user " << (*itP10).first << " is " << (uint32_t)(*itP10).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1833 if ((*itP10).second == 0)
1834 {
1835 // delete correspondent entries
1836 std::map <uint16_t,uint8_t>::iterator itMap = m_p10CqiRxed.find ((*itP10).first);
1837 NS_ASSERT_MSG (itMap != m_p10CqiRxed.end (), " Does not find CQI report for user " << (*itP10).first);
1838 NS_LOG_INFO (this << " P10-CQI expired for user " << (*itP10).first);
1839 m_p10CqiRxed.erase (itMap);
1840 std::map <uint16_t,uint32_t>::iterator temp = itP10;
1841 itP10++;
1842 m_p10CqiTimers.erase (temp);
1843 }
1844 else
1845 {
1846 (*itP10).second--;
1847 itP10++;
1848 }
1849 }
1850
1851 // refresh DL CQI A30 Map
1852 std::map <uint16_t,uint32_t>::iterator itA30 = m_a30CqiTimers.begin ();
1853 while (itA30 != m_a30CqiTimers.end ())
1854 {
1855 NS_LOG_INFO (this << " A30-CQI for user " << (*itA30).first << " is " << (uint32_t)(*itA30).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1856 if ((*itA30).second == 0)
1857 {
1858 // delete correspondent entries
1859 std::map <uint16_t,SbMeasResult_s>::iterator itMap = m_a30CqiRxed.find ((*itA30).first);
1860 NS_ASSERT_MSG (itMap != m_a30CqiRxed.end (), " Does not find CQI report for user " << (*itA30).first);
1861 NS_LOG_INFO (this << " A30-CQI expired for user " << (*itA30).first);
1862 m_a30CqiRxed.erase (itMap);
1863 std::map <uint16_t,uint32_t>::iterator temp = itA30;
1864 itA30++;
1865 m_a30CqiTimers.erase (temp);
1866 }
1867 else
1868 {
1869 (*itA30).second--;
1870 itA30++;
1871 }
1872 }
1873
1874 return;
1875}
1876
1877
1878void
1880{
1881 // refresh UL CQI Map
1882 std::map <uint16_t,uint32_t>::iterator itUl = m_ueCqiTimers.begin ();
1883 while (itUl != m_ueCqiTimers.end ())
1884 {
1885 NS_LOG_INFO (this << " UL-CQI for user " << (*itUl).first << " is " << (uint32_t)(*itUl).second << " thr " << (uint32_t)m_cqiTimersThreshold);
1886 if ((*itUl).second == 0)
1887 {
1888 // delete correspondent entries
1889 std::map <uint16_t, std::vector <double> >::iterator itMap = m_ueCqi.find ((*itUl).first);
1890 NS_ASSERT_MSG (itMap != m_ueCqi.end (), " Does not find CQI report for user " << (*itUl).first);
1891 NS_LOG_INFO (this << " UL-CQI exired for user " << (*itUl).first);
1892 (*itMap).second.clear ();
1893 m_ueCqi.erase (itMap);
1894 std::map <uint16_t,uint32_t>::iterator temp = itUl;
1895 itUl++;
1896 m_ueCqiTimers.erase (temp);
1897 }
1898 else
1899 {
1900 (*itUl).second--;
1901 itUl++;
1902 }
1903 }
1904
1905 return;
1906}
1907
1908void
1909TtaFfMacScheduler::UpdateDlRlcBufferInfo (uint16_t rnti, uint8_t lcid, uint16_t size)
1910{
1911 std::map<LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters>::iterator it;
1912 LteFlowId_t flow (rnti, lcid);
1913 it = m_rlcBufferReq.find (flow);
1914 if (it != m_rlcBufferReq.end ())
1915 {
1916 NS_LOG_INFO (this << " UE " << rnti << " LC " << (uint16_t)lcid << " txqueue " << (*it).second.m_rlcTransmissionQueueSize << " retxqueue " << (*it).second.m_rlcRetransmissionQueueSize << " status " << (*it).second.m_rlcStatusPduSize << " decrease " << size);
1917 // Update queues: RLC tx order Status, ReTx, Tx
1918 // Update status queue
1919 if (((*it).second.m_rlcStatusPduSize > 0) && (size >= (*it).second.m_rlcStatusPduSize))
1920 {
1921 (*it).second.m_rlcStatusPduSize = 0;
1922 }
1923 else if (((*it).second.m_rlcRetransmissionQueueSize > 0) && (size >= (*it).second.m_rlcRetransmissionQueueSize))
1924 {
1925 (*it).second.m_rlcRetransmissionQueueSize = 0;
1926 }
1927 else if ((*it).second.m_rlcTransmissionQueueSize > 0)
1928 {
1929 uint32_t rlcOverhead;
1930 if (lcid == 1)
1931 {
1932 // for SRB1 (using RLC AM) it's better to
1933 // overestimate RLC overhead rather than
1934 // underestimate it and risk unneeded
1935 // segmentation which increases delay
1936 rlcOverhead = 4;
1937 }
1938 else
1939 {
1940 // minimum RLC overhead due to header
1941 rlcOverhead = 2;
1942 }
1943 // update transmission queue
1944 if ((*it).second.m_rlcTransmissionQueueSize <= size - rlcOverhead)
1945 {
1946 (*it).second.m_rlcTransmissionQueueSize = 0;
1947 }
1948 else
1949 {
1950 (*it).second.m_rlcTransmissionQueueSize -= size - rlcOverhead;
1951 }
1952 }
1953 }
1954 else
1955 {
1956 NS_LOG_ERROR (this << " Does not find DL RLC Buffer Report of UE " << rnti);
1957 }
1958}
1959
1960void
1961TtaFfMacScheduler::UpdateUlRlcBufferInfo (uint16_t rnti, uint16_t size)
1962{
1963
1964 size = size - 2; // remove the minimum RLC overhead
1965 std::map <uint16_t,uint32_t>::iterator it = m_ceBsrRxed.find (rnti);
1966 if (it != m_ceBsrRxed.end ())
1967 {
1968 NS_LOG_INFO (this << " UE " << rnti << " size " << size << " BSR " << (*it).second);
1969 if ((*it).second >= size)
1970 {
1971 (*it).second -= size;
1972 }
1973 else
1974 {
1975 (*it).second = 0;
1976 }
1977 }
1978 else
1979 {
1980 NS_LOG_ERROR (this << " Does not find BSR report info of UE " << rnti);
1981 }
1982
1983}
1984
1985void
1987{
1988 NS_LOG_FUNCTION (this << " RNTI " << rnti << " txMode " << (uint16_t)txMode);
1990 params.m_rnti = rnti;
1991 params.m_transmissionMode = txMode;
1993}
1994
1995
1996}
AttributeValue implementation for Boolean.
Definition: boolean.h:37
static uint32_t BsrId2BufferSize(uint8_t val)
Convert BSR ID to buffer size.
Definition: lte-common.cc:184
Provides the CSCHED SAP.
FfMacCschedSapUser class.
virtual void CschedUeConfigUpdateInd(const struct CschedUeConfigUpdateIndParameters &params)=0
CSCHED_UE_UPDATE_IND.
virtual void CschedUeConfigCnf(const struct CschedUeConfigCnfParameters &params)=0
CSCHED_UE_CONFIG_CNF.
Provides the SCHED SAP.
FfMacSchedSapUser class.
virtual void SchedUlConfigInd(const struct SchedUlConfigIndParameters &params)=0
SCHED_UL_CONFIG_IND.
virtual void SchedDlConfigInd(const struct SchedDlConfigIndParameters &params)=0
SCHED_DL_CONFIG_IND.
This abstract base class identifies the interface by means of which the helper object can plug on the...
UlCqiFilter_t m_ulCqiFilter
UL CQI filter.
static double fpS11dot3toDouble(uint16_t val)
Convert from fixed point S11.3 notation to double.
Definition: lte-common.cc:155
Service Access Point (SAP) offered by the Frequency Reuse algorithm instance to the MAC Scheduler ins...
Definition: lte-ffr-sap.h:40
Service Access Point (SAP) offered by the eNodeB RRC instance to the Frequency Reuse algorithm instan...
Definition: lte-ffr-sap.h:139
Smart pointer class similar to boost::intrusive_ptr.
Definition: ptr.h:74
static uint8_t TxMode2LayerNum(uint8_t txMode)
Transmit mode 2 layer number.
Definition: lte-common.cc:212
Implements the SCHED SAP and CSCHED SAP for a Throughput to Average scheduler.
FfMacSchedSapUser * m_schedSapUser
Sched SAP user.
bool m_harqOn
m_harqOn when false inhibit the HARQ mechanisms (by default active)
std::map< uint16_t, uint32_t > m_ceBsrRxed
Map of UE's buffer status reports received.
void RefreshHarqProcesses()
Refresh HARQ processes according to the timers.
void DoCschedLcReleaseReq(const struct FfMacCschedSapProvider::CschedLcReleaseReqParameters &params)
CSched LC release request function.
virtual FfMacCschedSapProvider * GetFfMacCschedSapProvider()
void RefreshDlCqiMaps(void)
Refresh DL CQI maps.
std::map< uint16_t, std::vector< double > > m_ueCqi
Map of UEs' UL-CQI per RBG.
void DoSchedDlPagingBufferReq(const struct FfMacSchedSapProvider::SchedDlPagingBufferReqParameters &params)
Sched DL paging buffer request function.
std::map< uint16_t, uint8_t > m_uesTxMode
txMode of the UEs
std::set< uint16_t > m_flowStatsDl
Set of UE statistics (per RNTI basis) in downlink.
uint8_t HarqProcessAvailability(uint16_t rnti)
Return the availability of free process for the RNTI specified.
void DoCschedLcConfigReq(const struct FfMacCschedSapProvider::CschedLcConfigReqParameters &params)
CSched LC config request function.
uint16_t m_nextRntiUl
RNTI of the next user to be served next scheduling in UL.
void DoCschedUeReleaseReq(const struct FfMacCschedSapProvider::CschedUeReleaseReqParameters &params)
CSched UE release request function.
int GetRbgSize(int dlbandwidth)
Get RBG size function.
LteFfrSapUser * m_ffrSapUser
FFR SAP user.
void UpdateDlRlcBufferInfo(uint16_t rnti, uint8_t lcid, uint16_t size)
Update DL RLC buffer info function.
std::vector< DlInfoListElement_s > m_dlInfoListBuffered
HARQ retx buffered.
virtual LteFfrSapUser * GetLteFfrSapUser()
double EstimateUlSinr(uint16_t rnti, uint16_t rb)
Estimate UL SINR function.
LteFfrSapProvider * m_ffrSapProvider
FFR SAP provider.
std::vector< struct RachListElement_s > m_rachList
RACH list.
void DoCschedUeConfigReq(const struct FfMacCschedSapProvider::CschedUeConfigReqParameters &params)
CSched UE config request function.
virtual void SetLteFfrSapProvider(LteFfrSapProvider *s)
Set the Provider part of the LteFfrSap that this Scheduler will interact with.
friend class MemberSchedSapProvider< TtaFfMacScheduler >
allow MemberSchedSapProvider<TtaFfMacScheduler> class friend access
void DoSchedDlMacBufferReq(const struct FfMacSchedSapProvider::SchedDlMacBufferReqParameters &params)
Sched DL MAC buffer request function.
std::map< uint16_t, uint8_t > m_p10CqiRxed
Map of UE's DL CQI P01 received.
std::map< uint16_t, std::vector< uint16_t > > m_allocationMaps
Map of previous allocated UE per RBG (used to retrieve info from UL-CQI)
FfMacCschedSapProvider * m_cschedSapProvider
CSched SAP provider.
std::map< uint16_t, uint8_t > m_ulHarqCurrentProcessId
UL HARQ current process ID.
virtual ~TtaFfMacScheduler()
Destructor.
std::map< uint16_t, uint8_t > m_dlHarqCurrentProcessId
DL HARQ current process ID.
static TypeId GetTypeId(void)
Get the type ID.
virtual void SetFfMacSchedSapUser(FfMacSchedSapUser *s)
set the user part of the FfMacSchedSap that this Scheduler will interact with.
virtual void SetFfMacCschedSapUser(FfMacCschedSapUser *s)
set the user part of the FfMacCschedSap that this Scheduler will interact with.
std::map< uint16_t, UlHarqProcessesStatus_t > m_ulHarqProcessesStatus
UL HARQ process status.
std::vector< uint16_t > m_rachAllocationMap
RACH allocation map.
std::map< uint16_t, DlHarqProcessesStatus_t > m_dlHarqProcessesStatus
DL HARQ process status.
void DoSchedUlSrInfoReq(const struct FfMacSchedSapProvider::SchedUlSrInfoReqParameters &params)
Sched UL SR info request function.
virtual FfMacSchedSapProvider * GetFfMacSchedSapProvider()
uint8_t UpdateHarqProcessId(uint16_t rnti)
Update and return a new process Id for the RNTI specified.
void DoSchedDlCqiInfoReq(const struct FfMacSchedSapProvider::SchedDlCqiInfoReqParameters &params)
Sched DL CQI info request function.
FfMacCschedSapUser * m_cschedSapUser
CSched SAP user.
std::map< uint16_t, UlHarqProcessesDciBuffer_t > m_ulHarqProcessesDciBuffer
UL HARQ process DCI buffer.
void DoSchedDlRlcBufferReq(const struct FfMacSchedSapProvider::SchedDlRlcBufferReqParameters &params)
Sched DL RLC buffer request function.
void DoSchedUlMacCtrlInfoReq(const struct FfMacSchedSapProvider::SchedUlMacCtrlInfoReqParameters &params)
Sched UL MAC control info request function.
void TransmissionModeConfigurationUpdate(uint16_t rnti, uint8_t txMode)
Transmission mode configuration update.
std::map< uint16_t, SbMeasResult_s > m_a30CqiRxed
Map of UE's DL CQI A30 received.
void DoSchedUlTriggerReq(const struct FfMacSchedSapProvider::SchedUlTriggerReqParameters &params)
Sched UL trigger request function.
void UpdateUlRlcBufferInfo(uint16_t rnti, uint16_t size)
Update DL RLC buffer info function.
unsigned int LcActivePerFlow(uint16_t rnti)
LC active per flow function.
std::map< uint16_t, uint32_t > m_ueCqiTimers
Map of UEs' timers on UL-CQI per RBG.
std::map< uint16_t, DlHarqProcessesTimer_t > m_dlHarqProcessesTimer
DL HARQ process timer.
std::map< uint16_t, DlHarqRlcPduListBuffer_t > m_dlHarqProcessesRlcPduListBuffer
DL HARQ process RLC PDU list buffer.
virtual void DoDispose(void)
Destructor implementation.
void DoSchedDlRachInfoReq(const struct FfMacSchedSapProvider::SchedDlRachInfoReqParameters &params)
Sched DL RACH info request function.
void DoSchedDlTriggerReq(const struct FfMacSchedSapProvider::SchedDlTriggerReqParameters &params)
Sched DL trigger request function.
void RefreshUlCqiMaps(void)
Refresh UL CQI maps.
friend class MemberCschedSapProvider< TtaFfMacScheduler >
allow MemberCschedSapProvider<TtaFfMacScheduler> class friend access
FfMacSchedSapProvider * m_schedSapProvider
Sched SAP provider.
std::map< LteFlowId_t, FfMacSchedSapProvider::SchedDlRlcBufferReqParameters > m_rlcBufferReq
Vectors of UE's LC info.
std::set< uint16_t > m_flowStatsUl
Set of UE statistics (per RNTI basis)
void DoSchedUlNoiseInterferenceReq(const struct FfMacSchedSapProvider::SchedUlNoiseInterferenceReqParameters &params)
Sched UL noise interference request function.
void DoSchedUlCqiInfoReq(const struct FfMacSchedSapProvider::SchedUlCqiInfoReqParameters &params)
Sched UL CQI info request function.
FfMacCschedSapProvider::CschedCellConfigReqParameters m_cschedCellConfig
CSched cell config.
std::map< uint16_t, uint32_t > m_a30CqiTimers
Map of UE's timers on DL CQI A30 received.
uint8_t m_ulGrantMcs
MCS for UL grant (default 0)
std::map< uint16_t, DlHarqProcessesDciBuffer_t > m_dlHarqProcessesDciBuffer
DL HARQ process DCI buffer.
void DoCschedCellConfigReq(const struct FfMacCschedSapProvider::CschedCellConfigReqParameters &params)
CSched cell config request function.
std::map< uint16_t, uint32_t > m_p10CqiTimers
Map of UE's timers on DL CQI P01 received.
a unique identifier for an interface.
Definition: type-id.h:59
TypeId SetParent(TypeId tid)
Set the parent TypeId.
Definition: type-id.cc:922
Hold an unsigned integer type.
Definition: uinteger.h:44
#define NO_SINR
#define HARQ_PROC_NUM
#define HARQ_DL_TIMEOUT
#define NS_ASSERT(condition)
At runtime, in debugging builds, if this condition is not true, the program prints the source file,...
Definition: assert.h:67
#define NS_ASSERT_MSG(condition, message)
At runtime, in debugging builds, if this condition is not true, the program prints the message to out...
Definition: assert.h:88
Ptr< const AttributeChecker > MakeBooleanChecker(void)
Definition: boolean.cc:121
Ptr< const AttributeAccessor > MakeBooleanAccessor(T1 a1)
Definition: boolean.h:85
Ptr< const AttributeAccessor > MakeUintegerAccessor(T1 a1)
Definition: uinteger.h:45
#define NS_FATAL_ERROR(msg)
Report a fatal error with a message and terminate.
Definition: fatal-error.h:165
#define NS_ABORT_MSG_IF(cond, msg)
Abnormal program termination if a condition is true, with a message.
Definition: abort.h:108
#define NS_LOG_ERROR(msg)
Use NS_LOG to output a message of level LOG_ERROR.
Definition: log.h:257
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:205
#define NS_LOG_DEBUG(msg)
Use NS_LOG to output a message of level LOG_DEBUG.
Definition: log.h:273
#define NS_LOG_LOGIC(msg)
Use NS_LOG to output a message of level LOG_LOGIC.
Definition: log.h:289
#define NS_LOG_FUNCTION(parameters)
If log level LOG_FUNCTION is enabled, this macro will output all input parameters separated by ",...
#define NS_LOG_INFO(msg)
Use NS_LOG to output a message of level LOG_INFO.
Definition: log.h:281
#define NS_OBJECT_ENSURE_REGISTERED(type)
Register an Object subclass with the TypeId system.
Definition: object-base.h:45
#define HARQ_PERIOD
Definition: lte-common.h:30
#define SRS_CQI_RNTI_VSP
Every class exported by the ns3 library is enclosed in the ns3 namespace.
std::vector< UlDciListElement_s > UlHarqProcessesDciBuffer_t
UL HARQ process DCI buffer vector.
std::vector< uint8_t > DlHarqProcessesTimer_t
DL HARQ process timer vector typedef.
std::vector< uint8_t > DlHarqProcessesStatus_t
DL HARQ process status vector typedef.
std::vector< RlcPduList_t > DlHarqRlcPduListBuffer_t
vector of the 8 HARQ processes per UE
@ SUCCESS
Definition: ff-mac-common.h:62
static const int TtaType0AllocationRbg[4]
TTA type 0 allocation RBG.
std::vector< DlDciListElement_s > DlHarqProcessesDciBuffer_t
DL HARQ process DCI buffer vector typedef.
std::vector< uint8_t > UlHarqProcessesStatus_t
UL HARQ process status vector.
See section 4.3.8 builDataListElement.
struct DlDciListElement_s m_dci
DCI.
std::vector< std::vector< struct RlcPduListElement_s > > m_rlcPduList
RLC PDU list.
See section 4.3.10 buildRARListElement.
See section 4.3.1 dlDciListElement.
Definition: ff-mac-common.h:94
std::vector< uint8_t > m_ndi
New data indicator.
uint8_t m_harqProcess
HARQ process.
uint32_t m_rbBitmap
RB bitmap.
Definition: ff-mac-common.h:96
std::vector< uint8_t > m_mcs
MCS.
uint8_t m_resAlloc
The type of resource allocation.
Definition: ff-mac-common.h:98
std::vector< uint16_t > m_tbsSize
The TBs size.
Definition: ff-mac-common.h:99
std::vector< uint8_t > m_rv
Redundancy version.
uint8_t m_tpc
Tx power control command.
Parameters of the CSCHED_LC_CONFIG_REQ primitive.
std::vector< struct LogicalChannelConfigListElement_s > m_logicalChannelConfigList
logicalChannelConfigList
Parameters of the CSCHED_LC_RELEASE_REQ primitive.
std::vector< uint8_t > m_logicalChannelIdentity
logical channel identity
Parameters of the CSCHED_UE_CONFIG_REQ primitive.
Parameters of the CSCHED_UE_RELEASE_REQ primitive.
Parameters of the CSCHED_UE_CONFIG_CNF primitive.
Parameters of the CSCHED_UE_CONFIG_UPDATE_IND primitive.
Parameters of the SCHED_DL_CQI_INFO_REQ primitive.
std::vector< struct CqiListElement_s > m_cqiList
CQI list.
Parameters of the SCHED_DL_MAC_BUFFER_REQ primitive.
Parameters of the SCHED_DL_PAGING_BUFFER_REQ primitive.
Parameters of the SCHED_DL_RACH_INFO_REQ primitive.
std::vector< struct RachListElement_s > m_rachList
RACH list.
Parameters of the SCHED_DL_TRIGGER_REQ primitive.
std::vector< struct DlInfoListElement_s > m_dlInfoList
DL info list.
Parameters of the SCHED_UL_CQI_INFO_REQ primitive.
std::vector< struct VendorSpecificListElement_s > m_vendorSpecificList
vendor specific list
Parameters of the SCHED_UL_MAC_CTRL_INFO_REQ primitive.
std::vector< struct MacCeListElement_s > m_macCeList
MAC CE list.
Parameters of the SCHED_UL_NOISE_INTERFERENCE_REQ primitive.
Parameters of the SCHED_UL_SR_INFO_REQ primitive.
Parameters of the SCHED_UL_TRIGGER_REQ primitive.
std::vector< struct UlInfoListElement_s > m_ulInfoList
UL info list.
uint8_t m_nrOfPdcchOfdmSymbols
number of PDCCH OFDM symbols
std::vector< struct BuildDataListElement_s > m_buildDataList
build data list
std::vector< struct BuildRarListElement_s > m_buildRarList
build rar list
Parameters of the SCHED_UL_CONFIG_IND primitive.
std::vector< struct UlDciListElement_s > m_dciList
DCI list.
LteFlowId structure.
Definition: lte-common.h:37
See section 4.3.9 rlcPDU_ListElement.
uint8_t m_logicalChannelIdentity
logical channel identity
std::vector< uint16_t > m_sinr
SINR.
See section 4.3.2 ulDciListElement.
int8_t m_pdcchPowerOffset
CCH power offset.
int8_t m_tpc
Tx power control command.
uint8_t m_dai
DL assignment index.
uint8_t m_cceIndex
Control Channel Element index.
uint8_t m_ulIndex
UL index.
uint8_t m_ueTxAntennaSelection
UE antenna selection.
bool m_cqiRequest
CQI request.
uint8_t m_n2Dmrs
n2 DMRS
uint8_t m_freqHopping
freq hopping
uint8_t m_aggrLevel
The aggregation level.
bool m_ulDelay
UL delay?
int8_t m_tpc
Tx power control command.
bool m_cqiRequest
CQI request?
bool m_hopping
hopping?
uint16_t m_tbSize
size
uint8_t m_rbLen
length
uint8_t m_mcs
MCS.
uint8_t m_rbStart
start
uint16_t m_rnti
RNTI.