60 .AddAttribute(
"Stream",
61 "The stream number for this RNG stream. -1 means "
62 "\"allocate a stream automatically\". "
63 "Note that if -1 is set, Get will return -1 so that it "
64 "is not possible to know which "
65 "value was automatically allocated.",
69 MakeIntegerChecker<int64_t>())
70 .AddAttribute(
"Antithetic",
71 "Set this RNG stream to generate antithetic values",
124 uint64_t base = ((1ULL) << 63);
125 uint64_t target = base + stream;
151 TypeId(
"ns3::UniformRandomVariable")
153 .SetGroupName(
"Core")
156 "The lower bound on the values returned by this RNG stream.",
159 MakeDoubleChecker<double>())
161 "The upper bound on the values returned by this RNG stream.",
164 MakeDoubleChecker<double>());
227 static TypeId tid =
TypeId(
"ns3::ConstantRandomVariable")
229 .SetGroupName(
"Core")
231 .AddAttribute(
"Constant",
232 "The constant value returned by this RNG stream.",
235 MakeDoubleChecker<double>());
286 TypeId(
"ns3::SequentialRandomVariable")
288 .SetGroupName(
"Core")
291 "The first value of the sequence.",
294 MakeDoubleChecker<double>())
296 "One more than the last value of the sequence.",
299 MakeDoubleChecker<double>())
300 .AddAttribute(
"Increment",
301 "The sequence random variable increment.",
302 StringValue(
"ns3::ConstantRandomVariable[Constant=1]"),
304 MakePointerChecker<RandomVariableStream>())
305 .AddAttribute(
"Consecutive",
306 "The number of times each member of the sequence is repeated.",
309 MakeIntegerChecker<uint32_t>());
315 m_currentConsecutive(0),
316 m_isCurrentSet(false)
390 TypeId(
"ns3::ExponentialRandomVariable")
392 .SetGroupName(
"Core")
394 .AddAttribute(
"Mean",
395 "The mean of the values returned by this RNG stream.",
398 MakeDoubleChecker<double>())
399 .AddAttribute(
"Bound",
400 "The upper bound on the values returned by this RNG stream.",
403 MakeDoubleChecker<double>());
441 double r = -mean * std::log(v);
444 if (bound == 0 || r <= bound)
478 TypeId(
"ns3::ParetoRandomVariable")
480 .SetGroupName(
"Core")
484 "The scale parameter for the Pareto distribution returned by this RNG stream.",
487 MakeDoubleChecker<double>())
490 "The shape parameter for the Pareto distribution returned by this RNG stream.",
493 MakeDoubleChecker<double>())
496 "The upper bound on the values returned by this RNG stream (if non-zero).",
499 MakeDoubleChecker<double>());
547 double r = (scale * (1.0 / std::pow(v, 1.0 / shape)));
550 if (bound == 0 || r <= bound)
584 TypeId(
"ns3::WeibullRandomVariable")
586 .SetGroupName(
"Core")
590 "The scale parameter for the Weibull distribution returned by this RNG stream.",
593 MakeDoubleChecker<double>())
596 "The shape parameter for the Weibull distribution returned by this RNG stream.",
599 MakeDoubleChecker<double>())
600 .AddAttribute(
"Bound",
601 "The upper bound on the values returned by this RNG stream.",
604 MakeDoubleChecker<double>());
640 double exponent = 1.0 / shape;
651 double r = scale * std::pow(-std::log(v), exponent);
654 if (bound == 0 || r <= bound)
690 TypeId(
"ns3::NormalRandomVariable")
692 .SetGroupName(
"Core")
694 .AddAttribute(
"Mean",
695 "The mean value for the normal distribution returned by this RNG stream.",
698 MakeDoubleChecker<double>())
701 "The variance value for the normal distribution returned by this RNG stream.",
704 MakeDoubleChecker<double>())
705 .AddAttribute(
"Bound",
706 "The bound on the values returned by this RNG stream.",
709 MakeDoubleChecker<double>());
749 double x2 = mean +
m_v2 *
m_y * std::sqrt(variance);
750 if (std::fabs(x2 - mean) <= bound)
766 double v1 = 2 * u1 - 1;
767 double v2 = 2 * u2 - 1;
768 double w = v1 * v1 + v2 * v2;
771 double y = std::sqrt((-2 * std::log(w)) / w);
772 double x1 = mean + v1 * y * std::sqrt(variance);
774 if (std::fabs(x1 - mean) <= bound)
782 double x2 = mean + v2 * y * std::sqrt(variance);
783 if (std::fabs(x2 - mean) <= bound)
820 TypeId(
"ns3::LogNormalRandomVariable")
822 .SetGroupName(
"Core")
826 "The mu value for the log-normal distribution returned by this RNG stream.",
829 MakeDoubleChecker<double>())
832 "The sigma value for the log-normal distribution returned by this RNG stream.",
835 MakeDoubleChecker<double>());
913 r2 = v1 * v1 + v2 * v2;
914 }
while (r2 > 1.0 || r2 == 0);
916 normal = v1 * std::sqrt(-2.0 * std::log(r2) / r2);
918 x = std::exp(sigma *
normal + mu);
950 TypeId(
"ns3::GammaRandomVariable")
952 .SetGroupName(
"Core")
954 .AddAttribute(
"Alpha",
955 "The alpha value for the gamma distribution returned by this RNG stream.",
958 MakeDoubleChecker<double>())
959 .AddAttribute(
"Beta",
960 "The beta value for the gamma distribution returned by this RNG stream.",
963 MakeDoubleChecker<double>());
1016 return GetValue(1.0 + alpha, beta) * std::pow(u, 1.0 / alpha);
1022 double d = alpha - 1.0 / 3.0;
1023 double c = (1.0 / 3.0) / std::sqrt(d);
1032 double variance = 1.0;
1045 if (u < 1 - 0.0331 * x * x * x * x)
1049 if (std::log(u) < 0.5 * x * x + d * (1 - v + std::log(v)))
1055 return beta * d * v;
1086 double x2 = mean +
m_v2 *
m_y * std::sqrt(variance);
1087 if (std::fabs(x2 - mean) <= bound)
1103 double v1 = 2 * u1 - 1;
1104 double v2 = 2 * u2 - 1;
1105 double w = v1 * v1 + v2 * v2;
1108 double y = std::sqrt((-2 * std::log(w)) / w);
1109 double x1 = mean + v1 * y * std::sqrt(variance);
1111 if (std::fabs(x1 - mean) <= bound)
1119 double x2 = mean + v2 * y * std::sqrt(variance);
1120 if (std::fabs(x2 - mean) <= bound)
1136 TypeId(
"ns3::ErlangRandomVariable")
1138 .SetGroupName(
"Core")
1141 "The k value for the Erlang distribution returned by this RNG stream.",
1144 MakeIntegerChecker<uint32_t>())
1147 "The lambda value for the Erlang distribution returned by this RNG stream.",
1150 MakeDoubleChecker<double>());
1190 double mean = lambda;
1194 for (
unsigned int i = 0; i <
k; ++i)
1237 double r = -mean * std::log(v);
1240 if (bound == 0 || r <= bound)
1253 TypeId(
"ns3::TriangularRandomVariable")
1255 .SetGroupName(
"Core")
1259 "The mean value for the triangular distribution returned by this RNG stream.",
1262 MakeDoubleChecker<double>())
1263 .AddAttribute(
"Min",
1264 "The lower bound on the values returned by this RNG stream.",
1267 MakeDoubleChecker<double>())
1268 .AddAttribute(
"Max",
1269 "The upper bound on the values returned by this RNG stream.",
1272 MakeDoubleChecker<double>());
1309 double mode = 3.0 * mean -
min -
max;
1321 return min + std::sqrt(u * (
max -
min) * (mode -
min));
1325 return max - std::sqrt((1 - u) * (
max -
min) * (
max - mode));
1356 TypeId(
"ns3::ZipfRandomVariable")
1358 .SetGroupName(
"Core")
1361 "The n value for the Zipf distribution returned by this RNG stream.",
1364 MakeIntegerChecker<uint32_t>())
1365 .AddAttribute(
"Alpha",
1366 "The alpha value for the Zipf distribution returned by this RNG stream.",
1369 MakeDoubleChecker<double>());
1401 m_c += (1.0 / std::pow((
double)i, alpha));
1412 double sum_prob = 0;
1413 double zipf_value = 0;
1416 sum_prob +=
m_c / std::pow((
double)i,
m_alpha);
1453 TypeId(
"ns3::ZetaRandomVariable")
1455 .SetGroupName(
"Core")
1457 .AddAttribute(
"Alpha",
1458 "The alpha value for the zeta distribution returned by this RNG stream.",
1461 MakeDoubleChecker<double>());
1482 m_b = std::pow(2.0, alpha - 1.0);
1506 X = std::floor(std::pow(u, -1.0 / (
m_alpha - 1.0)));
1507 T = std::pow(1.0 + 1.0 / X,
m_alpha - 1.0);
1508 test = v * X * (T - 1.0) / (
m_b - 1.0);
1509 }
while (test > (T /
m_b));
1540 static TypeId tid =
TypeId(
"ns3::DeterministicRandomVariable")
1542 .SetGroupName(
"Core")
1576 m_data =
new double[length];
1581 for (std::size_t i = 0; i <
m_count; i++)
1636 TypeId(
"ns3::EmpiricalRandomVariable")
1638 .SetGroupName(
"Core")
1640 .AddAttribute(
"Interpolate",
1641 "Treat the CDF as a smooth distribution and interpolate, "
1642 "default is to treat the CDF as a histogram and sample.",
1691 if (r <=
m_emp.front().cdf)
1696 else if (r >=
m_emp.back().cdf)
1733 auto bound = std::upper_bound(
m_emp.begin(),
m_emp.end(), selector);
1735 return bound->value;
1764 auto upper = std::upper_bound(
m_emp.begin(),
m_emp.end(), selector);
1766 if (upper ==
m_emp.begin())
1772 double c1 = lower->cdf;
1773 double c2 = upper->cdf;
1774 double v1 = lower->value;
1775 double v2 = upper->value;
1777 double value = (v1 + ((v2 - v1) / (c2 - c1)) * (r - c1));
1787 m_emp.emplace_back(v, c);
1799 for (
auto current :
m_emp)
1801 if (current.value < prior.
value || current.cdf < prior.
cdf)
1803 std::cerr <<
"Empirical Dist error,"
1804 <<
" current value " << current.value <<
" prior value " << prior.
value
1805 <<
" current cdf " << current.cdf <<
" prior cdf " << prior.
cdf << std::endl;
1810 if (prior.
cdf != 1.0)
NS_ASSERT() and NS_ASSERT_MSG() macro definitions.
ns3::BooleanValue attribute value declarations.
AttributeValue implementation for Boolean.
The Random Number Generator (RNG) that returns a constant.
static TypeId GetTypeId()
Register this type.
double GetValue() override
Get the next random value as a double drawn from the distribution.
ConstantRandomVariable()
Creates a constant RNG with the default constant value.
double GetConstant() const
Get the constant value returned by this RNG stream.
uint32_t GetInteger() override
Get the next random value as an integer drawn from the distribution.
double m_constant
The constant value returned by this RNG stream.
The Random Number Generator (RNG) that returns a predetermined sequence.
double GetValue() override
Returns the next value in the sequence.
std::size_t m_next
Position of the next value in the array of values.
~DeterministicRandomVariable() override
static TypeId GetTypeId()
Register this type.
double * m_data
Array of values to return in sequence.
uint32_t GetInteger() override
Returns the next value in the sequence.
DeterministicRandomVariable()
Creates a deterministic RNG that will have a predetermined sequence of values.
void SetValueArray(double *values, std::size_t length)
Sets the array of values that holds the predetermined sequence.
std::size_t m_count
Size of the array of values.
This class can be used to hold variables of floating point type such as 'double' or 'float'.
Helper to hold one point of the CDF.
double value
The argument value.
double cdf
The CDF at value
The Random Number Generator (RNG) that has a specified empirical distribution.
bool SetInterpolate(bool interpolate)
Switch the mode between sampling the CDF and interpolating.
void CDF(double v, double c)
Specifies a point in the empirical distribution.
uint32_t GetInteger() override
Returns the next value in the empirical distribution.
bool PreSample(double &value)
Do the initial rng draw and check against the extrema.
double DoSampleCDF(double r)
Sample the CDF as a histogram (without interpolation).
double GetValue() override
Returns the next value in the empirical distribution.
static TypeId GetTypeId()
Register this type.
bool m_interpolate
If true GetValue will interpolate, otherwise treat CDF as normal histogram.
bool m_validated
true once the CDF has been validated.
double DoInterpolate(double r)
Linear interpolation between two points on the CDF to estimate the value at r.
virtual double Interpolate()
Returns the next value in the empirical distribution using linear interpolation.
EmpiricalRandomVariable()
Creates an empirical RNG that has a specified, empirical distribution, and configured for interpolati...
std::vector< ValueCDF > m_emp
The vector of CDF points.
void Validate()
Check that the CDF is valid.
friend bool operator<(ValueCDF a, ValueCDF b)
Comparison operator, for use by std::upper_bound.
The Erlang distribution Random Number Generator (RNG) that allows stream numbers to be set determinis...
double m_lambda
The lambda value for the Erlang distribution returned by this RNG stream.
double GetValue() override
Returns a random double from an Erlang distribution with the current k and lambda.
double GetExponentialValue(double mean, double bound)
Returns a random double from an exponential distribution with the specified mean and upper bound.
static TypeId GetTypeId()
Register this type.
uint32_t GetK() const
Returns the k value for the Erlang distribution returned by this RNG stream.
uint32_t GetInteger() override
Returns a random unsigned integer from an Erlang distribution with the current k and lambda.
double GetLambda() const
Returns the lambda value for the Erlang distribution returned by this RNG stream.
uint32_t m_k
The k value for the Erlang distribution returned by this RNG stream.
ErlangRandomVariable()
Creates an Erlang distribution RNG with the default values for k and lambda.
The exponential distribution Random Number Generator (RNG).
ExponentialRandomVariable()
Creates an exponential distribution RNG with the default values for the mean and upper bound.
uint32_t GetInteger() override
Get the next random value as an integer drawn from the distribution.
double GetBound() const
Get the configured upper bound of this RNG.
double m_mean
The mean value of the unbounded exponential distribution.
double GetMean() const
Get the configured mean value of this RNG.
double m_bound
The upper bound on values that can be returned by this RNG stream.
static TypeId GetTypeId()
Register this type.
double GetValue() override
Get the next random value as a double drawn from the distribution.
The gamma distribution Random Number Generator (RNG) that allows stream numbers to be set determinist...
double GetValue() override
Returns a random double from a gamma distribution with the current alpha and beta.
GammaRandomVariable()
Creates a gamma distribution RNG with the default values for alpha and beta.
double m_alpha
The alpha value for the gamma distribution returned by this RNG stream.
double GetNormalValue(double mean, double variance, double bound)
Returns a random double from a normal distribution with the specified mean, variance,...
double m_y
The algorithm produces two values at a time.
uint32_t GetInteger() override
Returns a random unsigned integer from a gamma distribution with the current alpha and beta.
double m_v2
The algorithm produces two values at a time.
bool m_nextValid
True if the next normal value is valid.
static TypeId GetTypeId()
Register this type.
double GetAlpha() const
Returns the alpha value for the gamma distribution returned by this RNG stream.
double GetBeta() const
Returns the beta value for the gamma distribution returned by this RNG stream.
double m_beta
The beta value for the gamma distribution returned by this RNG stream.
Hold a signed integer type.
The log-normal distribution Random Number Generator (RNG) that allows stream numbers to be set determ...
uint32_t GetInteger() override
Returns a random unsigned integer from a log-normal distribution with the current mu and sigma.
double GetMu() const
Returns the mu value for the log-normal distribution returned by this RNG stream.
double GetSigma() const
Returns the sigma value for the log-normal distribution returned by this RNG stream.
double GetValue() override
Returns a random double from a log-normal distribution with the current mu and sigma.
double m_mu
The mu value for the log-normal distribution returned by this RNG stream.
double m_sigma
The sigma value for the log-normal distribution returned by this RNG stream.
LogNormalRandomVariable()
Creates a log-normal distribution RNG with the default values for mu and sigma.
static TypeId GetTypeId()
Register this type.
The normal (Gaussian) distribution Random Number Generator (RNG) that allows stream numbers to be set...
double m_y
The algorithm produces two values at a time.
double GetBound() const
Returns the bound on values that can be returned by this RNG stream.
uint32_t GetInteger() override
Returns a random unsigned integer from a normal distribution with the current mean,...
double GetVariance() const
Returns the variance value for the normal distribution returned by this RNG stream.
double m_mean
The mean value for the normal distribution returned by this RNG stream.
static TypeId GetTypeId()
Register this type.
double GetMean() const
Returns the mean value for the normal distribution returned by this RNG stream.
static const double INFINITE_VALUE
Large constant to bound the range.
double m_variance
The variance value for the normal distribution returned by this RNG stream.
double GetValue() override
Returns a random double from a normal distribution with the current mean, variance,...
double m_bound
The bound on values that can be returned by this RNG stream.
bool m_nextValid
True if the next value is valid.
NormalRandomVariable()
Creates a normal distribution RNG with the default values for the mean, variance, and bound.
double m_v2
The algorithm produces two values at a time.
A base class which provides memory management and object aggregation.
The Pareto distribution Random Number Generator (RNG).
double GetShape() const
Returns the shape parameter for the Pareto distribution returned by this RNG stream.
double m_scale
The scale parameter for the Pareto distribution returned by this RNG stream.
ParetoRandomVariable()
Creates a Pareto distribution RNG with the default values for the mean, the shape,...
static TypeId GetTypeId()
Register this type.
double m_shape
The shape parameter for the Pareto distribution returned by this RNG stream.
uint32_t GetInteger() override
Returns a random unsigned integer from a Pareto distribution with the current mean,...
double GetScale() const
Returns the scale parameter for the Pareto distribution returned by this RNG stream.
double m_bound
The upper bound on values that can be returned by this RNG stream.
double GetValue() override
Returns a random double from a Pareto distribution with the current mean, shape, and upper bound.
double GetBound() const
Returns the upper bound on values that can be returned by this RNG stream.
The basic uniform Random Number Generator (RNG).
static TypeId GetTypeId()
Register this type.
RngStream * Peek() const
Get the pointer to the underlying RngStream.
bool IsAntithetic() const
Check if antithetic values will be generated.
virtual double GetValue()=0
Get the next random value as a double drawn from the distribution.
~RandomVariableStream() override
Destructor.
bool m_isAntithetic
Indicates if antithetic values should be generated by this RNG stream.
void SetAntithetic(bool isAntithetic)
Specify whether antithetic values should be generated.
int64_t m_stream
The stream number for the RngStream.
RandomVariableStream()
Default constructor.
RngStream * m_rng
Pointer to the underlying RngStream.
void SetStream(int64_t stream)
Specifies the stream number for the RngStream.
int64_t GetStream() const
Returns the stream number for the RngStream.
static uint64_t GetNextStreamIndex()
Get the next automatically assigned stream index.
static uint64_t GetRun()
Get the current run number.
static uint32_t GetSeed()
Get the current seed value which will be used by all subsequently instantiated RandomVariableStream o...
Combined Multiple-Recursive Generator MRG32k3a.
double RandU01()
Generate the next random number for this stream.
The Random Number Generator (RNG) that returns a pattern of sequential values.
uint32_t m_currentConsecutive
The number of times the current distinct value has been repeated.
double m_min
The first value of the sequence.
Ptr< RandomVariableStream > GetIncrement() const
Get the increment for the sequence.
uint32_t m_consecutive
The number of times each distinct value is repeated.
static TypeId GetTypeId()
Register this type.
uint32_t GetInteger() override
Get the next random value as an integer drawn from the distribution.
double m_current
The current sequence value.
double m_max
Strict upper bound on the sequence.
Ptr< RandomVariableStream > m_increment
Increment between distinct values.
double GetValue() override
Get the next random value as a double drawn from the distribution.
uint32_t GetConsecutive() const
Get the number of times each distinct value of the sequence is repeated before incrementing to the ne...
double GetMax() const
Get the limit of the sequence, which is (at least) one more than the last value of the sequence.
SequentialRandomVariable()
Creates a sequential RNG with the default values for the sequence parameters.
double GetMin() const
Get the first value of the sequence.
bool m_isCurrentSet
Indicates if the current sequence value has been properly initialized.
Hold variables of type string.
The triangular distribution Random Number Generator (RNG) that allows stream numbers to be set determ...
double GetValue() override
Returns a random double from a triangular distribution with the current mean, min,...
uint32_t GetInteger() override
Returns a random unsigned integer from a triangular distribution with the current mean,...
double GetMean() const
Returns the mean value for the triangular distribution returned by this RNG stream.
static TypeId GetTypeId()
Register this type.
double m_mean
The mean value for the triangular distribution returned by this RNG stream.
double m_max
The upper bound on values that can be returned by this RNG stream.
double GetMax() const
Returns the upper bound on values that can be returned by this RNG stream.
TriangularRandomVariable()
Creates a triangular distribution RNG with the default values for the mean, lower bound,...
double m_min
The lower bound on values that can be returned by this RNG stream.
double GetMin() const
Returns the lower bound for the triangular distribution returned by this RNG stream.
a unique identifier for an interface.
TypeId SetParent(TypeId tid)
Set the parent TypeId.
The Weibull distribution Random Number Generator (RNG) that allows stream numbers to be set determini...
double m_shape
The shape parameter for the Weibull distribution returned by this RNG stream.
double m_bound
The upper bound on values that can be returned by this RNG stream.
double m_scale
The scale parameter for the Weibull distribution returned by this RNG stream.
double GetBound() const
Returns the upper bound on values that can be returned by this RNG stream.
double GetValue() override
Returns a random double from a Weibull distribution with the current scale, shape,...
WeibullRandomVariable()
Creates a Weibull distribution RNG with the default values for the scale, shape, and upper bound.
static TypeId GetTypeId()
Register this type.
uint32_t GetInteger() override
Returns a random unsigned integer from a Weibull distribution with the current scale,...
double GetScale() const
Returns the scale parameter for the Weibull distribution returned by this RNG stream.
double GetShape() const
Returns the shape parameter for the Weibull distribution returned by this RNG stream.
The zeta distribution Random Number Generator (RNG) that allows stream numbers to be set deterministi...
static TypeId GetTypeId()
Register this type.
double m_alpha
The alpha value for the zeta distribution returned by this RNG stream.
double GetValue() override
Returns a random double from a zeta distribution with the current alpha.
ZetaRandomVariable()
Creates a zeta distribution RNG with the default value for alpha.
double GetAlpha() const
Returns the alpha value for the zeta distribution returned by this RNG stream.
uint32_t GetInteger() override
Returns a random unsigned integer from a zeta distribution with the current alpha.
double m_b
Just for calculus simplifications.
The Zipf distribution Random Number Generator (RNG) that allows stream numbers to be set deterministi...
uint32_t GetN() const
Returns the n value for the Zipf distribution returned by this RNG stream.
static TypeId GetTypeId()
Register this type.
double m_c
The normalization constant.
uint32_t GetInteger() override
Returns a random unsigned integer from a Zipf distribution with the current n and alpha.
double GetAlpha() const
Returns the alpha value for the Zipf distribution returned by this RNG stream.
ZipfRandomVariable()
Creates a Zipf distribution RNG with the default values for n and alpha.
double m_alpha
The alpha value for the Zipf distribution returned by this RNG stream.
uint32_t m_n
The n value for the Zipf distribution returned by this RNG stream.
double GetValue() override
Returns a random double from a Zipf distribution with the current n and alpha.
ns3::DoubleValue attribute value declarations and template implementations.
#define NS_ASSERT(condition)
At runtime, in debugging builds, if this condition is not true, the program prints the source file,...
Ptr< const AttributeAccessor > MakeBooleanAccessor(T1 a1)
Ptr< const AttributeChecker > MakeBooleanChecker()
Ptr< const AttributeAccessor > MakeDoubleAccessor(T1 a1)
Ptr< const AttributeAccessor > MakeIntegerAccessor(T1 a1)
Ptr< const AttributeAccessor > MakePointerAccessor(T1 a1)
#define NS_FATAL_ERROR(msg)
Report a fatal error with a message and terminate.
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
#define NS_LOG_FUNCTION(parameters)
If log level LOG_FUNCTION is enabled, this macro will output all input parameters separated by ",...
#define NS_OBJECT_ENSURE_REGISTERED(type)
Register an Object subclass with the TypeId system.
ns3::IntegerValue attribute value declarations and template implementations.
Every class exported by the ns3 library is enclosed in the ns3 namespace.
ns3::PointerValue attribute value declarations and template implementations.
ns3::RandomVariableStream declaration, and related classes.
ns3::RngSeedManager declaration.
ns3::RngStream declaration.
ns3::StringValue attribute value declarations.