A Discrete-Event Network Simulator
API
lte-enb-phy.cc
Go to the documentation of this file.
1/*
2 * Copyright (c) 2010 TELEMATICS LAB, DEE - Politecnico di Bari
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation;
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
16 *
17 * Author: Giuseppe Piro <g.piro@poliba.it>
18 * Marco Miozzo <mmiozzo@cttc.es>
19 */
20
21#include "lte-enb-phy.h"
22
24#include "lte-enb-mac.h"
25#include "lte-enb-net-device.h"
26#include "lte-net-device.h"
28#include "lte-ue-phy.h"
29#include "lte-ue-rrc.h"
30
31#include <ns3/attribute-accessor-helper.h>
32#include <ns3/double.h>
33#include <ns3/log.h>
34#include <ns3/lte-common.h>
35#include <ns3/lte-vendor-specific-parameters.h>
36#include <ns3/object-factory.h>
37#include <ns3/simulator.h>
38
39#include <cfloat>
40#include <cmath>
41
42// WILD HACK for the inizialization of direct eNB-UE ctrl messaging
43#include <ns3/lte-ue-net-device.h>
44#include <ns3/node-list.h>
45#include <ns3/node.h>
46#include <ns3/pointer.h>
47
48namespace ns3
49{
50
51NS_LOG_COMPONENT_DEFINE("LteEnbPhy");
52
54
61static const Time DL_DATA_DURATION = NanoSeconds(785714 - 1);
62
69
71// member SAP forwarders
73
76{
77 public:
84
85 // inherited from LteEnbPhySapProvider
86 void SendMacPdu(Ptr<Packet> p) override;
88 uint8_t GetMacChTtiDelay() override;
95 virtual void SetBandwidth(uint16_t ulBandwidth, uint16_t dlBandwidth);
101 virtual void SetCellId(uint16_t cellId);
102
103 private:
105};
106
108 : m_phy(phy)
109{
110}
111
112void
114{
116}
117
118void
119EnbMemberLteEnbPhySapProvider::SetBandwidth(uint16_t ulBandwidth, uint16_t dlBandwidth)
120{
121 m_phy->DoSetBandwidth(ulBandwidth, dlBandwidth);
122}
123
124void
126{
127 m_phy->DoSetCellId(cellId);
128}
129
130void
132{
134}
135
136uint8_t
138{
139 return (m_phy->DoGetMacChTtiDelay());
140}
141
143// generic LteEnbPhy methods
145
147{
148 NS_LOG_FUNCTION(this);
149 NS_FATAL_ERROR("This constructor should not be called");
150}
151
153 : LtePhy(dlPhy, ulPhy),
154 m_enbPhySapUser(nullptr),
155 m_enbCphySapUser(nullptr),
156 m_nrFrames(0),
157 m_nrSubFrames(0),
158 m_srsPeriodicity(0),
159 m_srsStartTime(Seconds(0)),
160 m_currentSrsOffset(0),
161 m_interferenceSampleCounter(0)
162{
165 m_harqPhyModule = Create<LteHarqPhy>();
166 m_downlinkSpectrumPhy->SetHarqPhyModule(m_harqPhyModule);
167 m_uplinkSpectrumPhy->SetHarqPhyModule(m_harqPhyModule);
168}
169
170TypeId
172{
173 static TypeId tid =
174 TypeId("ns3::LteEnbPhy")
175 .SetParent<LtePhy>()
176 .SetGroupName("Lte")
177 .AddConstructor<LteEnbPhy>()
178 .AddAttribute("TxPower",
179 "Transmission power in dBm",
180 DoubleValue(30.0),
182 MakeDoubleChecker<double>())
183 .AddAttribute(
184 "NoiseFigure",
185 "Loss (dB) in the Signal-to-Noise-Ratio due to "
186 "non-idealities in the receiver. According to Wikipedia "
187 "(http://en.wikipedia.org/wiki/Noise_figure), this is "
188 "\"the difference in decibels (dB) between"
189 " the noise output of the actual receiver to "
190 "the noise output of an ideal receiver with "
191 "the same overall gain and bandwidth when the receivers "
192 "are connected to sources at the standard noise "
193 "temperature T0.\" In this model, we consider T0 = 290K.",
194 DoubleValue(5.0),
196 MakeDoubleChecker<double>())
197 .AddAttribute(
198 "MacToChannelDelay",
199 "The delay in TTI units that occurs between "
200 "a scheduling decision in the MAC and the actual "
201 "start of the transmission by the PHY. This is "
202 "intended to be used to model the latency of real PHY "
203 "and MAC implementations.",
204 UintegerValue(2),
206 MakeUintegerChecker<uint8_t>())
207 .AddTraceSource("ReportUeSinr",
208 "Report UEs' averaged linear SINR",
210 "ns3::LteEnbPhy::ReportUeSinrTracedCallback")
211 .AddAttribute("UeSinrSamplePeriod",
212 "The sampling period for reporting UEs' SINR stats.",
213 UintegerValue(1),
215 MakeUintegerChecker<uint16_t>())
216 .AddTraceSource("ReportInterference",
217 "Report linear interference power per PHY RB",
219 "ns3::LteEnbPhy::ReportInterferenceTracedCallback")
220 .AddAttribute("InterferenceSamplePeriod",
221 "The sampling period for reporting interference stats",
222 UintegerValue(1),
224 MakeUintegerChecker<uint16_t>())
225 .AddTraceSource("DlPhyTransmission",
226 "DL transmission PHY layer statistics.",
228 "ns3::PhyTransmissionStatParameters::TracedCallback")
229 .AddAttribute("DlSpectrumPhy",
230 "The downlink LteSpectrumPhy associated to this LtePhy",
232 PointerValue(),
234 MakePointerChecker<LteSpectrumPhy>())
235 .AddAttribute("UlSpectrumPhy",
236 "The uplink LteSpectrumPhy associated to this LtePhy",
238 PointerValue(),
240 MakePointerChecker<LteSpectrumPhy>());
241 return tid;
242}
243
245{
246}
247
248void
250{
251 NS_LOG_FUNCTION(this);
252 m_ueAttached.clear();
253 m_srsUeOffset.clear();
254 delete m_enbPhySapProvider;
257}
258
259void
261{
262 NS_LOG_FUNCTION(this);
263
264 NS_ABORT_MSG_IF(!m_netDevice, "LteEnbDevice is not available in LteEnbPhy");
265 Ptr<Node> node = m_netDevice->GetNode();
266 NS_ABORT_MSG_IF(!node, "Node is not available in the LteNetDevice of LteEnbPhy");
267 uint32_t nodeId = node->GetId();
268
269 // ScheduleWithContext() is needed here to set context for logs,
270 // because Initialize() is called outside of Node::AddDevice().
271
273
274 Ptr<SpectrumValue> noisePsd =
278 m_uplinkSpectrumPhy->SetNoisePowerSpectralDensity(noisePsd);
280}
281
282void
284{
285 m_enbPhySapUser = s;
286}
287
290{
291 return (m_enbPhySapProvider);
292}
293
294void
296{
297 NS_LOG_FUNCTION(this);
299}
300
303{
304 NS_LOG_FUNCTION(this);
305 return (m_enbCphySapProvider);
306}
307
308void
310{
311 NS_LOG_FUNCTION(this << pow);
312 m_txPower = pow;
313}
314
315double
317{
318 NS_LOG_FUNCTION(this);
319 return m_txPower;
320}
321
322int8_t
324{
325 NS_LOG_FUNCTION(this);
326 return m_txPower;
327}
328
329void
331{
332 NS_LOG_FUNCTION(this << nf);
333 m_noiseFigure = nf;
334}
335
336double
338{
339 NS_LOG_FUNCTION(this);
340 return m_noiseFigure;
341}
342
343void
345{
346 NS_LOG_FUNCTION(this);
347 m_macChTtiDelay = delay;
348 for (int i = 0; i < m_macChTtiDelay; i++)
349 {
350 Ptr<PacketBurst> pb = CreateObject<PacketBurst>();
351 m_packetBurstQueue.push_back(pb);
352 std::list<Ptr<LteControlMessage>> l;
353 m_controlMessagesQueue.push_back(l);
354 std::list<UlDciLteControlMessage> l1;
355 m_ulDciQueue.push_back(l1);
356 }
357 for (int i = 0; i < UL_PUSCH_TTIS_DELAY; i++)
358 {
359 std::list<UlDciLteControlMessage> l1;
360 m_ulDciQueue.push_back(l1);
361 }
362}
363
364uint8_t
366{
367 return (m_macChTtiDelay);
368}
369
372{
374}
375
378{
379 return m_uplinkSpectrumPhy;
380}
381
382bool
384{
385 NS_LOG_FUNCTION(this << rnti);
386 std::set<uint16_t>::iterator it;
387 it = m_ueAttached.find(rnti);
388 if (it == m_ueAttached.end())
389 {
390 m_ueAttached.insert(rnti);
391 return (true);
392 }
393 else
394 {
395 NS_LOG_ERROR("UE already attached");
396 return (false);
397 }
398}
399
400bool
402{
403 NS_LOG_FUNCTION(this << rnti);
404 std::set<uint16_t>::iterator it;
405 it = m_ueAttached.find(rnti);
406 if (it == m_ueAttached.end())
407 {
408 NS_LOG_ERROR("UE not attached");
409 return (false);
410 }
411 else
412 {
413 m_ueAttached.erase(it);
414 return (true);
415 }
416}
417
418void
420{
421 NS_LOG_FUNCTION(this);
422 SetMacPdu(p);
423}
424
425uint8_t
427{
428 return (m_macChTtiDelay);
429}
430
431void
433{
434 NS_LOG_FUNCTION(this);
436}
437
438void
440{
441 NS_LOG_FUNCTION(this);
444 m_downlinkSpectrumPhy->SetTxPowerSpectralDensity(txPsd);
445}
446
447void
449{
450 NS_LOG_FUNCTION(this);
453 m_downlinkSpectrumPhy->SetTxPowerSpectralDensity(txPsd);
454}
455
456std::vector<int>
458{
459 NS_LOG_FUNCTION(this);
461}
462
463void
465{
466 NS_LOG_FUNCTION(this);
467 double rbgTxPower = m_txPower;
468
469 std::map<uint16_t, double>::iterator it = m_paMap.find(rnti);
470 if (it != m_paMap.end())
471 {
472 rbgTxPower = m_txPower + it->second;
473 }
474
475 m_dlPowerAllocationMap.insert(std::pair<int, double>(rbId, rbgTxPower));
476}
477
480{
481 NS_LOG_FUNCTION(this);
482
486 m_txPower,
488
489 return psd;
490}
491
494{
495 NS_LOG_FUNCTION(this);
496
500 m_txPower,
503
504 return psd;
505}
506
507void
509{
510 NS_LOG_FUNCTION(this);
511}
512
513void
515{
516 NS_LOG_FUNCTION(this << msg);
517 // queues the message (wait for MAC-PHY delay)
519}
520
521void
523{
524 NS_FATAL_ERROR("Obsolete function");
525 NS_LOG_FUNCTION(this << msg);
527}
528
529void
531{
532 NS_LOG_FUNCTION(this);
533 std::list<Ptr<LteControlMessage>>::iterator it;
534 for (it = msgList.begin(); it != msgList.end(); it++)
535 {
536 switch ((*it)->GetMessageType())
537 {
540 DynamicCast<RachPreambleLteControlMessage>(*it);
541 m_enbPhySapUser->ReceiveRachPreamble(rachPreamble->GetRapId());
542 }
543 break;
545 Ptr<DlCqiLteControlMessage> dlcqiMsg = DynamicCast<DlCqiLteControlMessage>(*it);
546 CqiListElement_s dlcqi = dlcqiMsg->GetDlCqi();
547 // check whether the UE is connected
548 if (m_ueAttached.find(dlcqi.m_rnti) != m_ueAttached.end())
549 {
551 }
552 }
553 break;
555 Ptr<BsrLteControlMessage> bsrMsg = DynamicCast<BsrLteControlMessage>(*it);
556 MacCeListElement_s bsr = bsrMsg->GetBsr();
557 // check whether the UE is connected
558 if (m_ueAttached.find(bsr.m_rnti) != m_ueAttached.end())
559 {
561 }
562 }
563 break;
566 DynamicCast<DlHarqFeedbackLteControlMessage>(*it);
567 DlInfoListElement_s dlharq = dlharqMsg->GetDlHarqFeedback();
568 // check whether the UE is connected
569 if (m_ueAttached.find(dlharq.m_rnti) != m_ueAttached.end())
570 {
572 }
573 }
574 break;
575 default:
576 NS_FATAL_ERROR("Unexpected LteControlMessage type");
577 break;
578 }
579 }
580}
581
582void
584{
585 NS_LOG_FUNCTION(this);
586
587 ++m_nrFrames;
588 NS_LOG_INFO("-----frame " << m_nrFrames << "-----");
589 m_nrSubFrames = 0;
590
591 // send MIB at beginning of every frame
593 Ptr<MibLteControlMessage> mibMsg = Create<MibLteControlMessage>();
594 mibMsg->SetMib(m_mib);
595 m_controlMessagesQueue.at(0).emplace_back(mibMsg);
596
598}
599
600void
602{
603 NS_LOG_FUNCTION(this);
604
606
607 /*
608 * Send SIB1 at 6th subframe of every odd-numbered radio frame. This is
609 * equivalent with Section 5.2.1.2 of 3GPP TS 36.331, where it is specified
610 * "repetitions are scheduled in subframe #5 of all other radio frames for
611 * which SFN mod 2 = 0," except that 3GPP counts frames and subframes starting
612 * from 0, while ns-3 counts starting from 1.
613 */
614 if ((m_nrSubFrames == 6) && ((m_nrFrames % 2) == 1))
615 {
616 Ptr<Sib1LteControlMessage> msg = Create<Sib1LteControlMessage>();
617 msg->SetSib1(m_sib1);
618 m_controlMessagesQueue.at(0).emplace_back(msg);
619 }
620
621 if (m_srsPeriodicity > 0)
622 {
623 // might be 0 in case the eNB has no UEs attached
624 NS_ASSERT_MSG(m_nrFrames > 1, "the SRS index check code assumes that frameNo starts at 1");
626 "the SRS index check code assumes that subframeNo starts at 1");
628 }
629 NS_LOG_INFO("-----sub frame " << m_nrSubFrames << "-----");
630 m_harqPhyModule->SubframeIndication(m_nrFrames, m_nrSubFrames);
631
632 // update info on TB to be received
633 std::list<UlDciLteControlMessage> uldcilist = DequeueUlDci();
634 std::list<UlDciLteControlMessage>::iterator dciIt = uldcilist.begin();
635 NS_LOG_DEBUG(this << " eNB Expected TBs " << uldcilist.size());
636 for (dciIt = uldcilist.begin(); dciIt != uldcilist.end(); dciIt++)
637 {
638 std::set<uint16_t>::iterator it2;
639 it2 = m_ueAttached.find((*dciIt).GetDci().m_rnti);
640
641 if (it2 == m_ueAttached.end())
642 {
643 NS_LOG_ERROR("UE not attached");
644 }
645 else
646 {
647 // send info of TB to LteSpectrumPhy
648 // translate to allocation map
649 std::vector<int> rbMap;
650 for (int i = (*dciIt).GetDci().m_rbStart;
651 i < (*dciIt).GetDci().m_rbStart + (*dciIt).GetDci().m_rbLen;
652 i++)
653 {
654 rbMap.push_back(i);
655 }
656 m_uplinkSpectrumPhy->AddExpectedTb((*dciIt).GetDci().m_rnti,
657 (*dciIt).GetDci().m_ndi,
658 (*dciIt).GetDci().m_tbSize,
659 (*dciIt).GetDci().m_mcs,
660 rbMap,
661 0 /* always SISO*/,
662 0 /* no HARQ proc id in UL*/,
663 0 /*evaluated by LteSpectrumPhy*/,
664 false /* UL*/);
665 if ((*dciIt).GetDci().m_ndi == 1)
666 {
667 NS_LOG_DEBUG(this << " RNTI " << (*dciIt).GetDci().m_rnti << " NEW TB");
668 }
669 else
670 {
671 NS_LOG_DEBUG(this << " RNTI " << (*dciIt).GetDci().m_rnti << " HARQ RETX");
672 }
673 }
674 }
675
676 // process the current burst of control messages
677 std::list<Ptr<LteControlMessage>> ctrlMsg = GetControlMessages();
678 m_dlDataRbMap.clear();
680 if (ctrlMsg.size() > 0)
681 {
682 std::list<Ptr<LteControlMessage>>::iterator it;
683 it = ctrlMsg.begin();
684 while (it != ctrlMsg.end())
685 {
686 Ptr<LteControlMessage> msg = (*it);
687 if (msg->GetMessageType() == LteControlMessage::DL_DCI)
688 {
689 Ptr<DlDciLteControlMessage> dci = DynamicCast<DlDciLteControlMessage>(msg);
690 // get the tx power spectral density according to DL-DCI(s)
691 // translate the DCI to Spectrum framework
692 uint32_t mask = 0x1;
693 for (int i = 0; i < 32; i++)
694 {
695 if (((dci->GetDci().m_rbBitmap & mask) >> i) == 1)
696 {
697 for (int k = 0; k < GetRbgSize(); k++)
698 {
699 m_dlDataRbMap.push_back((i * GetRbgSize()) + k);
700 // NS_LOG_DEBUG(this << " [enb]DL-DCI allocated PRB " <<
701 // (i*GetRbgSize()) + k);
702 GeneratePowerAllocationMap(dci->GetDci().m_rnti,
703 (i * GetRbgSize()) + k);
704 }
705 }
706 mask = (mask << 1);
707 }
708 // fire trace of DL Tx PHY stats
709 for (uint8_t i = 0; i < dci->GetDci().m_mcs.size(); i++)
710 {
712 params.m_cellId = m_cellId;
713 params.m_imsi = 0; // it will be set by DlPhyTransmissionCallback in LteHelper
715 params.m_rnti = dci->GetDci().m_rnti;
716 params.m_txMode = 0; // TBD
717 params.m_layer = i;
718 params.m_mcs = dci->GetDci().m_mcs.at(i);
719 params.m_size = dci->GetDci().m_tbsSize.at(i);
720 params.m_rv = dci->GetDci().m_rv.at(i);
721 params.m_ndi = dci->GetDci().m_ndi.at(i);
723 m_dlPhyTransmission(params);
724 }
725 }
726 else if (msg->GetMessageType() == LteControlMessage::UL_DCI)
727 {
728 Ptr<UlDciLteControlMessage> dci = DynamicCast<UlDciLteControlMessage>(msg);
729 QueueUlDci(*dci);
730 }
731 else if (msg->GetMessageType() == LteControlMessage::RAR)
732 {
733 Ptr<RarLteControlMessage> rarMsg = DynamicCast<RarLteControlMessage>(msg);
734 for (std::list<RarLteControlMessage::Rar>::const_iterator it =
735 rarMsg->RarListBegin();
736 it != rarMsg->RarListEnd();
737 ++it)
738 {
739 if (it->rarPayload.m_grant.m_ulDelay == true)
740 {
741 NS_FATAL_ERROR(" RAR delay is not yet implemented");
742 }
743 UlGrant_s ulGrant = it->rarPayload.m_grant;
744 // translate the UL grant in a standard UL-DCI and queue it
746 dci.m_rnti = ulGrant.m_rnti;
747 dci.m_rbStart = ulGrant.m_rbStart;
748 dci.m_rbLen = ulGrant.m_rbLen;
749 dci.m_tbSize = ulGrant.m_tbSize;
750 dci.m_mcs = ulGrant.m_mcs;
751 dci.m_hopping = ulGrant.m_hopping;
752 dci.m_tpc = ulGrant.m_tpc;
753 dci.m_cqiRequest = ulGrant.m_cqiRequest;
754 dci.m_ndi = 1;
756 msg.SetDci(dci);
757 QueueUlDci(msg);
758 }
759 }
760 it++;
761 }
762 }
763
764 SendControlChannels(ctrlMsg);
765
766 // send data frame
768 if (pb)
769 {
770 Simulator::Schedule(DL_CTRL_DELAY_FROM_SUBFRAME_START, // ctrl frame fixed to 3 symbols
772 this,
773 pb);
774 }
775
776 // trigger the MAC
778
780}
781
782void
784{
785 NS_LOG_FUNCTION(this << " eNB " << m_cellId << " start tx ctrl frame");
786 // set the current tx power spectral density (full bandwidth)
787 std::vector<int> dlRb;
788 for (uint16_t i = 0; i < m_dlBandwidth; i++)
789 {
790 dlRb.push_back(i);
791 }
793 NS_LOG_LOGIC(this << " eNB start TX CTRL");
794 bool pss = false;
795 if ((m_nrSubFrames == 1) || (m_nrSubFrames == 6))
796 {
797 pss = true;
798 }
799 m_downlinkSpectrumPhy->StartTxDlCtrlFrame(ctrlMsgList, pss);
800}
801
802void
804{
805 // set the current tx power spectral density
807 // send the current burts of packets
808 NS_LOG_LOGIC(this << " eNB start TX DATA");
809 std::list<Ptr<LteControlMessage>> ctrlMsgList;
810 ctrlMsgList.clear();
811 m_downlinkSpectrumPhy->StartTxDataFrame(pb, ctrlMsgList, DL_DATA_DURATION);
812}
813
814void
816{
818 if (m_nrSubFrames == 10)
819 {
821 }
822 else
823 {
825 }
826}
827
828void
830{
833}
834
835void
837{
838 NS_LOG_FUNCTION(this << sinr << Simulator::Now() << m_srsStartTime);
839 // avoid processing SRSs sent with an old SRS configuration index
841 {
844 }
845}
846
847void
849{
850 NS_LOG_FUNCTION(this << sinr);
853}
854
855void
857{
858 NS_LOG_FUNCTION(this << interf);
859 Ptr<SpectrumValue> interfCopy = Create<SpectrumValue>(interf);
862 {
865 }
866}
867
868void
870{
871 // not used by eNB
872}
873
876{
877 NS_LOG_FUNCTION(this << sinr);
878 Values::const_iterator it;
880 ulcqi.m_ulCqi.m_type = UlCqi_s::PUSCH;
881 for (it = sinr.ConstValuesBegin(); it != sinr.ConstValuesEnd(); it++)
882 {
883 double sinrdb = 10 * std::log10((*it));
884 // NS_LOG_DEBUG ("ULCQI RB " << i << " value " << sinrdb);
885 // convert from double to fixed point notation Sxxxxxxxxxxx.xxx
886 int16_t sinrFp = LteFfConverter::double2fpS11dot3(sinrdb);
887 ulcqi.m_ulCqi.m_sinr.push_back(sinrFp);
888 }
889 return ulcqi;
890}
891
892void
893LteEnbPhy::DoSetBandwidth(uint16_t ulBandwidth, uint16_t dlBandwidth)
894{
895 NS_LOG_FUNCTION(this << (uint32_t)ulBandwidth << (uint32_t)dlBandwidth);
896 m_ulBandwidth = ulBandwidth;
897 m_dlBandwidth = dlBandwidth;
898
899 static const int Type0AllocationRbg[4] = {
900 10, // RGB size 1
901 26, // RGB size 2
902 63, // RGB size 3
903 110 // RGB size 4
904 }; // see table 7.1.6.1-1 of 36.213
905 for (int i = 0; i < 4; i++)
906 {
907 if (dlBandwidth < Type0AllocationRbg[i])
908 {
909 m_rbgSize = i + 1;
910 break;
911 }
912 }
913}
914
915void
917{
918 NS_LOG_FUNCTION(this << ulEarfcn << dlEarfcn);
919 m_ulEarfcn = ulEarfcn;
920 m_dlEarfcn = dlEarfcn;
921}
922
923void
924LteEnbPhy::DoAddUe(uint16_t rnti)
925{
926 NS_LOG_FUNCTION(this << rnti);
927
928 bool success = AddUePhy(rnti);
929 NS_ASSERT_MSG(success, "AddUePhy() failed");
930
931 // add default P_A value
932 DoSetPa(rnti, 0);
933}
934
935void
937{
938 NS_LOG_FUNCTION(this << rnti);
939
940 bool success = DeleteUePhy(rnti);
941 NS_ASSERT_MSG(success, "DeleteUePhy() failed");
942
943 // remove also P_A value
944 std::map<uint16_t, double>::iterator it = m_paMap.find(rnti);
945 if (it != m_paMap.end())
946 {
947 m_paMap.erase(it);
948 }
949
950 // additional data to be removed
951 m_uplinkSpectrumPhy->RemoveExpectedTb(rnti);
952 // remove srs info to avoid trace errors
953 std::map<uint16_t, uint16_t>::iterator sit = m_srsSampleCounterMap.find(rnti);
954 if (sit != m_srsSampleCounterMap.end())
955 {
956 m_srsSampleCounterMap.erase(rnti);
957 }
958 // remove DL_DCI message otherwise errors occur for m_dlPhyTransmission trace
959 // remove also any UL_DCI message for the UE to be removed
960
961 for (auto& ctrlMessageList : m_controlMessagesQueue)
962 {
963 std::list<Ptr<LteControlMessage>>::iterator ctrlMsgListIt = ctrlMessageList.begin();
964 while (ctrlMsgListIt != ctrlMessageList.end())
965 {
966 Ptr<LteControlMessage> msg = (*ctrlMsgListIt);
967 if (msg->GetMessageType() == LteControlMessage::DL_DCI)
968 {
969 auto dci = DynamicCast<DlDciLteControlMessage>(msg);
970 if (dci->GetDci().m_rnti == rnti)
971 {
972 NS_LOG_INFO("DL_DCI to be sent from cell id : " << m_cellId << " to RNTI : "
973 << rnti << " is deleted");
974 ctrlMsgListIt = ctrlMessageList.erase(ctrlMsgListIt);
975 }
976 else
977 {
978 ++ctrlMsgListIt;
979 }
980 }
981 else if (msg->GetMessageType() == LteControlMessage::UL_DCI)
982 {
983 auto dci = DynamicCast<UlDciLteControlMessage>(msg);
984 if (dci->GetDci().m_rnti == rnti)
985 {
986 NS_LOG_INFO("UL_DCI to be sent from cell id : " << m_cellId << " to RNTI : "
987 << rnti << " is deleted");
988 ctrlMsgListIt = ctrlMessageList.erase(ctrlMsgListIt);
989 }
990 else
991 {
992 ++ctrlMsgListIt;
993 }
994 }
995 else
996 {
997 ++ctrlMsgListIt;
998 }
999 }
1000 }
1001}
1002
1003void
1004LteEnbPhy::DoSetPa(uint16_t rnti, double pa)
1005{
1006 NS_LOG_FUNCTION(this << rnti);
1007
1008 std::map<uint16_t, double>::iterator it = m_paMap.find(rnti);
1009
1010 if (it == m_paMap.end())
1011 {
1012 m_paMap.insert(std::pair<uint16_t, double>(rnti, pa));
1013 }
1014 else
1015 {
1016 it->second = pa;
1017 }
1018}
1019
1022{
1023 NS_LOG_FUNCTION(this << sinr);
1024 Values::const_iterator it;
1026 ulcqi.m_ulCqi.m_type = UlCqi_s::SRS;
1027 int i = 0;
1028 double srsSum = 0.0;
1029 for (it = sinr.ConstValuesBegin(); it != sinr.ConstValuesEnd(); it++)
1030 {
1031 double sinrdb = 10 * log10((*it));
1032 // NS_LOG_DEBUG ("ULCQI RB " << i << " value " << sinrdb);
1033 // convert from double to fixed point notation Sxxxxxxxxxxx.xxx
1034 int16_t sinrFp = LteFfConverter::double2fpS11dot3(sinrdb);
1035 srsSum += (*it);
1036 ulcqi.m_ulCqi.m_sinr.push_back(sinrFp);
1037 i++;
1038 }
1039 // Insert the user generated the srs as a vendor specific parameter
1040 NS_LOG_DEBUG(this << " ENB RX UL-CQI of " << m_srsUeOffset.at(m_currentSrsOffset));
1043 vsp.m_length = sizeof(SrsCqiRntiVsp);
1044 Ptr<SrsCqiRntiVsp> rnti = Create<SrsCqiRntiVsp>(m_srsUeOffset.at(m_currentSrsOffset));
1045 vsp.m_value = rnti;
1046 ulcqi.m_vendorSpecificList.push_back(vsp);
1047 // call SRS tracing method
1048 CreateSrsReport(m_srsUeOffset.at(m_currentSrsOffset), (i > 0) ? (srsSum / i) : DBL_MAX);
1049 return (ulcqi);
1050}
1051
1052void
1053LteEnbPhy::CreateSrsReport(uint16_t rnti, double srs)
1054{
1055 NS_LOG_FUNCTION(this << rnti << srs);
1056 std::map<uint16_t, uint16_t>::iterator it = m_srsSampleCounterMap.find(rnti);
1057 if (it == m_srsSampleCounterMap.end())
1058 {
1059 // create new entry
1060 m_srsSampleCounterMap.insert(std::pair<uint16_t, uint16_t>(rnti, 0));
1061 it = m_srsSampleCounterMap.find(rnti);
1062 }
1063 (*it).second++;
1064 if ((*it).second == m_srsSamplePeriod)
1065 {
1066 m_reportUeSinr(m_cellId, rnti, srs, (uint16_t)m_componentCarrierId);
1067 (*it).second = 0;
1068 }
1069}
1070
1071void
1072LteEnbPhy::DoSetTransmissionMode(uint16_t rnti, uint8_t txMode)
1073{
1074 NS_LOG_FUNCTION(this << rnti << (uint16_t)txMode);
1075 // UL supports only SISO MODE
1076}
1077
1078void
1080{
1081 NS_LOG_FUNCTION(this);
1082 m_ulDciQueue.at(UL_PUSCH_TTIS_DELAY - 1).push_back(m);
1083}
1084
1085std::list<UlDciLteControlMessage>
1087{
1088 NS_LOG_FUNCTION(this);
1089 if (m_ulDciQueue.at(0).size() > 0)
1090 {
1091 std::list<UlDciLteControlMessage> ret = m_ulDciQueue.at(0);
1092 m_ulDciQueue.erase(m_ulDciQueue.begin());
1093 std::list<UlDciLteControlMessage> l;
1094 m_ulDciQueue.push_back(l);
1095 return (ret);
1096 }
1097 else
1098 {
1099 m_ulDciQueue.erase(m_ulDciQueue.begin());
1100 std::list<UlDciLteControlMessage> l;
1101 m_ulDciQueue.push_back(l);
1102 std::list<UlDciLteControlMessage> emptylist;
1103 return (emptylist);
1104 }
1105}
1106
1107void
1108LteEnbPhy::DoSetSrsConfigurationIndex(uint16_t rnti, uint16_t srcCi)
1109{
1110 NS_LOG_FUNCTION(this);
1111 uint16_t p = GetSrsPeriodicity(srcCi);
1112 if (p != m_srsPeriodicity)
1113 {
1114 // resize the array of offset -> re-initialize variables
1115 m_srsUeOffset.clear();
1116 m_srsUeOffset.resize(p, 0);
1117 m_srsPeriodicity = p;
1118 // inhibit SRS until RRC Connection Reconfiguration propagates
1119 // to UEs, otherwise we might be wrong in determining the UE who
1120 // actually sent the SRS (if the UE was using a stale SRS config)
1121 // if we use a static SRS configuration index, we can have a 0ms guard time
1123 }
1124
1125 NS_LOG_DEBUG(this << " ENB SRS P " << m_srsPeriodicity << " RNTI " << rnti << " offset "
1126 << GetSrsSubframeOffset(srcCi) << " CI " << srcCi);
1127 std::map<uint16_t, uint16_t>::iterator it = m_srsCounter.find(rnti);
1128 if (it != m_srsCounter.end())
1129 {
1130 (*it).second = GetSrsSubframeOffset(srcCi) + 1;
1131 }
1132 else
1133 {
1134 m_srsCounter.insert(std::pair<uint16_t, uint16_t>(rnti, GetSrsSubframeOffset(srcCi) + 1));
1135 }
1136 m_srsUeOffset.at(GetSrsSubframeOffset(srcCi)) = rnti;
1137}
1138
1139void
1141{
1142 NS_LOG_FUNCTION(this);
1143 m_mib = mib;
1144}
1145
1146void
1148{
1149 NS_LOG_FUNCTION(this);
1150 m_sib1 = sib1;
1151}
1152
1153void
1155{
1156 m_harqPhyModule = harq;
1157}
1158
1159void
1161{
1162 NS_LOG_FUNCTION(this);
1163 // forward to scheduler
1165}
1166
1167} // namespace ns3
This class can be used to hold variables of floating point type such as 'double' or 'float'.
Definition: double.h:42
void SendMacPdu(Ptr< Packet > p) override
Send the MAC PDU to the channel.
Definition: lte-enb-phy.cc:113
EnbMemberLteEnbPhySapProvider(LteEnbPhy *phy)
Constructor.
Definition: lte-enb-phy.cc:107
virtual void SetBandwidth(uint16_t ulBandwidth, uint16_t dlBandwidth)
Set bandwidth function.
Definition: lte-enb-phy.cc:119
uint8_t GetMacChTtiDelay() override
Get the delay from MAC to Channel expressed in TTIs.
Definition: lte-enb-phy.cc:137
LteEnbPhy * m_phy
the ENB Phy
Definition: lte-enb-phy.cc:104
virtual void SetCellId(uint16_t cellId)
Set Cell ID function.
Definition: lte-enb-phy.cc:125
void SendLteControlMessage(Ptr< LteControlMessage > msg) override
Send SendLteControlMessage (PDCCH map, CQI feedbacks) using the ideal control channel.
Definition: lte-enb-phy.cc:131
Service Access Point (SAP) offered by the UE PHY to the UE RRC for control purposes.
Service Access Point (SAP) offered by the UE PHY to the UE RRC for control purposes.
LteEnbPhy models the physical layer for the eNodeB.
Definition: lte-enb-phy.h:45
uint16_t m_srsPeriodicity
SRS periodicity.
Definition: lte-enb-phy.h:461
double GetTxPower() const
Definition: lte-enb-phy.cc:316
Time m_srsStartTime
SRS start time.
Definition: lte-enb-phy.h:462
int8_t DoGetReferenceSignalPower() const
Definition: lte-enb-phy.cc:323
void StartSubFrame()
Start a LTE sub frame.
Definition: lte-enb-phy.cc:601
void CreateSrsReport(uint16_t rnti, double srs)
Create SRS report function.
uint16_t m_interferenceSamplePeriod
The InterferenceSamplePeriod attribute.
Definition: lte-enb-phy.h:506
virtual void ReportUlHarqFeedback(UlInfoListElement_s mes)
Report the uplink HARQ feedback generated by LteSpectrumPhy to MAC.
std::list< UlDciLteControlMessage > DequeueUlDci()
uint16_t m_srsSamplePeriod
The UeSinrSamplePeriod trace source.
Definition: lte-enb-phy.h:490
void SetLteEnbCphySapUser(LteEnbCphySapUser *s)
Set the CPHY SAP User.
Definition: lte-enb-phy.cc:295
FfMacSchedSapProvider::SchedUlCqiInfoReqParameters CreatePuschCqiReport(const SpectrumValue &sinr)
Create the UL CQI feedback from SINR values perceived at the physical layer with the PUSCH signal rec...
Definition: lte-enb-phy.cc:875
uint32_t m_nrSubFrames
The subframe number currently served.
Definition: lte-enb-phy.h:459
std::set< uint16_t > m_ueAttached
List of RNTI of attached UEs.
Definition: lte-enb-phy.h:422
LteEnbPhySapProvider * GetLteEnbPhySapProvider()
Get the PHY SAP provider.
Definition: lte-enb-phy.cc:289
void SetLteEnbPhySapUser(LteEnbPhySapUser *s)
Set the PHY SAP User.
Definition: lte-enb-phy.cc:283
void DoSetMasterInformationBlock(LteRrcSap::MasterInformationBlock mib)
Set master information block.
bool DeleteUePhy(uint16_t rnti)
Remove the given RNTI from the list of attached UE m_ueAttached.
Definition: lte-enb-phy.cc:401
std::vector< std::list< UlDciLteControlMessage > > m_ulDciQueue
For storing info on future receptions.
Definition: lte-enb-phy.h:441
double GetNoiseFigure() const
Definition: lte-enb-phy.cc:337
void SetTxPower(double pow)
Definition: lte-enb-phy.cc:309
std::vector< int > m_dlDataRbMap
DL data RB map.
Definition: lte-enb-phy.h:438
TracedCallback< uint16_t, uint16_t, double, uint8_t > m_reportUeSinr
The ReportUeSinr trace source.
Definition: lte-enb-phy.h:485
~LteEnbPhy() override
Definition: lte-enb-phy.cc:244
Ptr< LteSpectrumPhy > GetDlSpectrumPhy() const
Definition: lte-enb-phy.cc:371
void DoDispose() override
Destructor implementation.
Definition: lte-enb-phy.cc:249
void GenerateCtrlCqiReport(const SpectrumValue &sinr) override
generate a CQI report based on the given SINR of Ctrl frame
Definition: lte-enb-phy.cc:836
void GenerateDataCqiReport(const SpectrumValue &sinr) override
generate a CQI report based on the given SINR of Data frame (used for PUSCH CQIs)
Definition: lte-enb-phy.cc:848
void SendDataChannels(Ptr< PacketBurst > pb)
Send the PDSCH.
Definition: lte-enb-phy.cc:803
std::map< uint16_t, uint16_t > m_srsSampleCounterMap
SRS sample counter map.
Definition: lte-enb-phy.h:491
void DoSetSrsConfigurationIndex(uint16_t rnti, uint16_t srcCi)
Set source configuration index.
void PhyPduReceived(Ptr< Packet > p)
PhySpectrum received a new PHY-PDU.
Definition: lte-enb-phy.cc:432
FfMacSchedSapProvider::SchedUlCqiInfoReqParameters CreateSrsCqiReport(const SpectrumValue &sinr)
Create the UL CQI feedback from SINR values perceived at the physical layer with the SRS signal recei...
LteEnbPhySapUser * m_enbPhySapUser
ENB Phy SAP user.
Definition: lte-enb-phy.h:444
void EndFrame()
End a LTE frame.
Definition: lte-enb-phy.cc:829
void CalcChannelQualityForUe(std::vector< double > sinr, Ptr< LteSpectrumPhy > ue)
Calculate the channel quality for a given UE.
Definition: lte-enb-phy.cc:508
void DoSetPa(uint16_t rnti, double pa)
Set PA.
uint8_t GetMacChDelay() const
Definition: lte-enb-phy.cc:365
uint16_t m_currentSrsOffset
current SRS offset
Definition: lte-enb-phy.h:465
void DoSetEarfcn(uint32_t dlEarfcn, uint32_t ulEarfcn)
Set EARFCN.
Definition: lte-enb-phy.cc:916
Ptr< SpectrumValue > CreateTxPowerSpectralDensity() override
Create the PSD for TX.
Definition: lte-enb-phy.cc:479
void DoSetTransmissionMode(uint16_t rnti, uint8_t txMode)
Set transmission mode.
LteEnbPhySapProvider * m_enbPhySapProvider
ENB Phy SAP provider.
Definition: lte-enb-phy.h:443
uint8_t DoGetMacChTtiDelay()
Get MAC ch TTI delay function.
Definition: lte-enb-phy.cc:426
std::map< int, double > m_dlPowerAllocationMap
DL power allocation map.
Definition: lte-enb-phy.h:428
std::vector< int > m_listOfDownlinkSubchannel
A vector of integers, if the i-th value is j it means that the j-th resource block is used for transm...
Definition: lte-enb-phy.h:436
void GeneratePowerAllocationMap(uint16_t rnti, int rbId)
Generate power allocation map (i.e.
Definition: lte-enb-phy.cc:464
void QueueUlDci(UlDciLteControlMessage m)
void SetNoiseFigure(double pow)
Definition: lte-enb-phy.cc:330
std::map< uint16_t, uint16_t > m_srsCounter
SRS counter.
Definition: lte-enb-phy.h:463
void SetMacChDelay(uint8_t delay)
Definition: lte-enb-phy.cc:344
void SetHarqPhyModule(Ptr< LteHarqPhy > harq)
Set the HARQ Phy module.
virtual void ReceiveLteControlMessageList(std::list< Ptr< LteControlMessage > > msgList)
PhySpectrum received a new list of LteControlMessage.
Definition: lte-enb-phy.cc:530
void SendControlChannels(std::list< Ptr< LteControlMessage > > ctrlMsgList)
Send the PDCCH and PCFICH in the first 3 symbols.
Definition: lte-enb-phy.cc:783
void DoRemoveUe(uint16_t rnti)
Remove UE.
Definition: lte-enb-phy.cc:936
void SetDownlinkSubChannelsWithPowerAllocation(std::vector< int > mask)
set the resource blocks (a.k.a.
Definition: lte-enb-phy.cc:448
void ReportRsReceivedPower(const SpectrumValue &power) override
generate a report based on the linear RS power perceived during CTRL frame NOTE: used only by UE for ...
Definition: lte-enb-phy.cc:869
LteRrcSap::MasterInformationBlock m_mib
The Master Information Block message to be broadcasted every frame.
Definition: lte-enb-phy.h:471
void DoSendMacPdu(Ptr< Packet > p) override
Queue the MAC PDU to be sent (according to m_macChTtiDelay)
Definition: lte-enb-phy.cc:419
void ReportInterference(const SpectrumValue &interf) override
generate a report based on the linear interference and noise power perceived during DATA frame NOTE: ...
Definition: lte-enb-phy.cc:856
TracedCallback< uint16_t, Ptr< SpectrumValue > > m_reportInterferenceTrace
The ReportInterference trace source.
Definition: lte-enb-phy.h:500
Ptr< LteSpectrumPhy > GetUlSpectrumPhy() const
Definition: lte-enb-phy.cc:377
void DoAddUe(uint16_t rnti)
Add UE.
Definition: lte-enb-phy.cc:924
friend class EnbMemberLteEnbPhySapProvider
allow EnbMemberLteEnbPhySapProvider class friend access
Definition: lte-enb-phy.h:47
void DoSetSystemInformationBlockType1(LteRrcSap::SystemInformationBlockType1 sib1)
Set system information block.
void DoSendLteControlMessage(Ptr< LteControlMessage > msg)
Send LTE Control Message function.
Definition: lte-enb-phy.cc:514
virtual Ptr< SpectrumValue > CreateTxPowerSpectralDensityWithPowerAllocation()
Create the PSD for TX with power allocation for each RB.
Definition: lte-enb-phy.cc:493
bool AddUePhy(uint16_t rnti)
Add the given RNTI to the list of attached UE m_ueAttached.
Definition: lte-enb-phy.cc:383
void DoInitialize() override
Initialize() implementation.
Definition: lte-enb-phy.cc:260
LteRrcSap::SystemInformationBlockType1 m_sib1
The System Information Block Type 1 message to be broadcasted.
Definition: lte-enb-phy.h:477
std::map< uint16_t, double > m_paMap
P_A per UE RNTI.
Definition: lte-enb-phy.h:425
void DoSetBandwidth(uint16_t ulBandwidth, uint16_t dlBandwidth)
Set bandwidth function.
Definition: lte-enb-phy.cc:893
void EndSubFrame()
End a LTE sub frame.
Definition: lte-enb-phy.cc:815
LteEnbCphySapUser * m_enbCphySapUser
ENB CPhy SAP user.
Definition: lte-enb-phy.h:447
uint16_t m_interferenceSampleCounter
interference sample counter
Definition: lte-enb-phy.h:507
void SetDownlinkSubChannels(std::vector< int > mask)
set the resource blocks (a.k.a.
Definition: lte-enb-phy.cc:439
virtual void ReceiveLteControlMessage(Ptr< LteControlMessage > msg)
Receive the control message.
Definition: lte-enb-phy.cc:522
void StartFrame()
Start a LTE frame.
Definition: lte-enb-phy.cc:583
uint32_t m_nrFrames
The frame number currently served.
Definition: lte-enb-phy.h:453
LteEnbCphySapProvider * m_enbCphySapProvider
ENB CPhy SAP provider.
Definition: lte-enb-phy.h:446
std::vector< uint16_t > m_srsUeOffset
SRS UE offset.
Definition: lte-enb-phy.h:464
LteEnbCphySapProvider * GetLteEnbCphySapProvider()
Get the CPHY SAP provider.
Definition: lte-enb-phy.cc:302
TracedCallback< PhyTransmissionStatParameters > m_dlPhyTransmission
The DlPhyTransmission trace source.
Definition: lte-enb-phy.h:514
std::vector< int > GetDownlinkSubChannels()
Definition: lte-enb-phy.cc:457
Ptr< LteHarqPhy > m_harqPhyModule
HARQ Phy module.
Definition: lte-enb-phy.h:479
friend class MemberLteEnbCphySapProvider< LteEnbPhy >
allow MemberLteEnbCphySapProvider<LteEnbPhy> class friend access
Definition: lte-enb-phy.h:49
static TypeId GetTypeId()
Get the type ID.
Definition: lte-enb-phy.cc:171
Service Access Point (SAP) offered by the eNB-PHY to the eNB-MAC.
Service Access Point (SAP) offered by the eNB-PHY to the eNB-MAC.
virtual void ReceivePhyPdu(Ptr< Packet > p)=0
Called by the Phy to notify the MAC of the reception of a new PHY-PDU.
virtual void UlInfoListElementHarqFeeback(UlInfoListElement_s params)=0
Notify the HARQ on the UL tranmission status.
virtual void UlCqiReport(FfMacSchedSapProvider::SchedUlCqiInfoReqParameters ulcqi)=0
Returns to MAC level the UL-CQI evaluated.
virtual void ReceiveLteControlMessage(Ptr< LteControlMessage > msg)=0
Receive SendLteControlMessage (PDCCH map, CQI feedbacks) using the ideal control channel.
virtual void ReceiveRachPreamble(uint32_t prachId)=0
notify the reception of a RACH preamble on the PRACH
virtual void SubframeIndication(uint32_t frameNo, uint32_t subframeNo)=0
Trigger the start from a new frame (input from Phy layer)
static uint16_t double2fpS11dot3(double val)
Convert from double to fixed point S11.3 notation.
Definition: lte-common.cc:134
The LtePhy models the physical layer of LTE.
Definition: lte-phy.h:50
void DoSetCellId(uint16_t cellId)
Definition: lte-phy.cc:239
double m_txPower
Transmission power in dBm.
Definition: lte-phy.h:240
uint8_t GetRbgSize() const
Definition: lte-phy.cc:179
void DoDispose() override
Destructor implementation.
Definition: lte-phy.cc:75
uint16_t GetSrsPeriodicity(uint16_t srcCi) const
Definition: lte-phy.cc:143
std::vector< Ptr< PacketBurst > > m_packetBurstQueue
A queue of packet bursts to be sent.
Definition: lte-phy.h:280
uint16_t m_ulBandwidth
The UL bandwidth in number of PRBs.
Definition: lte-phy.h:260
Ptr< PacketBurst > GetPacketBurst()
Definition: lte-phy.cc:191
uint8_t m_componentCarrierId
component carrier Id used to address sap
Definition: lte-phy.h:302
double m_noiseFigure
Loss (dB) in the Signal-to-Noise-Ratio due to non-idealities in the receiver.
Definition: lte-phy.h:252
uint32_t m_ulEarfcn
The uplink carrier frequency.
Definition: lte-phy.h:277
uint16_t m_dlBandwidth
The DL bandwidth in number of PRBs.
Definition: lte-phy.h:265
Ptr< LteSpectrumPhy > m_downlinkSpectrumPhy
The downlink LteSpectrumPhy associated to this LtePhy.
Definition: lte-phy.h:229
void SetMacPdu(Ptr< Packet > p)
Definition: lte-phy.cc:185
std::list< Ptr< LteControlMessage > > GetControlMessages()
Definition: lte-phy.cc:217
uint16_t GetSrsSubframeOffset(uint16_t srcCi) const
Definition: lte-phy.cc:161
Ptr< LteNetDevice > m_netDevice
Pointer to the NetDevice where this PHY layer is attached.
Definition: lte-phy.h:223
uint16_t m_cellId
Cell identifier.
Definition: lte-phy.h:299
void SetControlMessages(Ptr< LteControlMessage > m)
Definition: lte-phy.cc:209
uint32_t m_dlEarfcn
The downlink carrier frequency.
Definition: lte-phy.h:272
Ptr< LteSpectrumPhy > m_uplinkSpectrumPhy
The uplink LteSpectrumPhy associated to this LtePhy.
Definition: lte-phy.h:234
double GetTti() const
Definition: lte-phy.cc:136
std::vector< std::list< Ptr< LteControlMessage > > > m_controlMessagesQueue
A queue of control messages to be sent.
Definition: lte-phy.h:282
uint8_t m_rbgSize
The RB group size according to the bandwidth.
Definition: lte-phy.h:267
uint8_t m_macChTtiDelay
Delay between MAC and channel layer in terms of TTIs.
Definition: lte-phy.h:292
static Ptr< SpectrumValue > CreateNoisePowerSpectralDensity(uint32_t earfcn, uint16_t bandwidth, double noiseFigure)
create a SpectrumValue that models the power spectral density of AWGN
static Ptr< SpectrumValue > CreateTxPowerSpectralDensity(uint32_t earfcn, uint16_t bandwidth, double powerTx, std::vector< int > activeRbs)
create a spectrum value representing the power spectral density of a signal to be transmitted.
uint32_t GetId() const
Definition: node.cc:117
virtual void DoInitialize()
Initialize() implementation.
Definition: object.cc:360
Hold objects of type Ptr<T>.
Definition: pointer.h:37
static EventId Schedule(const Time &delay, FUNC f, Ts &&... args)
Schedule an event to expire after delay.
Definition: simulator.h:568
static void ScheduleWithContext(uint32_t context, const Time &delay, FUNC f, Ts &&... args)
Schedule an event with the given context.
Definition: simulator.h:587
static Time Now()
Return the current simulation virtual time.
Definition: simulator.cc:199
static EventId ScheduleNow(FUNC f, Ts &&... args)
Schedule an event to expire Now.
Definition: simulator.h:606
Set of values corresponding to a given SpectrumModel.
Values::const_iterator ConstValuesBegin() const
Values::const_iterator ConstValuesEnd() const
Define the RNTI that has generated the.
Simulation virtual time values and global simulation resolution.
Definition: nstime.h:105
int64_t GetMilliSeconds() const
Get an approximation of the time stored in this instance in the indicated unit.
Definition: nstime.h:407
@ S
second
Definition: nstime.h:116
a unique identifier for an interface.
Definition: type-id.h:60
@ ATTR_GET
The attribute can be read.
Definition: type-id.h:65
TypeId SetParent(TypeId tid)
Set the parent TypeId.
Definition: type-id.cc:935
Hold an unsigned integer type.
Definition: uinteger.h:45
The Uplink Data Control Indicator messages defines the RB allocation for the users in the uplink.
void SetDci(UlDciListElement_s dci)
add a DCI into the message
#define NS_ASSERT_MSG(condition, message)
At runtime, in debugging builds, if this condition is not true, the program prints the message to out...
Definition: assert.h:86
Ptr< const AttributeAccessor > MakeDoubleAccessor(T1 a1)
Definition: double.h:43
Ptr< const AttributeAccessor > MakePointerAccessor(T1 a1)
Definition: pointer.h:230
Ptr< const AttributeAccessor > MakeUintegerAccessor(T1 a1)
Definition: uinteger.h:46
#define NS_FATAL_ERROR(msg)
Report a fatal error with a message and terminate.
Definition: fatal-error.h:160
#define NS_ABORT_MSG_IF(cond, msg)
Abnormal program termination if a condition is true, with a message.
Definition: abort.h:108
#define NS_LOG_ERROR(msg)
Use NS_LOG to output a message of level LOG_ERROR.
Definition: log.h:254
#define NS_LOG_COMPONENT_DEFINE(name)
Define a Log component with a specific name.
Definition: log.h:202
#define NS_LOG_DEBUG(msg)
Use NS_LOG to output a message of level LOG_DEBUG.
Definition: log.h:268
#define NS_LOG_LOGIC(msg)
Use NS_LOG to output a message of level LOG_LOGIC.
Definition: log.h:282
#define NS_LOG_FUNCTION(parameters)
If log level LOG_FUNCTION is enabled, this macro will output all input parameters separated by ",...
#define NS_LOG_INFO(msg)
Use NS_LOG to output a message of level LOG_INFO.
Definition: log.h:275
#define NS_OBJECT_ENSURE_REGISTERED(type)
Register an Object subclass with the TypeId system.
Definition: object-base.h:45
Time NanoSeconds(uint64_t value)
Construct a Time in the indicated unit.
Definition: nstime.h:1374
Time Seconds(double value)
Construct a Time in the indicated unit.
Definition: nstime.h:1338
Time MilliSeconds(uint64_t value)
Construct a Time in the indicated unit.
Definition: nstime.h:1350
Ptr< const TraceSourceAccessor > MakeTraceSourceAccessor(T a)
Create a TraceSourceAccessor which will control access to the underlying trace source.
#define UL_PUSCH_TTIS_DELAY
Definition: lte-common.h:28
#define SRS_CQI_RNTI_VSP
Every class exported by the ns3 library is enclosed in the ns3 namespace.
static const Time DL_CTRL_DELAY_FROM_SUBFRAME_START
Delay from the start of a DL subframe to transmission of the data portion.
Definition: lte-enb-phy.cc:68
static const Time DL_DATA_DURATION
Duration of the data portion of a DL subframe.
Definition: lte-enb-phy.cc:61
static const int Type0AllocationRbg[4]
Type 0 RGB allocation.
phy
Definition: third.py:82
#define list
See section 4.3.24 cqiListElement.
uint16_t m_rnti
RNTI.
See section 4.3.23 dlInfoListElement.
Parameters of the SCHED_UL_CQI_INFO_REQ primitive.
std::vector< struct VendorSpecificListElement_s > m_vendorSpecificList
vendor specific list
MasterInformationBlock structure.
Definition: lte-rrc-sap.h:608
uint16_t systemFrameNumber
system frame number
Definition: lte-rrc-sap.h:610
SystemInformationBlockType1 structure.
Definition: lte-rrc-sap.h:615
See section 4.3.14 macCEListElement.
PhyTransmissionStatParameters structure.
Definition: lte-common.h:182
uint8_t m_ndi
new data indicator flag
Definition: lte-common.h:192
int64_t m_timestamp
in millisecond
Definition: lte-common.h:183
uint8_t m_layer
the layer (cw) of the transmission
Definition: lte-common.h:188
uint16_t m_size
Size of transport block.
Definition: lte-common.h:190
uint64_t m_imsi
IMSI of the scheduled UE.
Definition: lte-common.h:185
uint16_t m_rnti
C-RNTI scheduled.
Definition: lte-common.h:186
uint8_t m_txMode
the transmission Mode
Definition: lte-common.h:187
uint8_t m_rv
the redundancy version (HARQ)
Definition: lte-common.h:191
uint16_t m_cellId
Cell ID of the attached Enb.
Definition: lte-common.h:184
uint8_t m_ccId
component carrier id
Definition: lte-common.h:193
uint8_t m_mcs
MCS for transport block.
Definition: lte-common.h:189
std::vector< uint16_t > m_sinr
SINR.
See section 4.3.2 ulDciListElement.
int8_t m_tpc
Tx power control command.
bool m_cqiRequest
CQI request.
Substitutive structure for specifying BuildRarListElement_s::m_grant field.
int8_t m_tpc
Tx power control command.
bool m_cqiRequest
CQI request?
bool m_hopping
hopping?
uint16_t m_tbSize
size
uint8_t m_rbLen
length
uint8_t m_mcs
MCS.
uint8_t m_rbStart
start
uint16_t m_rnti
RNTI.
See section 4.3.12 ulInfoListElement.
See section 4.3.3 vendorSpecifiListElement.
Ptr< VendorSpecificValue > m_value
value