GSOC2011Projects: Difference between revisions
Line 68: | Line 68: | ||
==== Vehicular Ad-hoc Networks ==== | ==== Vehicular Ad-hoc Networks ==== | ||
Mentors: | Mentors: [mailto:g.remy00@gmail.com Guillaume Rémy] | ||
* '''Wireless Access in Vehicular Environments (WAVE)''' The IEEE 1609 Family of Standards for Wireless Access in Vehicular Environments (WAVE) defines the architecture, communications model, management structure, security mechanisms, and physical access for wireless communications in the vehicular environment. Some components of this specification has already been implemented for ns-3. However, we are still far from the simulation of WAVE on ns-3. The current status is as follows and it is up to the student to decide how much he/she wants to implement: 1) The PHY is ready as-is: the 5 MHz and 10 Mhz channel options (i.e., 802.11p) are already implemented, with a corresponding error model. 2) As for the PHY-specific parameters (slot duration etc.), currently only coverage class 0 is supported [0]. 3) The MAC needs to be modified. First, some trivial reworking is needed [1], and the rest depends on what the student wishes to implement. One possible approach is to use [2] as a guideline for implementing what is discussed in [3]. The most complex piece to implement are the channel switch logic (the execution of the channel switch command is already implemented) 4) higher layers: nothing specific to WAVE is currently available. 5) mobility models: no mobility model specific for vehicular scenarios is included in ns-3. But given that ns-3 can work with ns-2 mobility traces, it should be possible to find a mobility trace generator for vehicular scenarios that can be reused with ns-3. | * '''Wireless Access in Vehicular Environments (WAVE)''' The IEEE 1609 Family of Standards for Wireless Access in Vehicular Environments (WAVE) defines the architecture, communications model, management structure, security mechanisms, and physical access for wireless communications in the vehicular environment. Some components of this specification has already been implemented for ns-3. However, we are still far from the simulation of WAVE on ns-3. The current status is as follows and it is up to the student to decide how much he/she wants to implement: 1) The PHY is ready as-is: the 5 MHz and 10 Mhz channel options (i.e., 802.11p) are already implemented, with a corresponding error model. 2) As for the PHY-specific parameters (slot duration etc.), currently only coverage class 0 is supported [0]. 3) The MAC needs to be modified. First, some trivial reworking is needed [1], and the rest depends on what the student wishes to implement. One possible approach is to use [2] as a guideline for implementing what is discussed in [3]. The most complex piece to implement are the channel switch logic (the execution of the channel switch command is already implemented) 4) higher layers: nothing specific to WAVE is currently available. 5) mobility models: no mobility model specific for vehicular scenarios is included in ns-3. But given that ns-3 can work with ns-2 mobility traces, it should be possible to find a mobility trace generator for vehicular scenarios that can be reused with ns-3. |
Revision as of 14:58, 13 February 2011
Main Page - Roadmap - Summer Projects - Project Ideas - Developer FAQ - Tools - Related Projects
HOWTOs - Installation - Troubleshooting - User FAQ - Samples - Models - Education - Contributed Code - Papers
- GSoC Frequently Asked Questions
- GSoC Mentors Guide
- GSoC Student guide
- GSoC Student application template
- GSoC 2011 Ideas page
- GSoC 2010 Ideas page | GSoC 2010 Accepted Projects
- GSoC 2009 Ideas page | GSoC 2009 Accepted Projects
- GSoC Organization Administrator guide
- Get in contact with the ns-3 team: ns-developers mailing list | IRC #ns-3 on freenode.net
GSoC 2011 Ideas
This webpage highlights project ideas for ns-3's Google Summer of Code 2011 effort.
About the ns-3 project
ns-3 is a discrete-event network simulator, with a particular emphasis on network research and education. Users of ns-3 can construct simulations of computer networks using models of traffic generators, protocols such as TCP/IP, and devices and channels such as WiFi, and analyze or visualize the results. Simulation plays a vital role in the research and education process, because of the ability for simulations to obtain reproducible results (particularly for wireless protocol design), scale to large networks, and study systems that have not yet been implemented. A particular emphasis in ns-3 is the high degree of realism in the models (including frameworks for real application and kernel code) and integration of the tool with virtual machine environments and testbeds; we view that researchers need to move more effortlessly between simulation, testbeds, and live experiments, and ns-3 is designed to facilitate that.
ns-3 has been in development since 2005 and has been making quarterly releases since June 2008 (our last release was ns-3.10 in January 2011). ns-3 is replacing the popular ns-2 tool which was developed in the 1997-2000 timeframe but became out of date and unmaintained. The tool is coming into wide use; our web server logged almost 71000 successful downloads of our released software between January 2010 and January 2011, and we have a users mailing list of about 900 members now averaging 200-300 posts per month.
Our GSOC organizational admin is Lalith Suresh and our backup org admin is Tom Henderson.
Project Ideas
The following are project ideas which the ns-3 team has identified as important and is most interested in working on as part of the 2011 Google Summer of Code. GSoC applicants are however free to propose their own ideas. In addition, please note that these ideas are not limited to Google Summer of Code, anyone is welcome to work on them. Please email the ns-developers list if you have an idea that you'd like to work on. GSoC applicants are encouraged to look over this list, pick one that especially interests them, think about it, and discuss potential approaches on the ns-developers list. Previous experience suggests that the more you discuss and refine your proposal on the mailing list beforehand, the more stronger a proposal it will develop into, and the higher your chances of being ranked high.
Each project idea has been tagged with the following properties:
- Required Experience: Languages, concepts, or packages with which applicants must be familiar.
- Bonus Experience: Other experience or familiarity which would be greatly helpful to applicants for this project.
- Interests: Areas of particular relevance to this project, and an indicator of where successful students might apply their experiences coming out of this project.
- Difficulty: easy, medium or difficult
- Recommended reading: pointers to documentation, papers, specific bugs, etc.
Note that all of the projects require some experience and comfort with C++. Project ideas for which C++ is noted as a required experience will require more and deeper familiarity with the language. A similar notion applies to computer networking, BSD sockets, etc: Familiarity is strongly preferred, but is not required except where explicitly noted due to the topic being more advanced in that regard.
Priority Project Ideas
The following are work areas the ns-3 project has identified as the highest priorities, has several mentors available, and would be especially interested in having students work on.
Antenna Models
Mentors: Ruben Merz
- Antenna Radiation Patterns This project would implement support for antenna radiation patterns in the physical layer of ns-3. In addition to enhancing the realism of the ns-3 physical layer, this would also enable to implement directional antennas in ns-3. This project can have a large impact on the ns-3 simulator as it would allow several wireless physical layers to benefit from it, namely 802.11, WiMAX and LTE. If time permits, validation with an 802.11 testbed is envisioned.
- Required Experience: C++, some knowledge of radio propagation is a plus
- Bonus Experience: physical layer modeling and simulation, wireless networking
- Interests: wireless networking, physical layer modeling and simulation
- Difficulty: medium
- Recommended readings: ns-3 propagation models (files
*propagation*.{cc,h}
), The Impact of Directional Antenna Models on Simulation Accuracy
Vehicular Ad-hoc Networks
Mentors: Guillaume Rémy
- Wireless Access in Vehicular Environments (WAVE) The IEEE 1609 Family of Standards for Wireless Access in Vehicular Environments (WAVE) defines the architecture, communications model, management structure, security mechanisms, and physical access for wireless communications in the vehicular environment. Some components of this specification has already been implemented for ns-3. However, we are still far from the simulation of WAVE on ns-3. The current status is as follows and it is up to the student to decide how much he/she wants to implement: 1) The PHY is ready as-is: the 5 MHz and 10 Mhz channel options (i.e., 802.11p) are already implemented, with a corresponding error model. 2) As for the PHY-specific parameters (slot duration etc.), currently only coverage class 0 is supported [0]. 3) The MAC needs to be modified. First, some trivial reworking is needed [1], and the rest depends on what the student wishes to implement. One possible approach is to use [2] as a guideline for implementing what is discussed in [3]. The most complex piece to implement are the channel switch logic (the execution of the channel switch command is already implemented) 4) higher layers: nothing specific to WAVE is currently available. 5) mobility models: no mobility model specific for vehicular scenarios is included in ns-3. But given that ns-3 can work with ns-2 mobility traces, it should be possible to find a mobility trace generator for vehicular scenarios that can be reused with ns-3.
- Required experience: C++.
- Bonus experience: Wireless networking, WAVE.
- Interests: Wireless networking, VANETs.
- Difficulty: medium to hard, depending on what the student proposes to implement.
- Recommended reading
Satellite network stack
Mentors: Tommaso Pecorella
- Satellite networks ns-2 incorporates support for satellite network simulations (http://ala.isti.cnr.it/wnlab/tdmadama). Since that work some relevant standards have been approved, particularly by ETSI. This project would investigate the architecture needed to support ETSI-BSM interfaces and some simple satellite return links, like bent-pipe and basic DVB-RCS.
- Required Experience: C/C++
- Bonus Experience: Satellite communication protocols, ns-2, basic UML
- Interests: Satellite systems, Bandwidth-on-demand, control theory
- Difficulty: medium to difficult (depending on the implementation details the student want to include)
- Recommended reading:
Advanced Queues for NS-3
Mentors: TBD or Duy Nguyen
- Advanced Queue Management ns-3 currently has very limited support for more advanced queuing disciplines. The goal of this project is to provide fresh implementation of RED queue to ns-3 by surveying RED queue implementation in ns-2, Linux Kernel (if applicable), and, especially, Sally's RED paper. The preferred outcome of this project will be NS-3 Simulator Tests for RED Technical Report (similar to NS Simulator Tests for RED Technical Report) with extensive validation test cases and providing a framework for other advanced queuing development in ns-3
- Required Experience: C/C++, knowledge of queuing theory
- Bonus Experience: ns-2 queues, Linux queues
- Interests: Advanced queuing models and simulations, queuing theory
- Difficulty: medium to difficult
- Recommended reading:
Additional Project Ideas
The following are additional project ideas that the ns-3 team has highlighted as important projects to support, and are suggested for students to extend. Not all of them have specific mentors assigned yet but we would seek out mentors from our mentor pool if high quality applications came in on these topics (or any ns-3 topic, for that matter).
Routing
- Generalized Router Models/Structure. Many simulators, including ns-3, do not provide high fidelity models of Internet routers. For instance, intra-device latencies and input queuing behavior are not modeled. This project would adapt recent results on empirical router testing to develop a new, more detailed Router node type for ns-3.
- Required Experience:
- Bonus Experience: Routing architectures, routing protocols, queueing theory, statistics
- Interests: High fidelity simulation, queueing theory, statistics, data driven model development
- Difficulty: medium-to-high, because there may be a dependency on Click router
MAC and PHY Models
Mentors: Ruben Merz
- CSMA/CD and Aloha
- Description: Implement a CSMA/CD MAC protocol. Optionally, implement slotted aloha. A good reference describing the CSMA/CD and aloha protocols as well as basic theoretical results about these protocols is "Computer Networking: A Top-Down Approach.".
- Required Experience: basic C++, know what aloha and CSMA/CD are.
- Bonus Experience: ns-3 programming, contributions to open source projects.
- Interests: networking, C++ programming
- Difficulty: easy
- Recommended reading: Computer Networking: a top down approach, chapter 5.
Mentors: TBD
- SNS for ns-3 Wifi. Staged Network Simulations (SNS) is a patch for the ns-2 wireless models which provides for function approximation and caching. That mechanism greatly speeds up the many calculations required in mobile wireless simulations. This project would incorporate those techniques into the ns-3 WiFi model.
- Required Experience:
- Bonus Experience: Software profiling, software tuning
- Interests: Approximation, caching, software profiling, high performance computing, scientific computing
- Difficulty: depends on what functionality the student proposes to implement
Applications and Systems
- Large Scale Topology Generation and Management. ns-2 incorporates support for various topology generators, which would be useful to also support in ns-3. This project would investigate porting topology generators or mapping their output to ns-3 simulations. It would also touch on the problem of coherent IP addressing in generated topologies. In particular, recent work by the Emulab project may be useful in this regard.
- Required Experience:
- Bonus Experience: Graph theory, network management, Internet topology
- Interests: Internet topology, Internet autonomous systems, graph theory
- Difficulty: depends on what functionality the student proposes to implement